Feedback Control Theory and Processing System L og Streams

by Wei Xu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of Californiaat Berkeley, in partial satisfaction of the requirements for the degree of M aster
of Science, Plan | 1.

Approval for the Report and Comprehensive Examination:

Committee;

Professor D. A. Patterson
Research Advisor

(Date)

* %k k k k * %

Professor M. Franklin
Second Reader

(Date)

Abstract

In this project, we focus both on building a general tool that can be ugexysiem
operators and machine learning researchers for analyzing datanasploring general
techniques of applying feedback control theory to distributed compustess.

We have built a scalable and flexible system log processing system useagaishCQ [36]
as the building blocks. The report is divided into two parts.

In the first part, we discuss the needs for processing system log dddéeastreams and
our general design of parallel and multi-tier architectures.

In the second part of the report, we address problems regarding taré@sgprocessing
system as being a complex distributed system itself. We focus on how ratidturbances
can have an impact on the performance and reliability. All problems addtess solved
systematically with feedback-control-theory. We discuss three usesfeftieack-control-
theory. First, as the workload regulator, then the load balancer andhastorkload sim-
ulator. We illustrate the general techniques for the system identification ermbttiroller

design by presenting the three applications.

Contents

Processing System Event Data as Data Streams

Introduction 5
1.1 Motivation e
1.2 SummaryofResults.

Processing system logs as data streams 14
2.1 Therequired processingonsystemlogs 4.
2.2 Traditional methods are not suitable for this application
2.2.1 Ad-hocscriptsarenotenough
2.2.2 Problems with relational databases
2.3 Stream model of systemlogdata
2.4 Building a parallel system using TCQ as building block

Related Work 24
3.1 Automated system problem detection
3.2 System monitoring and management
3.3 Stream data processingandmining
3.4 Applying control theory to computer systems

A Flexible Architecture for Processing System Logs 29

4.1 Key component, Telegraph Continuous Query Processor29

4.2 Description of the parallel architecture
4.2.1 Two-tier parallel architecture
4.2.2 Buildingblocks
4.2.3 Implementation

Improving System Reliability and Performance with Contr ol Theory 34

TCQ Flow control 36
5.1 Flowcontrolissuein TCQ i
5.2 Control problem formulation
5.3 System Identification and Controller Design
5.3.1 System ldentification,
5.3.2 ControllerDesign.
54 Assessment e

Building the load balancer with control theory 50
6.1 Effectofimblanaces L.
6.2 Control problem formulation
6.3 System Identification and ControllerDesign
6.3.1 System ldentification
6.3.2 ControllerDesign. e
6.4 ASSESSMENTS

Discussion 56
7.1 The advantages of using control theory in computer systems 56 .
7.2 Limitations of control theory in computersystems

Conclusion and Future Work 60

Controller for load simulator 62
A.1 Theinaccuracy of load simulator
A.2 Control problem formulation
A.3 System ldentification and ControllerDesign
A.3.1 System ldentification
A.3.2 ControllerDesign. e
Ad ASSESSMENt e e e e

List of Figures

4.1

51
5.2
5.3
5.4
55
5.6
5.7
5.8

6.1
6.2

7.1
7.2

Al
A.2
A3
A4
A5
A.6
A7

A general structure of our parallel system 30
Behavior of TCQ node without regulating result queue length. 37

PI1 Controller for regulating the free space in the queue. 38

Not carefully chosen workload causes the queue length tofillup. 41
Workload for queue length system identification 42
Models Constructed with good and bad workloads. 3. 4
Matlab routine that does the parameter estimation. 44
Matlab routine for calculating » and K; of Pl controller 48
TCQ node with result queue length controller, under CPU contention.. .49

The Effect of disturbances with and without control 51

The block diagram of controllerin load balancer 2 5
An unstable control system L o 57
Block diagram of the unstable control system 57
A naive implementation of load simulator cannot achieve the desired load . 63

Block diagram of workload simulator with P controller 64
Block diagram of workload simulator with Pl controller 64
Effect of P controller in workload simulator 70
Effect of PI controller in workload simulator 70
Effect of P controller in workload simulator (zoomin). 17
Effect of PI controller in workload simulator (zoomin) 17

Part |

Processing System Event Data as
Data Streams

Chapter 1

Introduction

In this chapter, we will introduce of the idea of using computer system lagauimmated
failure detection. We first discuss the difficulties of dealing with a large amoiusystem
logs data. We then present our dealing with those logs as data streamsijldradflexible
stream processing system using TelegraphCQ [36, 28] as buildingsbl®his stream pro-
cessing system itself is a distributed system with many components runningaliepat/e
conclude by discussing issues in its scalability and reliability, and our agpiptoasolving

those problems with feedback-control-theory.

1.1 Motivation

System fails and we have to cope with it

Most on-line services, such as Amazon and eBay, suffers fromusauser-visible failures.
As reported by various authors (such as Oppenheatalr [30]), the most common causes
of failures in Internet services aseftware bugshuman operator errorandhardware fail-
ures respectively. These failures frequently cause system to crash ighiery expensive;
for example, Patterson estimates that one hour of downtime of a large oretinieescan
cost up to one million U.S dollars [32]. Predicting, detecting and localizing tfelsees
are very difficult tasks, as some systems consist of hundreds of sefewmponents run-

ning on up to 50,000 servers [29].

Failure-free computing, if ever possible, is still in the futuRecovery oriented com-
puting (ROC)specialized in coping with inevitable failures through fast recovery [Blis
approach suggests the goal of ROC - reducirgantime to recover (MTTR3ystem avail-
ability A is defined asA = MTBF/(MTBF + MTTR), where MTBF is the meantime
between failures. Since/ TBF >> MTTR applies to all systems, reducing MTTR even
a little bit can greatly improve the system availability.

Two factors can affect MTTR: the time to diagnose a problem and the time to fix it.
Between the two, the diagnose time is the dominant factor[30]. The resultS©fdRoject
provide techniques for separating applications and session state23}ooefjanizing com-
ponents for fast rebooting[5], and supporting system-wide undaatipas[4]. With these
techniques, we can not only reduce the time required to fix the problemisbut@able the
automated system detections and recoveries. This is because evenweuogy not be
very sure about the problem, we can still try the recovery methods oug &soew that our
operations would only cause predictable effects and would only affecytstem behavior
for a relatively short period of time.

In the RADS (Reliable Adaptive Distributed Services) project, we are candpstatis-
tical learning algorithms in order to detect the system failures, localizing thtecense of
a system failure, and automatically recovering the system from failures vetiethniques
discussed above. We also applied feedback-control-theory to congystems, which has
proved to be a useful tool for building self-adaptive systems and foe&sing system reli-
ability.

System logs are valuable for detecting system failures

Most software systems are instrumented so that they will record varitivdias. Some of

them will also periodically report various statistics, such as processanpnyeand network

usage. Developers usually would record information about the custata of the appli-
cation to facilitate the debugging. In some well managed systems, human opeiato
record all changes made to the system and all problems found in the syseerafénto all
this information asystem logs

System logs contain information that is useful to many applications. Traditioai#iy
ferent kinds of logs are used for different purposes. Accessamggsually used in business
data mining, such as modeling user behaviors or supporting businesex@saking[38].
Lower level logs such as the processor and memory usage logs arbyuerlsystem ad-
ministrators to monitor the system performance and by the managers foraegtanning.
Application-specific logs are used by developers for debugging arfidrpgnce profiling.

Recent research has found that all kinds of logs could be used dodédection of
intrusions [19, 35] or system failures[42, 10].

By simply visualizing certain summarized information of the log to human operators,
system problems can be diagnosed much faster. Betddk shows that by looking at the
request counts of webpage transitions, the operators are able to netisgstem errors
hours or even days earlier [3]. This is because for human operatben the data are
represented in the right form (i.e., the right statistics plus the right repegsmns), can
detect normal patterns from abnormal patterns easily and quickly. Anatheto analyze
the system failures is to use statistical learning algorithms to detect the abrpatteahs
of the system data. Many algorithms have been used to solve variousrpsylalied we will
discuss works in this area in Section 3.1.

Our belief is that the best way to improve system availability is to combine automated
failure detection tools based on machine learning algorithms and visualizing&estics.
In this way, we can both reduce stress on system operators by deteatirfixiag sim-

pler problems automatically, and by eliminating the problems of the false positivalse

negatives, which happens in almost all statistical methods. We will investigakedseof
doing both in the RADS project.

Both goals require processing logs in real time, which is harder than thigédned
business data mining. The latter mainly deals with the historical data. The thmatugh
of this online processing must be sufficient to process a sample larggletoyield a
statistically correct analysis. Since this processing is on the critical pathaghaking
the system failures, the delay incurred will directly affect the MTTR, ang thnust be

abbreviated as much as possible.

Practical problem of analyzing system logs

There is a practical problem that makes the real time processing of log tatd fob: the
logs are too large and too complex. The systems today generate as mucltBasf o
data per day [9]. Using more fine-grained instrumentation for debuggingrgtes many
times more log data.

The complexity of system log processing not only comes from the size,|dwtlze
arbitrary format a log can have. Widely used system log format of UnixeBys.ogger,
syslog contains only three fields in its schema specification, which are timestamptyprior
level, and a text string showing the content of the message [25]. Lackiagspecific
schema makes the format very flexible, but leaves all the difficult parsidgaaalyzing
jobs to the log users.

These complexities seriously limit the ability for system administrators to make use
of the logs. Our experience shows that using ad-hoc scripts for gsimgedata is very
tedious and inefficient. Maintaining ad-hoc scripts is another hard tgséciedly when the
log schemas or the system architectures change. From private commursdatigeveral

system operators of large online services, most system logs are megesged.

These complexities cause problems for machine learning researcheed.a8 Vot of
preprocessing (such as sampling, adding/removing attributes, merginfyatatdifferent
sources, and so on) is required before the data can be used in maehmedelgorithms.
Machine learning researchers spend a huge amount of time on this gesgirg. Also,
machine learning algorithms are usually complex to implement and requires rtomste-
ification (like all research codes). When these algorithm implementationsoarbired
with preprocessing, the resulting codes can be hard to read and maintain.

To make things worse, difficulties of processing system logs limit the opptetsiiof
researchers to obtain real data from companies. Logs need to beggdd® the companies
before they can be donated to the research community. This is becaussuliadlg contain
sensitive information. For example, to protect privacy of all clients, a emymloesn’t
want others to know how many requests are coming from a particular cli@htylat page
a specific client is requesting. Therefore, some fields in the logs are chaskaally done
by replacing their values with a hash value). Also, the logs may be sampleaitstihé¢h
information of the traffic patterns to those companies is not revealed. Witloaderipts,
the company needs to pay a lot of the administrators’ time to do these processgirigh
is unaffordable to many companies.

In order to address the problems above, we need a better data moded feystem
log analysis, and a scalable, modular architecture that can be distribiged oluster of

machines to process the data quickly.
Making the log processing system scalable and reliable
To address problems above, we designed a software system thatggesystem logs as

data streams. The system makes use of TelegraphCQ (TCQ in sho){g8ieral purpose

data stream processing engine, and multi-tier processing of systemaynt

Initial experiments show great scalability and flexibility of our data strearogssing
system. However, this system is a complex distributed system assembled vihib-sffelf
components, so it suffers from many common problems as other distribugezhsyWe

found the following four issues most serious:

1. The black-box building block may have inherent limits. For example, Ché&pte

shows that TCQ system has some flow control issues that results in data loss

2. Load balancing is extremely critical to the performance of the entire sy3tkiwis
true for all parallel computational systems involving synchronization, simeéaster

nodes must wait for the slow nodes.

3. Each component running in parallel may encounter problems or haitioadl ad-
ministrative loads. These random disturbances cause unpredictafderzerce of

the stream processing, causing delays or even losing of data.

4. Sometimes not all the useful measurements can be measured in a blasksta.
For example, total queue length in TCQ system is hard to measure withoutcagnifi

changes in TCQ, making the load balancing more complicated.

As this log processing system shares many common problem with gener#iudétr
system, we decid to use it as a testbed for general RADS design conseghe. initial step,
we address the issues discussed above by applying feedback toetmyl This technique
proves to be very useful in distributed system design.

Feedback-control-theory provides a set of mathematical tools for modslgtgms and
designing controllers, which can be used to regulate certain valuesastich queue length
and the data rate, by continuously correcting current errors.

There are many examples of applying the control theory to computer sysittatiar-

steinet al. provides an extensive review of the current techniques for applymgdhtrol

10

theory to computer systems [18] . We discuss more works related to applh@rgpttirol
theory to computer systems in Section 3.4.

We will provide more background knowledge for readers who areamotiliar with the
control theory in Chapter 5, with our discussion of coping with the flow @dngsue in
TCQ. We will show that the classical linear control theory and very simpleatsodorks

well in this system.

1.2 Summary of Results

We developed a scalable software architecture for processing sysgerlegs for large,
distributed systems using stream data model and continuous queries, wijfapblEe Q[36]
as building blocks. We also used this monitoring systems as a testbed forieggeneral
techniques of making distributed systems scalable, reliable and manageablayipg the

feedback control theory.

A flexible system to process system logs

We built a scalable and flexible system log processing system using TaheGatinuous
Query System [36] as building blocks. This system allows us to prepatzsa for any
off-line or on-line statistical learning algorithm against massive quantitisgsiem logs.
This system inherited the powerful and efficient continuous querygssiog features
from TCQ. These features include: writing queries with SQL languaginidg the log
schemas with customizable data types; running queries on multiple streams odatatic
tables. The evaluation of all continuous queries share intermediate resdtus is quite

efficient. Also, query evaluation plans are adaptive to changes of thesttaams.

By running TCQ in parallel and in multiple tiers, we are able to make the systdm sca

able in order to handle the fast rate of the system logs data. Our systetve azasily

configured to be distributed over a cluster of machines and new log soamcealgorithm

11

can be added on-the-fly. Our system is also self-adaptive to dist@baither from the
machine or from the data rate of the incoming log streams. It automatically baltmee
load over parallel machines to achieve optimal response time and throughput.

This log processing system can be used by system operators to coligzeamarchive
logs, or by statistical learning researchers to preprocess of the radatagand prepare
input for their algorithms for automatic system diagnoses. Of course, thisraycan be

used in situations where other types of stream data needs to be analyzed.

Using control theory to make this infrastructure scalable

Using this log processing system itself as a testbed, we explored germraigiges of
improving distributed system reliability and scalability using the feedback-abtiiteory.

We demonstrated three applications of the control theory:

1. Using off-the-shelf system as building blocks, and cope with theirlenad without

changing its internal structures.

2. Dealing with disturbances in the systems

3. Creating new applications with control theory. For example, we creahastidoad
simulator that can generate exact workload despite of the disturbaneesls@\cre-
ated a load balancer that split the load automatically to achieve minimal response

time.

We also discuss our experience on the advantages and issues ofarsimd theory in
computer systems. Applying control theory in computer systems results inltbeifay

advantages over heuristics:
1. Correctness can be analyzed.

2. Implementation and system management are easier.

12

3. Itencourages a good system design.

Successfully applying the control-theory to computer systems is not trivisd prob-

lems must be considered:

1. Whether the quantities we want to regulate can be controlled. It is nayalthat

easy to find an controllable knob that we can use.

2. Itis not easy to build an easy model of the target system due to the cainaies

randomness involved in the software design.

3. Many legacy systems are not designed to be easily measurable.

We show methods of dealing with these difficulties, as well as suggestingrivesippes
for the system design. This is to make a system more “control theory frienahych will
greatly improve both the system performance and its reliability.

This the report is organized in two parts, the first part discuss abogeaheral idea
of using general stream processing techniques to process systeratiggtite problem
and motivation (Chapter 2), and our experimental system design (Chéptaie also
discuss works in related research areas in Chapter 3. The secodésaibe how to make
our log processing system scalable and reliable. In Chapter 5, we sliadisv control
problem with original TCQ and methods to use control theory to solve thdgmmobWe
also describe the process of system identification and PI controller desigeople who
are more interested the technical details. Chapter 6 describes the implemeottdtiad
balancer using control theory. Chapter 7 discusses the lessensdidéanmethis project,
especially issues with control theory. Chapter A in appendix describegdetkign of an
accurate workload generator, and also compares P controller with folben Chapter 8

concludes the report.

13

Chapter 2

Processing system logs as data
streams

Distributed computer systems are becoming larger and much more complex. Manito
the system is no longer a trivial job to do. Systems today can generate asas\ucFB of
log data every day [9]. We used two data sets from online service conggdarikés project.
The first one is an application log consisting of 2.5TB data over a 20 daisdpand the
other is a DNS access log that has on average 20-30 millions of entriesyrer h

When presented with terabytes of data, we need to think about how to haetfle
ciently. In this chapter, we describe our experience with analyzing hongeiats of data.
We first discuss what kinds of processing of log data we want, andaolyr&tempts to use
ad-hoc Python scripts and traditional relational database systems fouthizse. We show
that both of them have their limitations. We then show the advantages of modeadimgath

data streams.

2.1 The required processing on system logs

As described in Section 1.1, system logs contain more useful informatioroffemators
can discern. The data might be used to predict that a particular machindyigdikeash in
a few minutes, or that a certain software component has a bug or evetohetalize the

causes of failures. A fully automated analysis or visualizing the informatiotagted in

14

system logs to system operators greatly helps to reduce the MTTR.

However, both tasks require close to real time processing of systenilbigds because
unlike data mining for business analysis, for which historical data are stijl ndevant,
system failure must be detected when they happens (or the best is ta pinedicbefore
they happen). Studies show that the value of logs decreases quickljmggL7].

Also, as detecting system failures is a new application of many types of |bgsinfor-
mation we need to visualize or feed into Statistical Learning Theory (SLTYitigo may
not be explicitly contained in the log. The SLT algorithms are already complexginto
implement, so we always want to separate the log preprocessing from thensbearning
algorithm implementation. In this report, we mainly focus on what preprocgssitione,
and how they can be done efficiently. From our experience, usedplpecessing includes

the following:

e Sampling: we need to sample the original log because we are not able — and it is

not necessary — to look at all the observed data. Other reasongriplisg include
temporally variable data rate, dealing with unbalanced data sets, removilicatip
entries or removing entries that do not report the class attribute. Thesoafig-

urable sampling algorithm must be supported.

e Generating aggregate valuesNeither a system operator nor a complex statistical
learning algorithms can get any result by directly looking at the raw logitively,

the data needs to be presented as their “aggregated” values, sawdrageor count

¢ Cleaning the data we need to filter out unnecessary attributes from each of the event

log entries: attributes not reported by any sample and attributes with coustaes.

e Adding new attributes: original attributes in the raw data are often neither enough

nor suitable for analysis using SLT algorithms. Some attributes can be tguhera

15

easily, such asiis there an error message reported?’However, other attributes —

such asis this log entry anomalous?*- might require running a simple algorithm.

¢ Integrating streams from multiple sources System logs are generated on separate
machines describing different aspect of the system. For example,tasataontains
performance statistics, request log and problem tickets. It is also oftassary to
integrate data sources unanticipated at design time, since we might find riadee re

information as our familiarity of the system increases.

e Generating multiple algorithms: Applying several different algorithms to our data
is an important part of our research. However, different types afritlgns require
different experiment setup and many publicly available implementations redjtiire
ferent format of input data. Because of huge amounts of raw log datassing it is
a very expensive operation. Thus, we need to produce a sepatpitg file for each

algorithm with one scan of the raw data.

To make this idea concrete, we provide some queries examples we usudlty iem-
dle system logs. The simplest queries we want to run are simple projectidsel@ations,
such as get all logs from a specific machine.A

There are two kinds of more complicated queries.

e We sometimes need to process the join of two streams or a join from a stream with a

static database table. For example,

— what is the average CPU usage 5 minutes before and after a machine that re

ported an error?

— select all entries that the source IP addresses is assigned to UC Berkele

16

The latter requires a join with a static database containing the information on IP

address assignments.
e Using current statistics as filters. For example,

— select the abnormal event. An event is considered abnormal iff itdpasted
an error code and it reports a response time that is greater than thedgee

response time +2* stddev) of the previous minutes.

This example requires both intra entry processing and inter entry pimgessce
one node is not enough to process everything to calculate the avergtaadard
deviation. So the processing looks like: the first tier calculates a sum, stine of
squares and count, sending these three to second tier, where thgedsearalculated

and feedback to the first tier.

2.2 Traditional methods are not suitable for this application

Our experience shows that, traditional methods, such as ad hoc scrigistional databases,

are not able to meet all the requirements of system log processing did@lxssee.

2.2.1 Ad-hoc scripts are not enough

Most of the logs, if ever analyzed, are done by experienced systenmigtrators by writing
scripts in languages such as PERL or Python. Our experience shawisistegppproach can
be time consuming, resource inefficient, and error-prone.

At the early stages of this project, we did not realize all of the practicdilpnos dis-
cussed in the previous section. In order to get started experimenting@iritlams as soon
as possible, we began writing Python scripts to process the data.

Python is a scripting language, which is very efficient (in terms of codetté iy pro-

cessing text files. The simplest preprocessing (scan through the dajectrertain at-

17

tributes of each entry and output them as a text file) can be expressédun %0 lines
of code, and some of our original results were obtained with the dataguesgwed in this
manner.

However, as we were trying out more algorithms, we found ourselvegéted by the

following problems:

e It takes a huge amount of time to scan through the dataln our case, a single scan
through one minute of log data takes more than 10-12 minutes. Most of the time is

spent on reading the data from disk, uncompressing it, and parsing it.

e Itis hard to handle multiple queries with a single script and share intermediate
results Producing data for multiple algorithms in a single script makes the Python
scripts significantly more complex. A couple of aggregation queries taket 4150
lines of Python code. It became even more complex when we wanted to@aee s

of the intermediate results to disk for future use.

e ltis hard to add/modify existing queries. Adding one query to the code may require
changing the code for existing queries, because we share the udfertarmediate

results among the queries.

e Fine grained parallelism is much harder to achieve. We observed that prepro-
cessing is CPU bound (instead of 1/0O bound) on our cluster, so speatdugnly be
obtained by using multiple processors. Parallel processing of the datiy isarel to

implement in fine granularities (such as at single-request level).

In summary, our experience shows that even though ad-hoc scrie@ugh for small

data sets, they can be very difficult to maintain.

18

2.2.2 Problems with relational databases

We also considered using traditional relational databases for our data tke preprocess-
ing can be specified as SQL queries, reducing the complexity of pregmiagescripts. We

rejected this approach for the following reasons:

e System logs do not have a fixed schem8ystem logs usually have no fixed schema.
Efficient relational database operations require a well designed schethdogical
(tables) and physical (file organization, indexing and so on). Charsgingma is as-
sumed rare and expensive. However, the format of system logselarthe system

evolves.

e One-time-queries are not suitable for generating multiple data outptt The
queries in a relational database aree-time queriesgenerating another result usu-
ally requires a separate query. If a scan is required on a terabyte at®adach of

the queries will take a long time to run.

e Itis hard to support queries involving temporal properties of data. However, this

is essential in temporal data analysis.

e The cost of using a relational database is highlmporting multi-terabytes of data
into a relational database would have brought to us very high initial cosh (KO

and CPU) and storage cost.

2.3 Stream model of system log data

Traditional methods of analyzing data does not work well in this case bedhe data
model they are based on is not suitable for the characteristics of systatating
A data modelis a collection of high-level data description constructs that hides the

underlying low-level storage details [33]. It helps people to underdfamdata better and

19

they can build proper data processing systems to manipulate the data.

Both ad hoc scripts and relational databases treat the data (system log<asty), as
persistent entities and runs queries against them over and over aganswer a question,
a query must be evaluated. This data model is not suitable in the case ofi éygte which

has the following characteristics:

e Log data entries arrive on-line. The data rate is determined by the source (the
systems that generates the log), and the temporal rate variation can b&'laedeg
processor not have any control over the order in which data elemeives. dn large
scale distributed computer systems, logs are generated continuouslytoofehe

machines with different data rate.

e The system log is an infinitely long sequence of log entries, but the memy on
the log processor is limited.Once a block of log data is processed, it has to be either
discarded or archived, which makes it hard, if not impossible, to findatragin
fact, old system events are much less valuable for failure detection in plicaton,
so it is completely fine to discard those entries once the desired statisticsdave b
obtained. Typically, companies archive raw system log data for a fewsuaefore
discarding them, but the statistics and data representing interesting systets ane

preserved.

e A time stamp is attached to log entry explicitly or implicitly. (i.e., the arrival
time at the stream processing system). Therefore, temporal propertieslof data
can be easily obtained. Actually, temporal correlations of system eventgeay

important in system failure detection [26, 41, 17].

Research in data models suggests that system logs should be modeledsaedats,

instead of relations [2].

20

The idea of text streams are not new. For examgtepin UNIX is a program that
processes stream queries specified as regular expressions. dfiolaeking of schema
definition in the text stream results in ad-hoc and complex solutions to largbtepns
such as processing large system log files.

The benefits of using data stream over ad-hoc scripts and relationbbdataare the

following:

e Continuous queries. The queries on data streams are usuedigtinuous queries
in contrast to one-time-queries. One-time-queries run on a snapshet data, and
return a single result to the user, while continuous queries are evalisatiEdaaele-

ments in the stream arrive. Here is an example of a continuous query:

— Which machine has handled 5 times more requests than any other maehine o

the last 10 minutes?

This query has to be re-evaluated each time a new system log entry aanes
thus produces an output data stream containing the name of machinesutpbe o
stream can be used directly as an indicator of system failures or caretleassa
regular data stream, for example, as an input to an SLT algorithm. Contiquetiss
can either be pre-defined or ad-hoc, and multiple queries can run omgla data
stream concurrently. The ability to perform continuous queries has gdeantage

for preparing data for SLT algorithms.

e Off-line SLT algorithms can be used too.As described in Section 3.1, many com-
monly used SLT algorithms are off-line algorithms (e.g., our decision treeitidgoy
which work onchunksof data instead of streams. It is trivial to accumulate prepro-
cessed stream in a buffer to get a data chunk large enough for theeo#flgorithm.

It is better than traditional methods in that preprocessing the lokftare buffering

21

it allows us to save only the data we want, thus making the buffering much more

efficient.

e Easy-to-change schemadt is easy to change stream schema, since there is no data
stored in database. This makes it easy to add new streams and modify the outpu

desired.

2.4 Building a parallel system using TCQ as building block

We wanted to build an infrastructure to support data analysis reseasststein log data.
A major concern is simplicity. It should be simple enough that the initial configura
should either be automatically generated or be specified with a high-leweimtes. The
interface between our architecture and the system monitored should aligwegioyment
in production environment. This architecture should be flexible enoughconanodate
many algorithms, both on-line and off-line, without significant re-confgjon. It should
also be easy to add or remove data streams and components.

The purpose of the system is also to make the algorithm implementation as easy as
possible, so that SLT researchers can focus on the algorithm ratmeorth@dious job of
accommodating various input formats of raw data.

We tried to make use of available software from other research projetts.nmgjor
component we use is TCQ.

The use of TCQ helped us to easily specify and add/remove continuortiegjwehich
solved the second and third problem discussed in Section 2.2.1.

Turn-around time is our next concern, or more specifically, the delayrdafne can
start evaluating an SLT algorithm. Our software architecture is build on T¥gh allows
user to specify fine-grained parallel execution over a computer clushdehteve short turn-

around time and scalability. The main features include:

22

¢ All data flows in the system are modelled as data streams, which are easyete und
stand and manipulate. Design of the system is driven by the flow of dataoukpet
of one stream processor can be used as input of another. Any steeabbe buffered
and used by an off-line algorithm. Modelling everything as a stream alsosrike
easier for people to understand and handle the data, since most peofdendiar
with UNIX-style filters. Note that since most complex buffering is done in TCQ in
stances, most of the filters can be implemented without keeping much state, making

the implementation of filters easier.

e It is easy to buffer a stream of data for a certain period of time to supjffelihe
algorithms that require chunks of data. Result-saving policy can be suks#pa-
rately for each stream in order to deal with temporal variation of streamrdtda

importance of different streams and storage constraints.

e Itis also simple to cache/store any intermediate stream to disk and reuse iThiger.
is especially important for research purposes, as we are constrairiied bardware

resources available to us.

e If users are unfamiliar with SQL, they can write filters in other languageh asc

Java.

23

Chapter 3

Related Work

This research involves multiple ares including statistical learning theory)(8hata mining,
dependable system design, data warehousing, data stream proeessaantrol theory. In

this chapter, we discuss related work in each of these areas.

3.1 Automated system problem detection

Automated system problem detection involves discovering problems fronobtdide the
system (intrusions) and within the system itself. Both areas require fast$sing of sys-
tem logs.

There have been many techniques for intrusion detection. Hofetegk uses short
sequences of system calls executed by processes as discriminatogrbatwmal and ab-
normal operations[19]. The normal and abnormal system call segsi@ne obtained both
by static analysis and runtime logging. Singhal. proposes an automated approach for
detecting previously unknown worms and viruses [35]. This apprazled “content sit-
ting”, is based on the fast detection of worm behavior that is differembfnormal traffic.
The algorithm used is specific to this problem. The resulting system can metvabrk
wire-speed. Instead of targeting at performance, we make the flexibildyrawost impor-
tant goal.

Coodbook [43] approach considers that each problem causes syamptoms events

24

The set of events caused by a problem are treated as a “code” thafiédethe problem
and correlation is treated as “decoding” the set of observed symptorasotlebook is an
optimal subset of events that must be monitored. However, dealing with ¢iige8Y in the
codebook requires complicated algorithms.

More and more sophisticated SLT algorithms are being used for detectingcatiding
system failures and software bugs in runtime. Most of them involve time-celaterma-
tion in the logs (i.e., a log entry is not processed by itself, but the correlatmng a
sequence of logs are used).

The execution paths, which involve a sequence of log entries, havegtowe impor-
tant. Cheret al. uses decision trees for localization of failures on the eBay web site [9].
Each executed request reports attributes such as nhame, type, maehéern and status
of the request. A decision tree is trained to predict the status attribute anérbkeated
rules are used to localize what machine, type of request, or versioritafse is causing
problems.

In Pinpoint [8, 21], Kicimaret al. instrumented the JBoss application server so that a
J2EE application reportsxecution pathsf all requests. The path is a list of J2EE com-
ponents that the particular request used. Pinpoint can detect anorpatbesand correlate
them to identify the failed components.

Vilalta et al. apply temporal data mining and time series analysis to predict critical
events in computer system suchregh CPU utilizationor imminent router failurdg40, 41,

34].

As more and more data are collected from the system, the correlations amamg the
become not that trivial to analyze. Cohehal. uses Tree-Augmented Bayes Nets for
automated performance analysis [10]. They measure 124 types ofrparfoe metrics on

a sample server and the induced model is used for prediction of Serwet Qbjective

25

violation.

The system can be instrumented to it writes arbitrary complex information into logs
Liblit proposes a sampling infrastructure for gathering information abretwgion of C
programs [22]. He instruments the source code of the program at leraargh, assignment
and function call. The recorded information from runs of the crashedrpm is corre-
lated to obtain the possible bugs. Getting these data and analyze them in targerters

systems will become very difficult due to the size of these logs.

3.2 System monitoring and management

There has been a lot of efforts on monitoring systems in both academia arsthinGimple
Network Management Protocol (SNMP) [7] allows user to instrument amtitorcaggre-
gated performance of heterogeneous component in a network envimanterovides a
visualized and hierarchical infrastructure to support high volume ddiection and sepa-
rating management boundaries.

There are commercial tools that allow user to monitor and do simple analysis datthe
collected. The major tools include HP OpenView[11], IBM Tivoli[12] or Misoft Opera-
tions Manager[13]. These tools allow user to navigate through the collantestored data,
and run statistical analysis on them. However, they are not designetefoanng data for
statistical learning algorithms.

Traditionally, the collected data are sent to some centralized servers whychvaste
bandwidth. Both Astrolabe [39] and PIER [20] manage to collect and aealye data
on the node where they are generated. Astrolabe makes use of gassipopand the
architecture is formed in a hierarchical structure of domains. PIER is implechem a
DHT [37]. Both allow user to run queries in SQL which are then evaluatediistabuted

way in the system.

26

Bodik et al. show that by combining automated detection of system failures with vi-
sualizations of system status information (such as transitions from onegagether) to
system operators can reduce system problem detection time [3].

System events are not only used to predict system errors but als@asigbd infras-
tructure of the network. Siena [6] is a content-based networking infretsire, that uses a
specific component callgaliblish/subscribe event-notification servioeallow the efficient

dispatch of events among all the components in the system.

3.3 Stream data processing and mining

Our work is also related to the stream processing and data mining work inradatabm-
munity. Stream processing addressed the issue of dealing with data thatmmultiple,
continuous, rapid and time-varying data streams [2].

A number of stream processing systems have been proposed to hantdleicos
gueries over the data stream. TCQ addressed this problem with eddy groesssing
framework that adapts the temporal variation of data streams in data rate¢atistical
characteristic of the data stream [28]. It also allows to share evaluatthrapgong multi-
ple queries.

Several new algorithms that are suitable for mining data streams are pdopdke
characteristic of most of these algorithms is that they only look at every tugie istream
once [17]. In contrast, for most of the SLT algorithms it is not enough t& &iceach data
tuple just once. Buffering and caching of old data are supported in otk t@ solve this
problem.

Stream processing is also used in sensor network data monitoring angisagj.
Though the data rate from sensor network can also be high, it is muchdegsex than

logs generated by a large cluster of computers.

27

3.4 Applying control theory to computer systems

Control theory has a long history and has been successfully applied tp aneas of en-
gineering. However, the application of control theory to computer systemsjute a
new topic. Hellersteiret al. provides a introduction to the basic techniques as well as an
overview of recent research in the area of applying control theorgrimputer systems [18].
The general techniques of controller design and analysis in this reglmivé this book
closely.

Control theory has been successfully applied to many applications in conggatems.

It is usually used for adaptive configuration tuning. The controlled gondition parame-
ter can be resource (e.g. CPU time) allocation [24], buffer size [16, di5$ome other
configurable parameters such as max user allowed or HTTP keep aive [1

The goal of controller can be regulation or optimization. For example eLial. use
control theory achieve the goal of meeting service level objectives $plo@ response
time in a CPU that is shared by multiple processes [24]. The response timdsoamea
minimized, and thus this is formulated as a optimization problem [14].

Sometimes it is not easy to find the function to optimize, especially when the require
ments are complex. The function to be minimized can be a cost function, whiah is a
artificial function that express the relationship between violating the obgeatid the cost
of control action [16].

Unlike many physical systems, there are few first principle models for aodtaystems,
due to their complexity. However, queueing theory often provides alteenatiys to design

a controller if desired metrics are not easy to obtain [16, 14].

28

Chapter 4

A Flexible Architecture for
Processing System Logs

4.1 Key component, Telegraph Continuous Query Processor

General stream processing techniques have been studied in databasartty in great
depth [1, 17]. A number of general purpose stream processingsystave been built [2,
28]. We use TCQ.

The queries are specified in PostgreSQL SQL, with all data types antidingi.c One
query is usually specified by a few lines of SQL and all query plans dmratically opti-
mized. This makes adding and modifying queries significantly easier thaoaskhipts.

As the characteristics of the data stream change, the query executigyesteadaptively.
For example, during a system failure the average delay may suddenlyygeigk and thus
a selection condition “delay 10 seconds”, which normally throws away almost all tuples,
suddenly becomes not selective. Without adaptive query executioquTtyg evaluation
may become very inefficient for other operators in the query plan.

TCQ supports running multiple queries on a single data stream and genenaiiifge
outputs concurrently. This best fits our case of running different @gorithms requiring
different input data on a single log file. The computation and storage aredlaggres-

sively, so running more queries on the same stream does not increddeasisignificantly.

29

|
!
3
[\QS\QS\QMQ:B\QZ\QWD

SLT
algorithm

input stream
of data

[TTT T T (e) Qe [
s[s[s[[e[1 D | g T[T 2]] (oI |combine
LGOI E) oL
|

5,@’

H
g
5

TIER 2
time ordered

!
|
|
|
|
|
|
|
|
|[Q6 05 T Q4 QBT Q2 QT |
|
|
|
T
|
|
|
!
|

Figure 4.1: A general structure of our parallel system. We used TCQrasajor build-

ing block, and other components are written in Java. We use a load batarsgit the

the stream to two TCQ instances. The first tier of TCQ nodes performsegubat are
independent of time (i.e., queries that do not need a time window). The @itpains are
reconstruct in time order at the combiner. After the streams are combineskc¢brd tier
of TCQ instances performs time dependent queries to generate the fipat,auhich can
be used in monitoring programs or as input to statistical learning algorithmsifomatic

problem detection

TCQ is still in its early research stage [36]. The released version is furattibut
not optimized for performance. A single node running TCQ procesdasatla maximum
throughput of about 1,800 tuples per second (see Chapter 5 forpkement in which we
obtained this result).

In order to make the system scale to the data rate a large distributed systedme&ou
erate, we used multiple instances of TCQ running in parallel. We are interaeitinghe

TCQ research team to investigate higher performance and new features.

4.2 Description of the parallel architecture

Modularity is an important goal of our design. We designed the system si tasists
of simple building blocks (see Figure 4.1) that communicate with each other sstkgts.
They can be deployed on a single physical node or over multiple nodedustarc These

components were written in Java and comprise about 750 lines of code.

4.2.1 Two-tier parallel architecture

We use a load balancer to split the the stream to two TCQ instances. The fitTiEQ

nodes performs queries that are independent of time (i.e., queries that deed a time

30

window). The output streams are reconstruct in time order at the combiner.
After the streams are combined, the second tier of TCQ instances perfornaegiae-
dent queries to generate the final output, which can be used in monitooggapns or as

input to statistical learning algorithms for automatic problem detection

4.2.2 Building blocks

The system is composed of five building blocks

e Data sourceis the interface for getting the various kinds of data, translating them
into data streams and feed them into the stream processing system. It pravide
small interface to the production system, and can be overridden to use multipte ty
of data, such as logs stored on disk, network monitoring readings, cstheam of
system event reports. We used a load simulator in our experiments, the oésig

which is discussed in Chapter A.

e Load splitter/balancer is a small component used for load balancing that takes a
single input stream, divides it into multiple streams and redirects them on to multiple
nodes. When the data rate cannot be handled by a single TCQ instancecake
multiple instances and use the load splitter to route the stream to all the instances.
The data processing within the load splitter should be simple and fast, sincenit is o
the critical path of the system and always sees a large data rate. Hptevérad
balancing must tolerate the disturbances in the system, so our initial robmolwad
balancer has serious problem when one of the node gets slow dowrdeTdikof

this problem and our solution using control theory is discussed in Chapter 6

e Stream combineris a component used to combine multiple streams generated by
load splitter to re-create the original order of entries. It works on theraigime-

stamp attached to each entry in the stream. If the time-stamp is too coarse grained

31

to order the entries (for example, there are 600 events in a single secdrabiae
of them have causal dependency), we attach a unique sequencerho@deh entry

when it is pushed into the system.

The stream combiner acts as a barrier in common parallel computation systams. T
requires the load balanced on each component. We discuss this this prolgaap-

ter 6.

TCQ instances as described in Section 4.1, are the key components in the system.
They take in multiple SQL queries, multiple data streams and output the results of
the queries as data streams. The output data streams can be buffeodfdlife
algorithms or written to files for future use. The raw stream can be coefigtor
be archived. The TCQ instances also output its own performance stasistitata

streams (which is called introspective query) to centralized controllers.

Applications are defined as a components taking data streams or a file as input and
output another data stream. The data stream can be interpreted by ar@Ghdrent

for human administrators to review or achieved for future referencblidhuavail-

able algorithms can be plugged into the system with only a minor wrapper fitingea

data streams (for example, through JDBC or simply through a UNIX pipe).

Note that the data streams between each component are not necessaryaméhfor-

mat. They can be implemented as text streams, but we can also use binamssiritia

type definition which saves parse time. Changing the format of a stream is sitgpiéy

requires to change the output format of the sender and input formas oétieiver or add a

separate wrapper around the receiver.

All the components can easily be changed, even while the system is rumiih@n-

other component with the same interface. This is useful. For example, vgétatédthe

32

simple round-robin load balancer for one with feedback control in lessdha minute time
of modifying the system configurations. This is also useful if the systematgs are not

familiar with SQL and want to replace the TCQ nodes with his/her ad-hoc scripts

4.2.3 Implementation

We provided a simple way to build the system from components with simple object or
ented specifications. All the components are modeled as a class. To builgtemsone
only needs to specify the parameters of the components or override sohesfofctional-
ities and the interconnections among them. A program we provide automaticadlyages
a shell script that starts the components on multiple machines in the clustere diger
separate scripts for adding and removing streams and queries from each

There are two steps to add a new SLT algorithm. First, the algorithm "substrib
stream from the system, which is done by specifying a new query. Settundser may
need to write a simple wrapper to generate the correct format and/or adiarh

The design and implementation of this architecture made use of many ROC pnciple
of distributed system design. For example, making system states meassegamting
permutate states with temporal states etc. All the log data generated by this bgstem
well-typed stream schema so that the logs can easily be manipulated by othHearingn

and control systems.

33

Part |l

Improving System Reliability and
Performance with Control Theory

34

During the experiments with our parallel architecture, we found some prsbieth
the reliability of the system. For example, we need to enhance the flow contrahttie
random disturbances. We solved this problem using feedback corealyth

In this part, we mainly discuss three applications of control theory: solvitaypacon-
trol problem of TCQ without breaking the black-box abstraction (Cha@tamplementing
a self-adaptive load balancer that achieves optimal response time andtpt even un-
der random disturbances (Chapter 6); implementing a load simulator thadesaxactly
the specified amount of tuples to the system being tested (Chapter A in @&gpead
three applications used linear, first-order model for target system,imuptesproportional
or proportional-integral controller, with are very simple control theory.

For readers who are not familiar with control theory, we provide detaileddnction to
components of a feedback control system, nanslgtem identificatiofi.e., estimate the
parameter for system model), acadntroller desigrwith the discussion of fixing TCQ flow
control problem. We also discuss the differences and tradeoffs betpreportional (P)
controller and proportional-integral (PI) controller, together with thégieand assessment
of the workload simulator in Chapter A in appendix.

In Chapter 7, we summarize of experience of applying control theoryrtmater sys-
tems, Including the difficulties we found and our solution, the advantagagpdying con-

trol theory to traditional ad-hoc methods, and the limitations of classical dah&ory.

35

Chapter 5

TCQ Flow control

In order to make the log stream processing system scalable, we wanfRE€@im multiple
tiers, and in parallel within each tier, in order to handle the huge data ratenf ogs.

Figure 4.1 shows that we connect multiple TCQ instances. In this part oftloetr we
mainly focus on the first tier where the original stream is sampled and sanitieeduse it
absorbs most of the load. A load balancer decides which TCQ node atlegesntry is
sent to, and a timestamp is attached to every log entry so that time order caohstnected
in the combiner.

We begin by describing the flow control problem we found in TCQ, and its @inpa
on our application. We then discuss how to solve this problem as a conttalepn and
show the high level design of the control system. We present the teclaeitzals of sys-
tem identification and controller design in Section 5.3 and the evaluation of ghensyn

Section 5.4.

5.1 Flow control issue in TCQ

There are some problems with TCQ flow control that cause data loss in s@®®& ca
order to understand this issue, we first take a closer look at the intémetiuse of TCQ.
TCQ is structured as a multi-process system. Every data tuple goes threughdiv-

ing sequence of processing:

36

3000~

§ source data rate
© 2000 rate to TCQ
o — — - end-to-end drop rate ~
@ Tuples'd
%— 1000 uples droppe: - .)
5 I ,‘\rl'|~‘\~,\1,- anhﬁtuh e W
= 0 ' I L AN I L 1 1 I
0 100 200 300 400 500 600 700 800 900
Time (sec)
x 10
~ 6
)
<
o 4
o
I
o
[
[
w 0 1 L L L L L L 1 1
0 100 200 300 400 500 600 700 800 900

Time (sec)

Figure 5.1:Behavior of TCQ node without regulating result queue lengthe top plot shows the
source data rate, the data rate enters TCQ backend, andtthbalag dropped per second. The
bottom plot shows the size of free space on result queue. Weamthat tuples are dropped even if
overloading is only transient.

1. Wrapper cleaning house, which parses input data and translatemtbehe internal

data structures.

2. TCQ backend, where the tuple is processed by multiple relational opersiich as

projection, selection, join and aggregation.

3. The resulting data are sent to a result queue, where they are fdtglaettontend

process[28, 36].

Unfortunately, when the backend processes data faster than thenftqrecess, Fig-
ure 5.1 shows the result queue fills up and results are dropped.

Having a full queue is a serious problem in our application. If the tuple eadrpped
randomly after sampling, there is no way to guarantee the statistical distribtititre o
output, which is required by most of our automated failure detection applicatihat is
worse, it makes load balancing hard, since one can never tell in the baginhether the
next log entry will cause the TCQ node to be overloaded until the tuple gaetegsed.

This problem is hard to fix internally, too. An naive idea is to let the procksklvhen
result queue is full, i.e. apply back pressure on the on the earlier stabe pfocessing.

However, since all operators are shared and connected as multiplatevalvees, blocking

37

Y
-0.015542+0.00614 u -134.31 The Actual Free Space . I:l

+
21 * 70.9845 d
Reference Input N Target System Monitoring
(Desired Free Space) Y PI- Controller b TgQ N}éde The Free Space
I
[y

Disturbance Input

Figure 5.2:PI Controller for regulating the free space in the queue.r&laee two inputs to the
whole system. The reference inpiitis the desired free space in the TCQ result queue and distur-
bance inputD models the unpredictable load to the system. The outpistmeasured free space.
The two transfer functions models the controller and tasystem, respectively. The P part and |
part of controller are combined in a single transfer functio

on one operator will cause unpredictable effects on other querieguimthe same node.
There are also two uncertainties that make statically regulating the result tpregih

infeasible:
1. Transient disturbances in the system cause throughput changes;

2. The percentage of the input will get to the result queue (asklactivityof the query)

is unknown in advance.
Thus, we need some dynamic and self-adaptive way to regulate the nesuét pngth.

5.2 Control problem formulation

We found that this problem can be formed as the followsogtrol problem We need to
prevent the free space on the result queue from getting to zero, anchizaxhe utilization
of TCQ node, by controlling the input data rate. We also need to toleratelshsices such
as a slow node or change of selectivity.

We construct the following model of the system, shown in Figure 5.2. In tlsis,¢he

target systens the TCQ node. Theansfer functiorof the target system is:

y(k +1) = au(k) + by(k) (5.1)

38

In equation 5.1y is called themeasured outputin this case, it is the free space of result
gueue, measured in KB. This can be obtained by reading TCQ logscdritel input u,

is the data rate pushed into the TCQ system (measuregbins/sec). Parametera andb
relate the current output and input to flwedictedoutput of the next time periods.

Parametera andb are obtained by a process callegstem identificatianWe need to
conduct experiments to collect data fofk) and the correspondingk + 1) and estimate
a andb with least squares regressipa well known procedure that can be found in many
textbooks and software packages.

System identification is not always easy in practice. First, we need to etzoosper-
ation point of the target system, i.e., the typical workload we want TCQ tolbardhen
we need to find thénear operation rangewhich is the input range in which the output has
an linear relationship with the input. Linear models can not only make contrasgad
easier but also helps to prevent overfitting the model and thus better talexagainties
of the system. We also need to provide a carefully designed workloadhwhigses the
result queue to fill up / empty at different rates, but not too fast fotougbserve. The
tricky process of designing a proper workload for system identificatidisisussed next in
Section 5.3.

From the process of system identification is presented in Section 5.3, weneeas
our experiment platform that = 0.985 andb = —134. Note thata is a positive small
number and is negative.a is the coefficient of.(k), the last period input tuple rate, it is
positive, which means that increasing the workload will cause an incheasue length.
An large negativé is the coefficient of; the last period queue length, alhdhows how fast
the queue empties. This makes sense intuitively.

Having obtained the model for target system, we consider the controligndd$e job

of the controller is, by looking at theontrol error e and other current and previous states of

39

the system, decides the next control inputVe calculate: by e(k) = r(k) — y(k), where
r is thereference inputln our systemy is the size of free space we want to maintain in the
gueue. Setting the desired free space smaller than the max size can eastire f#ystem
is operating at its max capacity, because the input data rate equals thedatgprdte.
We used Proportional-Integral (PI) controllers, a widely used contrivileontrol the-

ory, because it tolerates the disturbances well. ddrdrol lawfor Pl controller is:
u(k) =u(k — 1)+ (Kp+ Kr)e(k) — Kpe(k — 1) (5.2)

where Kp and K are controller parameters we need to design. It can be proved that PI-
controller will always drive the steady state error to zero, despite therbiistaes.

The parameters(,, and K, are chosen with a technique known @ase placement
which allows us to predict the stability, time required to converge, and maximensiowot
before implementing the system. The detailed calculation of pole placement is show
Section 5.3.

Figure 5.2 shows the complete feedback control block diagram. Note thasidiga
gram, the transfer functions and signals are represented in Z-domadah ishsimilar to
S-Domain in Laplace Transformation for analyzing continuous signalsjdad in analyz-

ing discrete signals.

5.3 System Identification and Controller Design

In this section, we provide some technical details on system identificationaaricbler
design. We also provide a short tutorial for readers who are not familiarcontrol theory.

However, this section can be skipped without affecting further reading.

40

3000~
—— source data rate
2500 R - - -rateto TCQ

2000

1500

Tuples per sec

1000

[
T I
et w4
500l I:"“"\",.lf‘ i ey, W "\ "\\.\\q
O ' e
0 i I I e I L i i
0 100 200 300 400 500 600 700 800 900
Time (sec)
x10°
62
=
247
:
© 3+
&
8
I2r
1
0 i i i i i i i i i
0 100 200 300 400 500 600 700 800 900

Time (sec)

Figure 5.3: Not carefully chosen workload cause the queue length tp filf the work load
for system identification is not well chosen, the queue fills up shortly, #tha operation
point and linear operation range is correctly chosen. Comparing to Figdrehis will

result in a bad model for target system.

5.3.1 System Identification

In order to estimate parameterandb in Eq. 5.1, we first conduct experiment on an off-
the-shelf version of TCQ. We want to measure the changeadtifferent data rate.

We vary the input data rate to make the result queue fill up or empty. Thendefdigis
workload is very tricky, because the queue length is an integral of the d#ta rate. So if
we keep a high data rate for a relatively long time, the queue fills up (seesFagx. This
will cause a lot of data points to cluster at a corner (see the left of Figbje B order
to solve this problem, we need to provide a carefully designed workloadhvatiows the
system to fill up / release the queue at different rates, but not fillingealeasing too fast
for us to observe. Figure 5.4 shows the workload we used.

Running the experiment long enough to gétdata points, the data obtained are two

41

Tuples per sec

——source data rate
- - -rate to TCQ
500}

0 L 1 L | L 1 1 L L

0 50 100 150 200 250 300 350 400 450
Time (sec)
x10°
62
5l
gar
(]
(5}
g3r
"
(]
QO 21
w
1 : :
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0
0 50 100 150 200 250 300 350 400 450

Time (sec)

Figure 5.4: workload used in system identification. We set the operatioh fodie 1,850
tuples/sec, which is a little less than the max throughput of TCQ with settings o an
Section 5.4. Then we let the datarate fluctuate around this value in order étheajueue
fill up/empty. In the bottom figure, we can see that the free space in ghanges with the
change of the input data rate, but never goes to zero.

sequences of tuple@i(k) ,y(k) }, 1 < k < N + 1. We need to normalize the input and
output around their operating points to do the regression.ul®t the mean input value ,
andy be the mean output value. We chodsey) to be the operation point. We calculate
the offset values (k) andy(k) as:
u(k) =a(k) —a (5.3)
y(k) =4(k) -y (5.4)
Equation 5.1 is a model to predigtk + 1) from y(k) andu(k) . We denote the
predicted valuef y(k + 1) asy(k) .
gk +1) = ay(k) + bu(k) (5.5)

Our goal is to find the: andb that makes the model “accurate”. We evaluate the accu-

42

Figure 5.5: Models Constructed with good and bad workloads. The sdlitime is the
model (a linear function), and the blue pionts are the actual data point. fifiguee shows
the model constructed using a workload in Figure 5.3 (the bad one). Maaypodints are
clustered close to a corner. However, with carefully planned workléglife 5.4), the
actual data points are spread out, which results in a much better model.

racy of the model using is sum of the squared errors, reducing théepnab minimizing

the following function:

N N
Z 9(k +1)] Z (k4 1) — ay(k) — bu(k)]? (5.6)

whereN + 1 is the total number of observations.

This minimum value can be found either by taking derivatives of Equation iBd6 a
setting to zero, or with standeard optimization routines sucleast squares regression
For example, this operation is done withdi vi de function in Matlab. Figure 5.6 shows
the code segment that does this regression.

In our experiments, 105 data points are collected and the estimaaedb area =
0.985 andb = —134, respectively.

After obtaininga andb, we plot predicted valueg(k) in the same figure with the
actual data pointg(k) (see Figure 5.5 (right)). We see that the actual data points are in
the whole range and evenly distributed on both sides of the predicted vethigtells us
that this prediction works well. We can also use quantitative parametelsasuariability

to evaluate the model. The variabilitg? , is defined as:

43

function [a, b, y, u]=paranesti (up, yp)
u_nean = nean(up(l:end-1))
y_nmean = nmean(yp(2: end))
u up -u_nean;
y yp - y_nean;

He[y(1l:end-1) u(l:end-1)];
theta=(Hvy(2:end))’;
a=theta(l);

b=t het a(2) ;

Figure 5.6: Matlab routine that does the parameter estimation.

_var(y —9)

2
B=1 var(y)

(5.7)

Usually we requireR? to be larger than 0.8. In this casB? = 0.98, which is very

good.

5.3.2 Controller Design

Controller design is the mathematical process used to choose the values pardémeters
(Kp and Ky in this case) of the controller.

We focus on four properties of the controller, stability, accuracy, setiling and max-
imum overshoot.

In order to analyze the system and avoid working directly on differeqoaténs like
Equation 5.1, we need a better representation of the transfer functicalltves us to deal
with delay easier. In discrete control theory, we often transform therdifice equation
that is represented in time domain into a representatiairdomain We can considet
as a time shifting operator. Converting a time domain representation to z-domairyis v

mechanical [18]. For example, tazedomainform of Equation 5.1 is:

G(z) = = (5.8)

44

Also, thez-domainform of the control law for PI controller (Equation 5.2), is:

K= =K

(5.9)

Z-domain representation of the transfer functions makes it easy to caltiatem-
bined transfer function of large, complicated systems. We can calculataiisédr function

from reference inpuR to measured output using the fact that:

Fa(z) = —FrG)

- 5 (5.10)

Where Fr(z) is the transfer function from inpuR to outputY, and Frr is the feed-
forward tranfer function fronR to Y (i.e., the transfer function as if the feedback loop does
not exist), andF p is the loop transfer function.

Using Equation 5.10, we can easily obtain the transfer funckig(z) for system in

Figure 5.2:

((Kp+ K1)z — Kp)G(2)

Fr(z) = —7 (Kp+ Kj)z — Kp)G(z)

(5.11)

From Equation 5.11, we can analyze the four properties describect.al¥€ivst we
can prove that this system will always get a steady state error of zgyardiess what the
disturbance input is [18]. That is to say, it is accurate at steady stais.isTa also the
reason why we use PI controller in this case.

Then we need to choose the paramef€gsand K in order to achieve the following
goal: 1) the system is stable (i.e., for every bounded-sized input, weshawended-sized
output, aka, the BIBO property). 2) the settling time (i.e., the time required faybiem
to reach steady state) does not excked3) maximum overshoot does not excedd .

All three important properties depends mainly on gwesof Equation 5.11. Poles

are the values of that make the denominator of the transfer function to be zero. The

45

denominator of Equation 5.11 is often called t@racteristic polynomialThe system is
stable if and only if all its poles lay in the unit circle on the complex plane.

Obviously, there are two poles in Equation 5.11, since the characteristicqmigl is
quadratic. Let the two solutions be*7?. Control theory tells us that the settling time
ks < —4/logr, Thus, an upper bound feris:

—4

r=eks (5.12)

Also, we know from control theory analysis that the overshoot is mainted tod,

Mp ~ r™/? so we have:

log r
— 5.13
"log M, (®.13)
With # andr obtained, we can construct the characteristic polynomial as:
(z—re??)(z —re %) = 22 — 2r cos 0z + r? (5.14)

By equalizing the coefficients for each powerzoinh Equation 5.14 to the coefficients
(involving Kp andK;) of Equation 5.11, we can solve féfp and K7 .
In this case, we have = 0.985 andb = —134, from the calculation from system

identification described in last sectiofAg(z) is therefore:

b(Kp+ K1)z — bKp
22+ [b(Kp+ Kj)—1—alz+a—bKp
—134(KP+K])Z+ 134Kp

= 5.16
22 + [—134(Kp + K1) — 1.985]z + 134.985K p (5.16)

FR(Z)

(5.15)

Assume that we want; =5 (five sample times), antl/;; =0.2. Using Equation 5.12

and Equation 5.13, we obtain:

Using Equation 5.14, we have the characteristic polynomial of this system to be

22 +0.1031z + 0.160 (5.17)

Equalizing the coefficients of each powerzfwe get
—134(Kp + K1) —1.985 = 0.1031 (5.18)
134.985Kp = 0.160 (5.19)

Solve the equations above, we find :

Kp = —0.0061 (5.20)

K7 = —0.0094 (5.21)

Therefore, the transfer function of the close-loop system in Figure 5.2 is

2.088z — 0.8245

= 5.22
22 +0.1031z + 0.16 ()

Fr(z)

In order to verify that this system is stable, we calculate the magnitude of tjestar
pole of Eqg. 5.22. This is done by setting the denominator to be zero. We taim tte
poles=0.0515 + 0.3967i. The magnitude of the largest pole is 0.4. Thus the system is
stable.

This process can be automated with Matlab. Figure5.7 shows the Matlab rthaine

does the calculation.

5.4 Assessment

In order to evaluate the effects of the controller, we implemented the contapitepther
components in Figure 4.1. We used unmodified version of TCQ, with defzsuttrqueue

space set to 512MB.

47

function [KP, KI] = Pl _cal cul ate(Ks, M, a, b)
r = floor(exp(-4/Ks) *10) /10
theta = floor(pi* (log(r))/log(M)*10) /10

char_poly = [1 -2*r*cos(theta) r*r]

A= bb; -b 0]

Y = [char_poly(2)+a+l; char_poly(3)-a]
linsolve(A YY)

KP =ans(1)

Kl =ans(2)

Figure 5.7: Matlab routine for calculating » and K; for PI controller. It takes in four
parameters. Parametersh are parameters for target system, obtained from system identi-
fication. Parameters, and M p are desired settling time and max overshookland M p

are not possible, the routine will output no solution.

The controller is implemented as a input buffer. It reads the TCQ log to figuiréhe
current queue length every 2 seconds, and uses equation 5.2 to teatb@lanumber of
tuples to send to TCQ in the next 2 second. The excessive load remainsnpuhéuffer.

We set the reference inputo be 400MB, which means we always want to keep 400MB
empty space on the result queue. This turns out to be very conseniatiaet, as we can
see in our experiments, this size can be much smaller with our controller in place.

We can see in Figure 5.8 that output buffer set its output data rate at 2®@W tuples
per second and the queue length is stable at around 400MB, as expected

In Figure 5.8, the free space drops at 100 seconds. This is the réstairtoup effect
(that is, the TCQ system needs to warm up and is thus slow). The conttalbdized it in
a very short time. From 50sec to 500 sec, the source data rate is actualty thign the
data source can handle, the extra tuples are queued in the input buffer.

In order to test the tolerance of disturbances to the system, we started anteR&ive

procescpuhogon the TCQ node at time 180 seconds. The controller, almost at the same

48

3000 source data rate

§ rate to TCQ
© 2000 — - - end-to—end drop rate
g
£ 1000
p=]
= 0 L i 1 I 1 i i i i
0 100 200 300 400 500 600 700 800 900
Time (sec)
x 10°
@5
<
o 4
(%]
154
o
2] 2 =
[+
g
(i) I I I I I I I I
0 100 200 300 400 500 600 700 800 900

Time (sec)

Figure 5.8: TCQ node with result queue length controller, under CPU wtioite The top
plot shows the source data rate, the data rate entering tRebB€kend and the drop rate (always
0 in this case). The bottom plot shows the free space on tlét ppeeue. At time 180, we started
a CPU intensive process on the TCQ node. The controller attoatly lowered the data rate and
keeped the free space on the result queue to be constant.

time whencpu hogis started, reduced the output data rate to around 1,500 tuples per second
keeping the free space on the result queue unchanged. At time 48@iseae killed the

CPU intensive process. We can see that the controller increases thedaigprate back to
normal level and the queue length still stays at the desired level.

This property is very useful for at least the following two reasons: autbmatically
finds the operation point for maximum throughput even under unexpdigtabances; 2)
it keeps the correctness of the system, in terms of not dropping tuplesjregltvwe for
diagnosis of system failures, especially when an automated failure deteatad.

Like all other computer systems, this system has limited linear operation ratagtng
from time 750 seconds, the input data rate is not big enough to keep thtegesue size at
desired level; the input data rate is smaller than the output data rate, andférdboomes
empty. We used a quick-and-dirty fix to let the controller give up when thee rdide is very
low. We believe using an adaptive controller will be better theoretically, hsifithworks

fine here.

49

Chapter 6

Building the load balancer with
control theory

Regulating input data rate to TCQ helps us avoid tuple dropping and automaticeltire
TCQ maximum throughput. However, it is not enough by itself to make the systafe.
As Figure 4.1 shows, we want to run multiple instances of TCQ in parallelecahstruct
the time order of input events at the combiner. This creates a load balamolrigm.

Like all parallel computation systems that involves synchronization, loachtialg is
important to minimize delays. A load balancer based on control theory wagkénamany
cases [15, 16]. However, in this case, the control output is not direatigsurable. We
believe that it is a common issue when using black-box building blocks. Ve ghoways

to address this issue in this section.

6.1 Effect of imblanaces

Load balancing is particularly important in parallel computation system invosymghro-
nization, such as a barrier. This is because the fast node, even ibgothane faster, needs
to wait for the slow nodes. Specifically, in our system, the combiner is a baadedinator.
Then each event log entry is processed in parallel. The combiner ragug écom each
TCQ node, and performs a merge sort on timestamp. If one of the input isrstban the

other, the combiner waits for the slow input and queue up others. Themssgtime, in this

50

15000 T T T T T T T 15000

10000 - 10000 -

5000 -

a
o
S
=]

End-to—-End Delay (ms)
End-to-End Delay (ms)

. —_ 0 /\/\/\ ,j\MV\W - .
00 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (sec) Time (sec)

Figure 6.1: The Effect of disturbances with and without contdoEFT: Average tuple
response time using a simple round-robin load balancer. At time 150 secoadsarted
cpuhogprocess on one of the TCQ nodes, the response time quickly shoot upt@en
ceptable 15 seconds. At time 300 seconds, we killeccphehog processes, the response
time go back to normalRIGHT: Response time when a load balancer with controller is
used. At time 80 seconds, we started tpeLhog process. The response time shoots up a
little, due to controller delay and over shoot, but it quickly become stable additime
300 seconds, thepu hogis killed and the response time came back to normal.

case, depend on the slowest node.

Figure 6.1 (left) shows this effect in our experiment with a simple roundraad
balancer that sends equal amount of tuples to each node. This expeisrene with a
constant data rate of 1000 tuples/seconds, smaller than the throughgniy aine normal
TCQ node. It runs fine when there are no disturbance. Howevem Wiedisturbance
process introduced;puhog, started on one of the TCQ node at time 150 seconds, even
though the other node is completely normal, and by itself can handle the totalthead
overall delay still shoots up to an unacceptable 15 seconds. This isdeciteuround-robin
load balancer always evenly divides the load onto both nodes, the carhbisigo wait for
the slower one, so the normal node does not get used.

Usually, load balancing system uses input queue length as the indicajyatefsload.
However, this information cannot always be obtained easily from offstiedf systems.
This is common, especially for complex systems, which has many internal sjaadenot
designed to reveal its internal information. Unfortunately, TCQ is a systémunmeasur-

able queue lengths.

51

Y1
R) = [6.281z-3.129 J[0.0321] eeronee tine

n z-1 i z-0.9380
. Reference Input Controller Server 1 v
desired response time difference 1.4 Balancer - . Difference in response tine D

Disturbancel

retponse time diff Monitor
Response time difference

Server 3

:’"‘u
Input Data Rate

Disturbance2

Figure 6.2: The block diagram of controller in load balancer. Referémmeat R is the
desired difference in response time, which is always 0. The real irgtatrdte is mod-
elled as disturbance input since we have no way to control it. Other two loistoe input
models the random disturbance. Target system is TCQ nodes (with thiegesue length
controller described in Chapter 5. The transfer function of target systedels response
time change due to input data rate change. The controller is still Pl-contrigher input
is calculated from difference in response time, and control output is tlaerai# needs to
be sent to TCQ node 1. Whatever data rate left are send to TCQ node 2.

We cope this issue by directly using average response time for each tupleftihee o
TCQ nodes. Note that in these experiments, we assume that the each datausplabout
the same amount of work to the system, i.e. average is a metric good enougkstoli¢ain
a model. We treat how to eliminate this limitation as our future work. We get the bdst e
to-end response time when the response time at each node is equalebrcthisscase, we
don’t need to wait for the slower node. We discuss how control thearges to construct

this load balancer in Section 6.2.

6.2 Control problem formulation

Figure 6.2 shows the control diagram. The controller monitors the differeesponse time

for TCQ node 1 and 2, and uses the difference to calculate data inpatnatele 1. The
input data rate to node 2 is whatever data rate left in the total input. The shstefour
inputs. The reference input is desired response time, which should be 0 in ideal case.
Note that the total input is modelled as disturbance input, which reflect thehzicthis
data rate is determined by the data source, which cannot be controllederh&ing two

disturbance input models the random disturbances (e.g. selectivityesHaRt contention

52

etc.) as described in previous section.

The target system are two TCQ nodes. The transfer function is obtayresgkriments
and least square regression, exactly the same process as descilmation 5.3. In this
case, both nodes have identical transfer functions since we run thedemiical nodes,
but it can be easily extend to a system with heterogeneous nodes. Tihaleois also Pl

controller and parameters are chosen by pole placement.

6.3 System Identification and Controller Design

In this section, we provide technical details on system identification andatientdesign.

We omitted some calculations that are very similar to those in Section 5.3.

6.3.1 System Identification

The system identification process is exactly the same as what we did in Chaptex only
difference is that we used TCQ with the input data rate controller we impleméntbd
previous chapter. We found that with the input data rate controller, thersydentification
process is actually easier, since we do not need to worry about the Ellieg up.

In the experiment, we vary the input data rate and measure the responsd &awho
tuple, taking average over a period of 2 seconds (the global sample titénube entire
system). The response time is obtained by comparing the timestamp from theuffeut b
into each TCQ node with the time measured when the tuple get finished pracegdicQ.
Since both times are measured on the same node, there is no problem faurifiarod.

Using the procedure shown in Figure 5.6, we obtain

a = 0.9380 (6.1)

b = 0.0321 (6.2)

53

and thus the Z-domain transfer functions are

0.0321

G(2) = 0380

(6.3)

as Figure 6.2 shows.

6.3.2 Controller Design

Since in this case, we still need to tolerate disturbances that not controbablee only
consider Pl controller. A detailed comparison of P controller with PI contr@lprovided
in Section A.3.

Comparing to the control system of the queue length regulator in Chapter $ydtem
shown in Figure 6.2 is more complicated in that it has two target system blockse. T
difference of the measured outputs of these two target systems aresufsediback to the
controller.

However, we can use very similar method to obtain the close-loop transfetida
Fgr(z). The only difference is that the algebra is a litle more complicated. We briefly

sketch the steps of calculatitig;(z) here.

Fr®) = 50~ R (6.4)
_ UR)Gi(2) — (L(2) — U(2))Ga(z)
= RG) (6.5)
_ K(2)Gi(2) — L(2)Ga(2) + K(2)Ga(2) (6.6)
- 1+ K(2)G1(2) + K(2)Ga(2) '
From the control law of Pl controller in Equation 5.2
K(Z)Z(KP+KI>Z_KP (6.7)
z—1
and the transfer function of the target system
Gi(z) = Ga(z) = % (6.8)

54

substitute the two equations above into Equation 6.6, we get

(Kp+Kr)z—Kp _0.0321 — L(z) 0.0321 +(KP+KI)Z_KP 0.0321

—1 2—0.9380 2—0.9380 2—1 2—0.93830

Fr(z) = z 6.9

r(2) 1+ (Kp+Kr)z—Kp 0.0321 + (Kp+Kr)z—Kp 0.0321 (6.9)
2—1 2—0.9380 z—1 2—0.9330

simplifying Eq. 6.9, we obtain the characteristics polynomial
22+ [20(Kp + Kj) — (a+1)]z —2Kpb+a (6.10)

Then using the same technique of queue placement, by setting settling;tm2e and

maximum overshoat/;, =0, we can obtain

Kp =3.129 (6.11)

K = 3.152 (6.12)

Figure 6.2 shows the result.

6.4 Assessments

We used the same configuration as the experiment described in Sectionlg létting the
load balancer to run with the controller. We can see a dramatic change arrparfce in
Figure 6.1 (right). When we start tlopu_hog process, there response time shoot up a little
bit and quickly drops to normal level. Taking a closer look at the througtigia, we found
that there is a very small number of log entries sent to the slow node, whiclhesatre

remaining capacity of this node and the response time on each TCQ nodedoertry is

almost equal.

55

Chapter 7

Discussion

In this section, we discuss some experiences and hope to reveal soeralddeas of

applying control theory to computer systems, the advantages and limitations.

7.1 The advantages of using control theory in computer systems

Correctness can be analyzed.

Software system design usually involves a lot of heuristics, includingoadiéedback.
For example, “when the load goes high, reduce the load”, is a very commanistics
even if no control theory is considered. However, feedback casecaroblems if it is not
analyzed and used correctly. This is because there is always a time dehsy éontrol
input change and the change of output. Failure to deal this delay corcactiyause system
to become unstable spontaneously. Here we give an example which wesexpd during
the development of TCQ input control.

Figure 7.1 illustrated the instability caused by careless implementation of controller
The result queue length oscillates wildly, even with a small input data rate ingtability
is caused by the delay in measurement of actual throughput. Althoughritrelter design
took the delay between the input rate change and the result queue leagtiecht did not
consider the one period delay of calculating actual output data rate. Taigdsy subtle

problem if we only use heuristics. But with a little control theory analysis émdlation,

56

10000

source data rate
rate to TCQ

Tuples per sec

5000 | = — — end-to—end drop rate
0! sy ARG ‘ l] ! ‘ ‘ |
50 100 150 200 250 300 350 400 450 500
Time (sec)
_ X1
g
2
2] 2 -
@ free space
w 0 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Figure 7.1: An unstable control system.careless implementation that build a feedback loop
for controlling the output rate of data sourteside the feedback loop of the feedback loop for
gueue length as shown in Figure7.2. Notice that even theitosmall, the system become unstable

spontaneously.

| -0.01554z2+0.00614
z-1

Reference Input

Desired Qusue Length Qigue Langth

Controller (Contraller)

0845108

zH1.05995

(Data Qutput Thread)

413431

z-0.59845

Targel System

Actual Result Queue Length

Resuh Queue

Dsiturbance

Disturbance Input
(CPU Contention etc)

ffreedrbacl; Luupj

Figure 7.2: Block diagram of the unstable control systefncareless implementation that

build a feedback loop for controlling the output rate of
feedback loop for queue length.

57

detarceinsidethe feedback loop of the

we can reason about this.

Itis often hard to build a first principle model for software systems due io¢benplex-
ity and all the randomness in the operation environment. Models obtainedstatistical
characteristics of black-box building blocks are usually not accuraiaginto be used in
feed-forward control (i.e. without the feedback) A model with feedtbe@ntrol is more
robust against disturbances, as Chapter 5 and 6 show. It also telémasmme extent, the
inaccuracy of the model. For example, we used the same set of controtiego computers
with completely different configuration and they still works stably (thougatstttling time

becomes a little worse).

Implementation and system management is easier.

Feedback control reduces the complexity of system design. It only takew lines of
Java code to implement a controller. Of course, we need to spend mordccobitain
measurements, such as keeping record of the response time for tuplbsli&Ve that this
worth the trouble, because all systems that can be managed should &eledstervable.
Using control theory implicitly encourages a good practice of softwargddabat will

make the system easier to monitor and understood by the system administrators.

7.2 Limitations of control theory in computer systems

In order to successfully apply control theory in computer systems, thettaygtem must
have certain properties in addition to those discussed above.

A most important one is that the system, when takes in a finite input, must take a
bounded time and space to process it, and produce a output in boundedlkizre are
certain cases that this property does not hold. In TCQ, when a datangsgained with
a large table on disk, the output caused by one input tuple can be potentibtyinded.

We can deal with this problem by arranging data in blocks, and the next blodata is

58

produced only when user explicitly requests it (make another input).

Also, we need a system to have linear relationships between input and.otipunput
can be controlled, and the output must be measurable. In certain systsmsatonship is
not easy to find. We believe that there are two solutions. First, by usingisttisarning
techniques, we can find usable relationships from a large number of bis¢éaved [10].
Second, with some simple modification of the target system, such as queupliujtligx
we can make the system controllable.

Since not all current software systems are designed to be "contralytifieendly”,
sometimes control theory is hard to apply. An important goal of our futwseareh is to

find some good practice to design systems that can be controlled.

59

Chapter 8

Conclusion and Future Work

In this project, we designed and implemented a scalable, distributed systeystiem event
log processing based on TelegraphCQ. This log processing systebe aged in system
monitoring and implementing autonomic computing algorithms.

The main features of this system include:

1. The system fully supports the languages and data types provideddoydpEhCQ);
2. It provides an easy way to run TCQ in parallel and the resulting systeaalable;
3. This system is easy to customize and manage;

4. It is self-adaptive to disturbances in the system due to the use ofdeedbntrol

theory.

We also showed our experiences of applying feedback control theatgta stream
processing systems, which can be generalized to other computer systekiveahowed
how to fix the problem of TCQ flow control, while considering it as a black-bgstem.
We believe this is very common in building distributed systems using off-the-sbifare
systems as building blocks. We also implemented a load balancer and load simiitlator
control theory.

Our experience shows that control theory has the following benefits:

60

1. The correctness can be analyzed mathematically;

2. Using control theory, we can usually get a self-adaptive system witbagy and

clean implementation;

3. Itencourages good system design, including making states of syasgrtoanonitor.

We consider the following as our future work.

First, making this stream processing system available to system operatoesaarchers.
We will implement a user interface allowing users to configure and monitor tiodevelys-
tem.

Second, we want to further improve the system by allowing it to scale up ewd d
dynamically with the change of load and dynamic scheduling multiple streams.

Third, we want to investigate the use of adaptive controllers to allow widerabjon
range of the target system. Adaptive control has been used in [24tesglthe problem
of the narrow linear range by treating one large none linear range astewmall linear
ranges. We want to explore possibility of improving operation range of the balancer
using this technique.

Last but most important, we are investigating how to accommodate more varignce
workload, while still keeps the model and controller safe. We want to betaldapport

both queries running at each node changing and the changing of inctupiegate also.

61

Appendix A

Controller for load simulator

In this chapter, we will present the load simulator we build to do experimentisrsyis-
tem. We will also compare of two types of controllers, Proportional-Intggilcontroller

discussed in Section 5.2 and Proportional (P) controller (with a pre-cosapar).

A.1 The inaccuracy of load simulator

As in many cases, we need to accurately simulate the workload we sent tayetesiatem.
In this experiment, we used a load simulator that reads input data from arfii@iciog the
source data from the disk, puts the data into its own buffer, and sendotiterna specified
data rate. The data rate is specified as a function over time.

However, this naive implementation does not work well in practice. This iausertime
required for thread scheduling, disk read delay, and network lateecsgllaunpredictable
and cannot be controlled. Ignoring all those delays (by assuming theerdd cause the
actual data output rate stays always smaller than the desired value (seeAil).

This may not be a serious problem if the inaccuracy of the workload ordyplea
formance impact but not affect correctness. However, this is notake especially for
generating workload for system identification (as in Section 5.3). In tis&, @asmaller or
larger workload can cause the queue to fill up, causing inaccuracyamgéger estimation.

We believe this problem is typical to solve with feedback control theory, iasatves

62

4500 - B

—#— desired load

—*— actual load
4000

i -w
1
1 i
1

3500

w
8
S
3

2500 -

of tuples per sec

~ 2000

mber

5
2
1500 -
1000 -

500

time (ms) <10°

Figure A.1: A naive implementation of load simulator cannot achieve the dde&ddThe
actual data rate is always lower than the desired data ratéod@andom disturbances in the system.
The goal of the controller is to make the actual data rate lsqoahe desired data rate. Compare
this with Figure A.4 and A.5

quantities that are hard to reason about accurately enough.

A.2 Control problem formulation

As we did in the previous examples, we first need to decide the inputs/outphis sys-
tem. We use the desired data rate (specified by the data rate functiong@shcef input
(R) and all the unknown factors, such as disk/network delay, threadiskihg delay etc.
as disturbance input’f). The measured output is the actual data rate sent to the next tier
(the load balancer in this case). This is obtained by counting the numberle$ tup sent
to output and average them over the sample time (2 seconds in this cas€).sébends
interval is a magic nhumber that is consistently used on all data measurementghibuid
the whole system. This sample time is obtained through observing the tradeséfdmne
accuracy, settling time and smoothness of the observed changes over tien@ardet sys-
tem is the output thread that takes in a desired number as data rate andeodéatrate
according to the desired number (from the previous time period).

The controller computes the control errors, and calculates control ihparhich is the

“fake” data rate that we want the data rate to generate instead of the lealesrre. The

63

PU‘

Reference Input
Desired Data Rate

Preconpensator

p
Y (Controller)

0.845108

z+0.05998

Target System
(Data Output Thread)

Disturbance Input

()

Y
Actual Data Rate

Figure A.2: Block diagram of workload simulator with P controller.

il

L

Reference Input
(Desired Data Rate)

Y

z-1

1.0492+0.08281 |

u

Controller Transfer Fucntion

0.845108

z+0.05998

Target System
(Data Output Thread)

|

Disturbance Input
(D)

o]

Y
Actual Data Rate

Figure A.3: Block diagram of workload simulator with Pl controller.

block diagrams of the feedback control system are shown in Figure A.2zh

A.3 System Identification and Controller Design

A.3.1 System ldentification

The system identification is easier than the case with controlling queue lengtbrse3.

This is because the input range is large (in this case, we can use oefén@ait ranging

from 100 tuples per second to 4,000 tuples per second). We see thavighi this large
range,u andy keep a linear relationship and thus the predicted value and the experiment
data fit pretty well.

However, as the data rate getting higher, the error between predictedaraduexper-
iment get larger; since more time is spend on the network delay and disk I1/.at/a
certain point, no matter how we increase the desired datayaenost does not increase
any more. This kind of the non-linear relationships is common in computer systgrich

is calledsaturation

64

We choose the operation point at 2,140 tuples per second for Rpand the corre-
sponding operation point for outpitis 1,775 tuples per second.

Using Matlab code in Figure 5.6, we obtain the model for the target system.

y(k+1) = —0.05998y(k) + 0.8451u(k) (A.1)

Or expressed in z-domain as a transfer function as:

CY(2) 08451
G =T =~ 7705998 (A2)

A.3.2 Controller Design

In this section, we discuss the use of Proportional (P) controllers ambRional-Integral
(P1) controllers, both of which are simple but commonly-used controlleigdesn real
systems.

We implement both P controller and PI controller for load simulator control (€igL2

and Figure A.3) and compare the results.

PI controller

Proportional-integral (PI) controllers, as described in Section 5.3uleddc control input
using the current error as well as the last error and the control iopidast step.

It can be proved that PI controller always drive the steady state teremro. However,
the PI controller it is usually slower than P Controller. We will show the eftédieing
slower in Section A.4.

The control law for PI controller is (as Eq. 5.2):

wk) =u(k — 1)+ (K, + Kr)e(k) — Kpe(k — 1) (A.3)

65

Following exactly the same procedure as in Section 5.3, we can obtain:

Kp = —0.0828 (A.4)
K7 =1.06 (A.5)

P controller

In P Controller the control input is simply control erroe multiplied by a constank,. It
is simple and fast to converge to steady state. However, it does not lthstdidances well
in the system.

The advantage of P Controller is that it is relatively simple to design, sinceritsato

input is control error multiplied by a constafitr . The control law is:

u(k) = Kpe(k — 1) (A.6)

where

ek—1)=rk—-1)—ylk—-1) (A.7)

P-Controller is also fast in terms of the time required to converge to the stéatey s
This is because it does not use the integral term that requires seyeles to converge.

We also usepole placementechniques to choosEp . Using Eq. 5.10, we can write
the the close-loop transfer function from inpdto outputY” as:

Y(2) Kpb
Frz) = R0 = 2 Zat Kb (A8)

There is only one pole of Equation A.8, which is

p=a— Kpb (A.9)

To make the system stable, the pole must lay within the unit circle on the complex plan
That is to say
la — Kpb| < 1 (A.10)

66

Or,

a—1 1+a
< Kp<

; ; (A.11)

We also want to consider settling tilkg . The same as in Section 5.3, we have

—4
ks = ———— A.12
log |a — K pb| ()
Giving the the maximum settling time we can tolerdte, we can solve for the possible

range forKp

I
log |a — K pb|

< kI (A.13)
When the dominate poleis real andp > 0, there is no overshoot, s&fp = 0. When
pis real andp < 0, the maximum overshoat/p = |p|. So if we want to place the pole

to the negative half of real axis, we need to consider the maximum overshpave can

tolerate, so we need to the following condition:
Mp = |a — Kpb| < Mp (A.14)

The last thing we want to consider is the accuracy of the controller, i.e.tehdysstate

erroregs . Basic results in control theory tells us

Fr(1) = j{— (A.15)
Thus,
€ss = Tss[l - FR(l)] (A.16)

Limiting the maximume,, to bee?, , we obtain the following condition:

88 1

rss|l — Fr(1)] < ek (A.17)
Kpb .
Tss[l— m] < ey (A.18)

Solving the set of inequalities A.11, A.13, A.14 and A.17 will provide us with Hrege

that Kp can be in. However, those four inequalities may not be able to hold at the same

67

time. Of course, when this happens, we must keep stability (A.11) satisfieeldying
other contraints.

The problem with P control is that it is not accurate, thaiisis always greater than
zero. In fact, it can never achieve zero steady state error, sincd tdpaenede will be
zero, andu will also be zero (which means we don’t get any data output any more).

We make P controllers more accurate by adding a pre-compensator.chmgensator
is a transfer functiorP(z) that changes the reference input in order to make the system
accurate.

The feedback system with pre-compensatot) has transfer function

,,_Y(z) KpbP(2)
Fr(z) = R(2) z—a+Kpb (A.19)

Note that P(z) is not in the feedback loop so that P(z) only appears imthaator, but not
the denominator of ' (z).

To make the steady state eriQyt to be zero for any-,, in Eq.A.16, we need to make

1-Fh(1) =1
’ B Y(l) . KpbP(z) _
Fr(1) = R(1) 1-a+Kpb (A.20)
Solve forP(z), we get
1—-a
P(z)=1+ Kb (A.21)

From the calculation above, we can see that without disturbances, BlEmith a
pre-compensator designed above always drives the steady stategro zero. How-
ever, it cannot eliminate the uncontrolled disturbance input. We will see tieistéf the
assessment part.

With the data we get from system identification,

a = —0.0600 (A.22)
b = 0845 (A.23)

68

We notice thatK » must be a positive number, since a “negative” data rate does make

sense. This leads to an extra constrainfn
Kp>0 (A.24)
For stability (Eq. A.11), we get
0<Kp<l1lll (A.25)

We want maximum settling time to be 1 sample times, which is about 2 seconds. We get
from Eqg. A.13

Kp > 0.85 (A.26)

Let the maximum overshoot to be 0.05. Using Eq. A.14, we get

Kp > —0.01 (A.27)

We did not considee,; , since we want to use the pre-compensator. From inequality

constraints A.24,A.25,A.26 and A.27, we get

0.8 < Kp<1.1 (A.28)

We chooséX p to be 0.9, and estimate the pre-compens&tar) using Equation A.21,

we have

1—a

P(z)=1

= 2.39 (A.29)

The results obtained fdk» and P(z) are shown in the block diagram (Figure A.2).

A.4 Assessment

In FigureA.4 and A.5, we can see both of the P and PI controllers make thetalata rate
much more accurate than the case shown in Figure A.1. We varied the dédsiaechte as
a sine wave around the desired operation point, and we can see thatuflecatput data

rate follows this change very closely.

69

3000 30001

— desired load
—actual load

2500 : 25001

2000 : 20001

1500 1500

tuples per sec
tuples per sec

1000 1000

500 500
— desired load
—actual load

; ; ; n T ; ; ; ; ;

0 2 4 6 8 10 0 2 4 6 8 10

time (ms) x10° time (ms) x10°

Figure A.4: Effect of P controller in work- Figure A.5: Effect of PI controller in work-
load simulator load simulator

In order to make comparison between the P controller and Pl controller, keeata
“zoomed in” version of the figures in Figure A.6 and A.7.

The interesting effect we can see is that the actual output for P contiobdways a
little higher than the desired data rate, even with the pre-compensator. Thisigde there
are always disturbances in the system which we did not capture dustensjdentification
face. These disturbances can be short, such as a backgroundndperoess, or can be
long and slow in effect, such as memory leaking. Also, the “linear” assumpgionly
approximately true. P controller does not help us correct those distabaand the error
cannot be zero.

In contrast, Pl controller can always get steady state error to zerotheegh there
are disturbances that are not captured by the model of system. Intyitivislys mainly
because it accumulates the past errors, and this integral of errosstbelpve the steady
state error to zero, regardless of the unknown disturbances.

We noticed that there are regular small oscillations in the both P and P| ¢asess
out that those small disturbances come from Java garbage collectiogamtisme collection
is running frequently in the workload simulator, because the simulator maintdaidya

large buffer pool as Java objects array, and creating and discastiing objects for every

70

Figure A.6: Effect of P controller in work- Figure A.7: Effect of PI controller in work-
load simulator (zoom in). The actual dataload simulator (zoom in). The actual data
rate is a little higher than desired rate everrate oscillates around the desired data rate.
with the pre-compensatd?(z). This is be- As expected PI controller helps us to get
cause the random disturbances in the systeto be zero. However, it oscillates more than
not captured by the system model. How-P controller when there are lots of small dis-
ever, comparing to FigureA.7, it has less osturbances(such as Java garbage collection)
cillation, because P controller is faster in re-in the system. This is because of the rela-
action. tively slower settling timek; .

tuple it reads from disk and output to network.

The default Java garbage collection is not incremental, which will resultge loscilla-
tions once every 20 seconds. Though the controller corrects this disueln a very short
period of time, the oscillation is still too big to tolerate. After we changed Javaagarcol-
lection to be an incremental one, the big disturbances become many smalhsséewn
in Figure A.6 and A.7.

As a future topic, we want to eliminate those small disturbances by not lettirg Jav
dynamically allocate buffer spaces. This will also improve the performainmerevorkload

simulator.

71

Bibliography

[1] Charu C. Aggarwal. A framework for diagnosing changes in evghdata streams.
In Proceedings of the 2003 ACM SIGMOD international conference on btamant
of datg pages 575-586. ACM Press, 2003.

[2] Brian Babcock, Shivnhath Babu, Mayur Datar, Rajeev Motwani, d&whifer Widom.
Models and issues in data stream systemsProceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sygiages 1—
16. ACM Press, 2002.

[3] Peter Bodik, Greg Friedman, Lukas Biewald, Helen Levine, Georged€a, Kayur
Patel, Gilman Tolle, Jon Hui, Armando Fox, Michael I. Jordan, and DavitePa
son. Combining visualization and statistical analysis to improve operator eooéd
and efficiency for failure detection and localization. Rroceedings of the 2nd IEEE
International Conference on Autonomic Computing (ICAC ,@gattle, 2005.

[4] Aaron B. Brown and David A. Patterson. Undo for Operators: Boddan Undoable
E-mail Store. InProceedings of the 2003 Usenix Annual Technical Conferedan
Antonio, TX, USA, June 2003.

[5] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedmam, Armando
Fox. Microreboot — a technique for cheap recoveryPiaceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation (QSB@i) Francisco, CA,
2004. USNIX.

[6] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.i&ahg scalabil-
ity and expressiveness in an internet-scale event notification servié&rot¢eedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed Ciomgpu
pages 219-227, Portland, Oregon, July 2000.

[7] Jeffrey D. Case, Mark S. Fedor, Martin Lee Schoffstall, and Iadavin. A simple
network management protocol (snmBREFC1157 May 1990.

[8] Mike Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric BreRinpoint:
Problem determination in large, dynamic internet services. DSN 2002.

[9] Mike Chen, Alice Zheng, Jim Lloyd, Michael Jordan, and Eric Brew# statistical
learning approach to failure diagnosis. Imternational Conference on Autonomic
Computing (ICAC-04), New York, NMay 2004.

[10] Ira Cohen, Jeffrey S. Chase, Méss Goldszmidt, Terence Kelly, and Julie Symons.
Correlating instrumentation data to system states: A building block for automated
diagnosis and control. IOSDI, pages 231-244, 2004.

72

[11] Hewlett-Packard Development Company. Hp OpenView. http://wwwxiperhp.-
com/, 2005.

[12] IBM Corporation. Tivoli. http://www.ibm.com/software/tivoli/.

[13] Microsoft Corporation. Microsoft Operations Manager.
http://mww.microsoft.com/mom/.

[14] Yixin Diao, Neha Gandhi, Joseph L. Hellerstein, Sujay Parekhawin M. Tilbury.
Using MIMO feedback control to enforce policies for interrelated metriith appli-
cation to the Apache web server. Pnoceedings of Network Operations and Manage-
ment Symposium (NOMS02), 20Pages 219- 234. IEEE/IFIP, 2002.

[15] Yixin Diao, Joseph L. Hellerstein, Adam J. Storm, Maheswaranr®&lreg Sam Light-
stone, Sujay Parekh, and Christian Garcia-Arellano. Using MIMO lineatrol for
load balancing in computing systems. Rroceedings of the American Control Con-
ference, 2004 volume 3, pages 2045- 2050, 2004.

[16] Yixin Diao, Joseph L. Hellerstein, Adam J. Storm, Maheswaranr®&lrege Sam Light-
stone, Sujay S. Parekh, and Christian Garcia-Arellano. Incorporetisigof control
into the design of a load balancing controller. IEEE Real-Time and Embedded
Technology and Applications Symposjypages 376—387, 2004.

[17] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogiy@geand mining data
streams: you only get one look a tutorial. RFnoceedings of the 2002 ACM SIGMOD
international conference on Management of dgtages 635—-635. ACM Press, 2002.

[18] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. TijbuFeedback
Control of Computing System@iley-IEEE Press, Aug 2004.

[19] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaiji. Intruditection using
sequences of system callkurnal of Computer Securit(3):151-180, 1998.

[20] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thay &oott Shenker,
and lon Stoica. Querying the internet with PIER. Rroceedings of the 29th VLDB
Conference2003.

[21] Emre Kiciman and Armando Fox. Detecting and localizing anomalous behtav
discover failures in component-based internet services.

[22] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bugiation via
remote program sampling. IRroceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementatien Diego, California, June
9-11 2003.

[23] Benjamin C. Ling, Emre Kiciman, and Armando Fox. Session state: BReyoft state.
In Proceedings of the 1st Symposium on Networked Systems Design295C308,
San Francisco, CA, 2004. USNIX.

[24] Xue Liu, Xiaoyun Zhu, Sharad Singhal, and Martin Arlitt. Adaptiveigement con-
trol to resource containers on shared servergriteedings of the Ninth IFIP/IEEE
International Symposium on Integrated Network Management (IMRUBEE, 2005.

[25] Chris Lonvick. The BSD Syslog Protocol. RFC 3164 (Informationai)gust 2001.

73

[26] Sheng Ma, Joseph L. Hellerstein, Chang shing Perng, and @&rabarnik. Progres-
sive and interactive analysis of event data using event minelfEHRE International
Conference on Data Mining002.

[27] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, ardNgng. The
design of an acquisitional query processor for sensor network2rolteedings of the
2003 ACM SIGMOD international conference on Management of, qstges 491—
502. ACM Press, 2003.

[28] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijaysitdkaman. Con-
tinuously adaptive continuous queries over stream®&raceedings of the 2002 ACM
SIGMOD international conference on Management of datmes 49—60. ACM Press,
2002.

[29] John Markoff and G. Pascal Zachary. In searching the webglg finds riches. NY
Times, April 13, 2003.

[30] David Oppenheimer, Archana Ganapathi, and David A. Pattersdny & internet
services fail, and what can be done about it?4tm USENIX Symposium on Internet
Technologies and Systenharch 2003.

[31] David Patterson, Aaron Brown, Pete Broadwell, George Caridée Chen, James
Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew Merzbacher
David Oppenheimer, Naveen Sastry, William Tetzlaff, Jonathan TraupanaiNoah
Treuhaft. approaches-roc. Technical Report UCB//CSD-02-10ZBerkeley Com-
puter Science Technical Report, 2002.

[32] David A. Patterson. A simple way to estimate the cost of downtime. Submitsion
16th Systems Administration Conference (LISA '02), 2002.

[33] Johannes Gehrke Raghu RamakrishnBatabase Management SystenddcGraw-
Hill Higher Education, 2003.

[34] Ramendra K. Sahoo, A. Oliner, Irina Rish, Manish GuptaéladMoreira, Sheng Ma,
Ricardo Vilalta, and Anand Sivasubramaniam. Critical event predictioprizactive
management in large-scale computer cluster&DD, pages 426-435, 2003.

[35] Sumeet Singh, Cristian Estan, George Varghese, and StefageS@au#tomated worm
fingerprinting. INOSDI, pages 45—-60, 2004.

[36] Sailesh Krishnamurthy Sirish. Telegraphcq: An architectural stefurt.

[37] lon Stoica, Robert Morris, David Karger, Frans Kaashoeki Hari Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet appliation Roch
Guerin, editorProceedings of SIGCOMM-0QYolume 31, 4 ofComputer Communi-
cation Reviewpages 149-160, New York, August 27-31 2001. ACM Press.

[38] Mark Sweiger, Mark Madsen, Jimmy Langston, and Howard Lomb@ilitkstream
Data WarehousingJohn Wiley & Sons, 2002.

[39] Robbertvan Renesse, Kenneth P. Birman, and Werner Vogstiolabe: A robust and
scalable technology for distributed system monitoring, management, and da&ig.min
ACM Transactions on Computer Systeiy2):164—-206, 2003.

74

[40] Ricardo Vilalta, Chidanand Apt Joseph L. Hellerstein, Sheng Ma, and Sholom M.
Weiss. Predictive algorithms in the management of computer syst@&hkSystems
Journal 41(3):461-474, 2002.

[41] Ricardo Vilalta and Sheng Ma. Predicting rare events in temporal demaimg
associative classification rules. Technical report, IBM Researcdh\Watson Research
Center, Yorktown Heights, NY, 2002.

[42] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-MingVa&utomatic
misconfiguration troubleshooting with PeerPressuré&D|, pages 245-258, 2004.

[43] Shaula Alexander Yemini, Shmuel Kliger, Eyal Mozes, Yechiam Yenaing David
Ohsie. High speed and robust event correlatitBEE Communications Magazine
pages 82 — 90, 1996.

75

	Pages from ms.pdf
	master_thesis_revised

