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Abstract

In this project, we focus both on building a general tool that can be used by system

operators and machine learning researchers for analyzing data, and on exploring general

techniques of applying feedback control theory to distributed computer systems.

We have built a scalable and flexible system log processing system using TelegraphCQ [36]

as the building blocks. The report is divided into two parts.

In the first part, we discuss the needs for processing system log data asdata streams and

our general design of parallel and multi-tier architectures.

In the second part of the report, we address problems regarding to this stream processing

system as being a complex distributed system itself. We focus on how randomdisturbances

can have an impact on the performance and reliability. All problems addressed are solved

systematically with feedback-control-theory. We discuss three uses of thefeedback-control-

theory. First, as the workload regulator, then the load balancer and, last,the workload sim-

ulator. We illustrate the general techniques for the system identification and the controller

design by presenting the three applications.



Contents

I Processing System Event Data as Data Streams 4

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Processing system logs as data streams 14
2.1 The required processing on system logs . . . . . . . . . . . . . . . . . . . 14
2.2 Traditional methods are not suitable for this application . . . . . . . . . . . 17

2.2.1 Ad-hoc scripts are not enough . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Problems with relational databases . . . . . . . . . . . . . . . . . . 19

2.3 Stream model of system log data . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Building a parallel system using TCQ as building block . . . . . . . . . . . 22

3 Related Work 24
3.1 Automated system problem detection . . . . . . . . . . . . . . . . . . . . 24
3.2 System monitoring and management . . . . . . . . . . . . . . . . . . . . . 26
3.3 Stream data processing and mining . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Applying control theory to computer systems . . . . . . . . . . . . . . . . 28

4 A Flexible Architecture for Processing System Logs 29
4.1 Key component, Telegraph Continuous Query Processor . . . . . . . .. . 29
4.2 Description of the parallel architecture . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Two-tier parallel architecture . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II Improving System Reliability and Performance with Contr ol Theory 34

5 TCQ Flow control 36
5.1 Flow control issue in TCQ . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Control problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 System Identification and Controller Design . . . . . . . . . . . . . . . . . 40

5.3.1 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



6 Building the load balancer with control theory 50
6.1 Effect of imblanaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Control problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 System Identification and Controller Design . . . . . . . . . . . . . . . . . 53

6.3.1 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Discussion 56
7.1 The advantages of using control theory in computer systems . . . . . . . .56
7.2 Limitations of control theory in computer systems . . . . . . . . . . . . . . 58

8 Conclusion and Future Work 60

A Controller for load simulator 62
A.1 The inaccuracy of load simulator . . . . . . . . . . . . . . . . . . . . . . . 62
A.2 Control problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.3 System Identification and Controller Design . . . . . . . . . . . . . . . . . 64

A.3.1 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.4 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2



List of Figures

4.1 A general structure of our parallel system . . . . . . . . . . . . . . . . . .30

5.1 Behavior of TCQ node without regulating result queue length. . . . . . .. 37
5.2 PI Controller for regulating the free space in the queue. . . . . . . . . . .. 38
5.3 Not carefully chosen workload causes the queue length to fill up. . . .. . . 41
5.4 Workload for queue length system identification . . . . . . . . . . . . . . . 42
5.5 Models Constructed with good and bad workloads. . . . . . . . . . . . . . 43
5.6 Matlab routine that does the parameter estimation. . . . . . . . . . . . . . . 44
5.7 Matlab routine for calculatingKP andKI of PI controller . . . . . . . . . 48
5.8 TCQ node with result queue length controller, under CPU contention . . .. 49

6.1 The Effect of disturbances with and without control . . . . . . . . . . . .. 51
6.2 The block diagram of controller in load balancer . . . . . . . . . . . . . . . 52

7.1 An unstable control system . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Block diagram of the unstable control system . . . . . . . . . . . . . . . . 57

A.1 A naive implementation of load simulator cannot achieve the desired load . 63
A.2 Block diagram of workload simulator with P controller . . . . . . . . . . . 64
A.3 Block diagram of workload simulator with PI controller . . . . . . . . . . . 64
A.4 Effect of P controller in workload simulator . . . . . . . . . . . . . . . . . 70
A.5 Effect of PI controller in workload simulator . . . . . . . . . . . . . . . . . 70
A.6 Effect of P controller in workload simulator (zoom in) . . . . . . . . . . . . 71
A.7 Effect of PI controller in workload simulator (zoom in) . . . . . . . . . . . 71

3



Part I

Processing System Event Data as
Data Streams

4



Chapter 1

Introduction

In this chapter, we will introduce of the idea of using computer system logs for automated

failure detection. We first discuss the difficulties of dealing with a large amount of system

logs data. We then present our dealing with those logs as data streams, and build a flexible

stream processing system using TelegraphCQ [36, 28] as building blocks. This stream pro-

cessing system itself is a distributed system with many components running in parallel. We

conclude by discussing issues in its scalability and reliability, and our approach to solving

those problems with feedback-control-theory.

1.1 Motivation

System fails and we have to cope with it

Most on-line services, such as Amazon and eBay, suffers from various user-visible failures.

As reported by various authors (such as Oppenheimeret al. [30]), the most common causes

of failures in Internet services aresoftware bugs, human operator errorsandhardware fail-

ures, respectively. These failures frequently cause system to crash, which is very expensive;

for example, Patterson estimates that one hour of downtime of a large on-line service can

cost up to one million U.S dollars [32]. Predicting, detecting and localizing thesefailures

are very difficult tasks, as some systems consist of hundreds of software components run-

ning on up to 50,000 servers [29].
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Failure-free computing, if ever possible, is still in the future.Recovery oriented com-

puting (ROC)specialized in coping with inevitable failures through fast recovery [31].This

approach suggests the goal of ROC - reducingmeantime to recover (MTTR). System avail-

ability A is defined asA = MTBF/(MTBF + MTTR), where MTBF is the meantime

between failures. SinceMTBF >> MTTR applies to all systems, reducing MTTR even

a little bit can greatly improve the system availability.

Two factors can affect MTTR: the time to diagnose a problem and the time to fix it.

Between the two, the diagnose time is the dominant factor[30]. The results of ROC project

provide techniques for separating applications and session states store[23], organizing com-

ponents for fast rebooting[5], and supporting system-wide undo operations[4]. With these

techniques, we can not only reduce the time required to fix the problem, but also enable the

automated system detections and recoveries. This is because even thoughwe may not be

very sure about the problem, we can still try the recovery methods out, as we know that our

operations would only cause predictable effects and would only affect the system behavior

for a relatively short period of time.

In the RADS (Reliable Adaptive Distributed Services) project, we are combining statis-

tical learning algorithms in order to detect the system failures, localizing the root cause of

a system failure, and automatically recovering the system from failures with the techniques

discussed above. We also applied feedback-control-theory to computersystems, which has

proved to be a useful tool for building self-adaptive systems and for increasing system reli-

ability.

System logs are valuable for detecting system failures

Most software systems are instrumented so that they will record various activities. Some of

them will also periodically report various statistics, such as processor, memory and network
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usage. Developers usually would record information about the currentstate of the appli-

cation to facilitate the debugging. In some well managed systems, human operators also

record all changes made to the system and all problems found in the system. We refer to all

this information assystem logs.

System logs contain information that is useful to many applications. Traditionally, dif-

ferent kinds of logs are used for different purposes. Access logsare usually used in business

data mining, such as modeling user behaviors or supporting business decision making[38].

Lower level logs such as the processor and memory usage logs are usedby the system ad-

ministrators to monitor the system performance and by the managers for resource planning.

Application-specific logs are used by developers for debugging and performance profiling.

Recent research has found that all kinds of logs could be used for fast detection of

intrusions [19, 35] or system failures[42, 10].

By simply visualizing certain summarized information of the log to human operators,

system problems can be diagnosed much faster. Bodiket al. shows that by looking at the

request counts of webpage transitions, the operators are able to notice the system errors

hours or even days earlier [3]. This is because for human operators,when the data are

represented in the right form (i.e., the right statistics plus the right representations), can

detect normal patterns from abnormal patterns easily and quickly. Another way to analyze

the system failures is to use statistical learning algorithms to detect the abnormalpatterns

of the system data. Many algorithms have been used to solve various problems, and we will

discuss works in this area in Section 3.1.

Our belief is that the best way to improve system availability is to combine automated

failure detection tools based on machine learning algorithms and visualizing keystatistics.

In this way, we can both reduce stress on system operators by detecting and fixing sim-

pler problems automatically, and by eliminating the problems of the false positives or false
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negatives, which happens in almost all statistical methods. We will investigate methods of

doing both in the RADS project.

Both goals require processing logs in real time, which is harder than the traditional

business data mining. The latter mainly deals with the historical data. The throughput

of this online processing must be sufficient to process a sample large enough to yield a

statistically correct analysis. Since this processing is on the critical path of diagnosing

the system failures, the delay incurred will directly affect the MTTR, and thus must be

abbreviated as much as possible.

Practical problem of analyzing system logs

There is a practical problem that makes the real time processing of log data ahard job: the

logs are too large and too complex. The systems today generate as much as 1 TB of log

data per day [9]. Using more fine-grained instrumentation for debugging generates many

times more log data.

The complexity of system log processing not only comes from the size, but also the

arbitrary format a log can have. Widely used system log format of Unix System Logger,

syslog, contains only three fields in its schema specification, which are timestamp, priority

level, and a text string showing the content of the message [25]. Lacking of a specific

schema makes the format very flexible, but leaves all the difficult parsing and analyzing

jobs to the log users.

These complexities seriously limit the ability for system administrators to make use

of the logs. Our experience shows that using ad-hoc scripts for processing data is very

tedious and inefficient. Maintaining ad-hoc scripts is another hard task, especially when the

log schemas or the system architectures change. From private communications to several

system operators of large online services, most system logs are never processed.
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These complexities cause problems for machine learning researchers as well. A lot of

preprocessing (such as sampling, adding/removing attributes, merging datafrom different

sources, and so on) is required before the data can be used in machine learning algorithms.

Machine learning researchers spend a huge amount of time on this preprocessing. Also,

machine learning algorithms are usually complex to implement and requires constant mod-

ification (like all research codes). When these algorithm implementations are combined

with preprocessing, the resulting codes can be hard to read and maintain.

To make things worse, difficulties of processing system logs limit the opportunities of

researchers to obtain real data from companies. Logs need to be processed by the companies

before they can be donated to the research community. This is because logsusually contain

sensitive information. For example, to protect privacy of all clients, a company doesn’t

want others to know how many requests are coming from a particular client, and what page

a specific client is requesting. Therefore, some fields in the logs are masked (usually done

by replacing their values with a hash value). Also, the logs may be sampled so that the

information of the traffic patterns to those companies is not revealed. With ad-hoc scripts,

the company needs to pay a lot of the administrators’ time to do these processings, which

is unaffordable to many companies.

In order to address the problems above, we need a better data model for the system

log analysis, and a scalable, modular architecture that can be distributed over a cluster of

machines to process the data quickly.

Making the log processing system scalable and reliable

To address problems above, we designed a software system that processes system logs as

data streams. The system makes use of TelegraphCQ (TCQ in short)[36],a general purpose

data stream processing engine, and multi-tier processing of system eventlogs.
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Initial experiments show great scalability and flexibility of our data stream processing

system. However, this system is a complex distributed system assembled with off-the-shelf

components, so it suffers from many common problems as other distributed system. We

found the following four issues most serious:

1. The black-box building block may have inherent limits. For example, Chapter 5

shows that TCQ system has some flow control issues that results in data loss.

2. Load balancing is extremely critical to the performance of the entire system.This is

true for all parallel computational systems involving synchronization, sincethe faster

nodes must wait for the slow nodes.

3. Each component running in parallel may encounter problems or have additional ad-

ministrative loads. These random disturbances cause unpredictable performance of

the stream processing, causing delays or even losing of data.

4. Sometimes not all the useful measurements can be measured in a black-boxsystem.

For example, total queue length in TCQ system is hard to measure without significant

changes in TCQ, making the load balancing more complicated.

As this log processing system shares many common problem with general distributed

system, we decid to use it as a testbed for general RADS design concepts.As the initial step,

we address the issues discussed above by applying feedback controltheory. This technique

proves to be very useful in distributed system design.

Feedback-control-theory provides a set of mathematical tools for modelingsystems and

designing controllers, which can be used to regulate certain values, suchas the queue length

and the data rate, by continuously correcting current errors.

There are many examples of applying the control theory to computer systems.Heller-

steinet al. provides an extensive review of the current techniques for applying the control
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theory to computer systems [18] . We discuss more works related to applying the control

theory to computer systems in Section 3.4.

We will provide more background knowledge for readers who are not familiar with the

control theory in Chapter 5, with our discussion of coping with the flow control issue in

TCQ. We will show that the classical linear control theory and very simple models works

well in this system.

1.2 Summary of Results

We developed a scalable software architecture for processing system event logs for large,

distributed systems using stream data model and continuous queries, with TelegraphCQ[36]

as building blocks. We also used this monitoring systems as a testbed for exploring general

techniques of making distributed systems scalable, reliable and manageable byapplying the

feedback control theory.

A flexible system to process system logs

We built a scalable and flexible system log processing system using Telegraph Continuous

Query System [36] as building blocks. This system allows us to preprocess data for any

off-line or on-line statistical learning algorithm against massive quantities ofsystem logs.

This system inherited the powerful and efficient continuous query processing features

from TCQ. These features include: writing queries with SQL language; defining the log

schemas with customizable data types; running queries on multiple streams or staticdata

tables. The evaluation of all continuous queries share intermediate results,and thus is quite

efficient. Also, query evaluation plans are adaptive to changes of the data streams.

By running TCQ in parallel and in multiple tiers, we are able to make the system scal-

able in order to handle the fast rate of the system logs data. Our system canbe easily

configured to be distributed over a cluster of machines and new log sources and algorithm
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can be added on-the-fly. Our system is also self-adaptive to disturbances either from the

machine or from the data rate of the incoming log streams. It automatically balances the

load over parallel machines to achieve optimal response time and throughput.

This log processing system can be used by system operators to collect, analyze, archive

logs, or by statistical learning researchers to preprocess of the raw logdata and prepare

input for their algorithms for automatic system diagnoses. Of course, this system can be

used in situations where other types of stream data needs to be analyzed.

Using control theory to make this infrastructure scalable

Using this log processing system itself as a testbed, we explored general techniques of

improving distributed system reliability and scalability using the feedback-control-theory.

We demonstrated three applications of the control theory:

1. Using off-the-shelf system as building blocks, and cope with their problems without

changing its internal structures.

2. Dealing with disturbances in the systems

3. Creating new applications with control theory. For example, we created aworkload

simulator that can generate exact workload despite of the disturbances. We also cre-

ated a load balancer that split the load automatically to achieve minimal response

time.

We also discuss our experience on the advantages and issues of using control theory in

computer systems. Applying control theory in computer systems results in the following

advantages over heuristics:

1. Correctness can be analyzed.

2. Implementation and system management are easier.
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3. It encourages a good system design.

Successfully applying the control-theory to computer systems is not trivial. These prob-

lems must be considered:

1. Whether the quantities we want to regulate can be controlled. It is not always that

easy to find an controllable knob that we can use.

2. It is not easy to build an easy model of the target system due to the complexity and

randomness involved in the software design.

3. Many legacy systems are not designed to be easily measurable.

We show methods of dealing with these difficulties, as well as suggesting new principles

for the system design. This is to make a system more “control theory friendly”, which will

greatly improve both the system performance and its reliability.

This the report is organized in two parts, the first part discuss about thegeneral idea

of using general stream processing techniques to process system log data, the problem

and motivation (Chapter 2), and our experimental system design (Chapter4). We also

discuss works in related research areas in Chapter 3. The second part describe how to make

our log processing system scalable and reliable. In Chapter 5, we discuss a flow control

problem with original TCQ and methods to use control theory to solve the problem. We

also describe the process of system identification and PI controller designfor people who

are more interested the technical details. Chapter 6 describes the implementationof load

balancer using control theory. Chapter 7 discusses the lessens learned from this project,

especially issues with control theory. Chapter A in appendix describes thedesign of an

accurate workload generator, and also compares P controller with PI controller. Chapter 8

concludes the report.
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Chapter 2

Processing system logs as data
streams

Distributed computer systems are becoming larger and much more complex. Monitoring

the system is no longer a trivial job to do. Systems today can generate as muchas 1 TB of

log data every day [9]. We used two data sets from online service companies in this project.

The first one is an application log consisting of 2.5TB data over a 20 days period, and the

other is a DNS access log that has on average 20-30 millions of entries per hour.

When presented with terabytes of data, we need to think about how to handleit effi-

ciently. In this chapter, we describe our experience with analyzing huge amounts of data.

We first discuss what kinds of processing of log data we want, and our early attempts to use

ad-hoc Python scripts and traditional relational database systems for this purpose. We show

that both of them have their limitations. We then show the advantages of modeling them as

data streams.

2.1 The required processing on system logs

As described in Section 1.1, system logs contain more useful information thanoperators

can discern. The data might be used to predict that a particular machine is likely to crash in

a few minutes, or that a certain software component has a bug or even helpto localize the

causes of failures. A fully automated analysis or visualizing the information contained in
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system logs to system operators greatly helps to reduce the MTTR.

However, both tasks require close to real time processing of system logs.This is because

unlike data mining for business analysis, for which historical data are still very relevant,

system failure must be detected when they happens (or the best is to predict them before

they happen). Studies show that the value of logs decreases quickly over time[17].

Also, as detecting system failures is a new application of many types of logs. The infor-

mation we need to visualize or feed into Statistical Learning Theory (SLT) algorithm may

not be explicitly contained in the log. The SLT algorithms are already complex enough to

implement, so we always want to separate the log preprocessing from the machine learning

algorithm implementation. In this report, we mainly focus on what preprocessing is done,

and how they can be done efficiently. From our experience, useful preprocessing includes

the following:

• Sampling: we need to sample the original log because we are not able – and it is

not necessary – to look at all the observed data. Other reasons for sampling include

temporally variable data rate, dealing with unbalanced data sets, removing duplicate

entries or removing entries that do not report the class attribute. Thus, a reconfig-

urable sampling algorithm must be supported.

• Generating aggregate values: Neither a system operator nor a complex statistical

learning algorithms can get any result by directly looking at the raw log. Intuitively,

the data needs to be presented as their “aggregated” values, such asaverageor count.

• Cleaning the data: we need to filter out unnecessary attributes from each of the event

log entries: attributes not reported by any sample and attributes with constantvalues.

• Adding new attributes: original attributes in the raw data are often neither enough

nor suitable for analysis using SLT algorithms. Some attributes can be generated
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easily, such as;”is there an error message reported?”. However, other attributes –

such as”is this log entry anomalous?”– might require running a simple algorithm.

• Integrating streams from multiple sources: System logs are generated on separate

machines describing different aspect of the system. For example, our data set contains

performance statistics, request log and problem tickets. It is also often necessary to

integrate data sources unanticipated at design time, since we might find more related

information as our familiarity of the system increases.

• Generating multiple algorithms: Applying several different algorithms to our data

is an important part of our research. However, different types of algorithms require

different experiment setup and many publicly available implementations requiredif-

ferent format of input data. Because of huge amounts of raw log data, accessing it is

a very expensive operation. Thus, we need to produce a separate output file for each

algorithm with one scan of the raw data.

To make this idea concrete, we provide some queries examples we usually need to han-

dle system logs. The simplest queries we want to run are simple projections and selections,

such as “get all logs from a specific machine A”.

There are two kinds of more complicated queries.

• We sometimes need to process the join of two streams or a join from a stream with a

static database table. For example,

– what is the average CPU usage 5 minutes before and after a machine that re-

ported an error?

– select all entries that the source IP addresses is assigned to UC Berkeley.
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The latter requires a join with a static database containing the information on IP

address assignments.

• Using current statistics as filters. For example,

– select the abnormal event. An event is considered abnormal iff it hasreported

an error code and it reports a response time that is greater than the (average

response time +2* stddev) of the previous minutes.

This example requires both intra entry processing and inter entry processing, since

one node is not enough to process everything to calculate the average and standard

deviation. So the processing looks like: the first tier calculates a sum, sum ofthe

squares and count, sending these three to second tier, where the average is calculated

and feedback to the first tier.

2.2 Traditional methods are not suitable for this application

Our experience shows that, traditional methods, such as ad hoc scripts orrelational databases,

are not able to meet all the requirements of system log processing discussed above.

2.2.1 Ad-hoc scripts are not enough

Most of the logs, if ever analyzed, are done by experienced system administrators by writing

scripts in languages such as PERL or Python. Our experience shows that this approach can

be time consuming, resource inefficient, and error-prone.

At the early stages of this project, we did not realize all of the practical problems dis-

cussed in the previous section. In order to get started experimenting SLT algorithms as soon

as possible, we began writing Python scripts to process the data.

Python is a scripting language, which is very efficient (in terms of code length) in pro-

cessing text files. The simplest preprocessing (scan through the data, project certain at-
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tributes of each entry and output them as a text file) can be expressed in about 50 lines

of code, and some of our original results were obtained with the data preprocessed in this

manner.

However, as we were trying out more algorithms, we found ourselves frustrated by the

following problems:

• It takes a huge amount of time to scan through the data.In our case, a single scan

through one minute of log data takes more than 10-12 minutes. Most of the time is

spent on reading the data from disk, uncompressing it, and parsing it.

• It is hard to handle multiple queries with a single script and share intermediate

results Producing data for multiple algorithms in a single script makes the Python

scripts significantly more complex. A couple of aggregation queries take about 150

lines of Python code. It became even more complex when we wanted to save some

of the intermediate results to disk for future use.

• It is hard to add/modify existing queries. Adding one query to the code may require

changing the code for existing queries, because we share the buffer and intermediate

results among the queries.

• Fine grained parallelism is much harder to achieve. We observed that prepro-

cessing is CPU bound (instead of I/O bound) on our cluster, so speedupcan only be

obtained by using multiple processors. Parallel processing of the data is very hard to

implement in fine granularities (such as at single-request level).

In summary, our experience shows that even though ad-hoc scripts areenough for small

data sets, they can be very difficult to maintain.
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2.2.2 Problems with relational databases

We also considered using traditional relational databases for our data, since the preprocess-

ing can be specified as SQL queries, reducing the complexity of preprocessing scripts. We

rejected this approach for the following reasons:

• System logs do not have a fixed schema.System logs usually have no fixed schema.

Efficient relational database operations require a well designed schema; both logical

(tables) and physical (file organization, indexing and so on). Changingschema is as-

sumed rare and expensive. However, the format of system logs change as the system

evolves.

• One-time-queries are not suitable for generating multiple data output. The

queries in a relational database areone-time queries; generating another result usu-

ally requires a separate query. If a scan is required on a terabyte data base, each of

the queries will take a long time to run.

• It is hard to support queries involving temporal properties of data. However, this

is essential in temporal data analysis.

• The cost of using a relational database is high.Importing multi-terabytes of data

into a relational database would have brought to us very high initial cost (both I/O

and CPU) and storage cost.

2.3 Stream model of system log data

Traditional methods of analyzing data does not work well in this case because the data

model they are based on is not suitable for the characteristics of system logdata.

A data modelis a collection of high-level data description constructs that hides the

underlying low-level storage details [33]. It helps people to understandthe data better and
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they can build proper data processing systems to manipulate the data.

Both ad hoc scripts and relational databases treat the data ( system logs in this case), as

persistent entities and runs queries against them over and over again. To answer a question,

a query must be evaluated. This data model is not suitable in the case of system logs, which

has the following characteristics:

• Log data entries arrive on-line. The data rate is determined by the source (the

systems that generates the log), and the temporal rate variation can be large. The log

processor not have any control over the order in which data elements arrive. In large

scale distributed computer systems, logs are generated continuously on each of the

machines with different data rate.

• The system log is an infinitely long sequence of log entries, but the memory on

the log processor is limited.Once a block of log data is processed, it has to be either

discarded or archived, which makes it hard, if not impossible, to find it again. In

fact, old system events are much less valuable for failure detection in our application,

so it is completely fine to discard those entries once the desired statistics have been

obtained. Typically, companies archive raw system log data for a few weeks before

discarding them, but the statistics and data representing interesting system events are

preserved.

• A time stamp is attached to log entry explicitly or implicitly. (i.e., the arrival

time at the stream processing system). Therefore, temporal properties ofthe log data

can be easily obtained. Actually, temporal correlations of system events are very

important in system failure detection [26, 41, 17].

Research in data models suggests that system logs should be modeled as datastreams,

instead of relations [2].
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The idea of text streams are not new. For example,grep in UNIX is a program that

processes stream queries specified as regular expressions. However, lacking of schema

definition in the text stream results in ad-hoc and complex solutions to larger problems

such as processing large system log files.

The benefits of using data stream over ad-hoc scripts and relational databases are the

following:

• Continuous queries. The queries on data streams are usuallycontinuous queries,

in contrast to one-time-queries. One-time-queries run on a snapshot of the data, and

return a single result to the user, while continuous queries are evaluated as data ele-

ments in the stream arrive. Here is an example of a continuous query:

– Which machine has handled 5 times more requests than any other machine over

the last 10 minutes?

This query has to be re-evaluated each time a new system log entry arrives, and

thus produces an output data stream containing the name of machines. The output

stream can be used directly as an indicator of system failures or can be used as a

regular data stream, for example, as an input to an SLT algorithm. Continuousqueries

can either be pre-defined or ad-hoc, and multiple queries can run on a single data

stream concurrently. The ability to perform continuous queries has great advantage

for preparing data for SLT algorithms.

• Off-line SLT algorithms can be used too.As described in Section 3.1, many com-

monly used SLT algorithms are off-line algorithms (e.g., our decision tree algorithm),

which work onchunksof data instead of streams. It is trivial to accumulate prepro-

cessed stream in a buffer to get a data chunk large enough for the off-line algorithm.

It is better than traditional methods in that preprocessing the databeforebuffering
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it allows us to save only the data we want, thus making the buffering much more

efficient.

• Easy-to-change schemas.It is easy to change stream schema, since there is no data

stored in database. This makes it easy to add new streams and modify the output

desired.

2.4 Building a parallel system using TCQ as building block

We wanted to build an infrastructure to support data analysis research ofsystem log data.

A major concern is simplicity. It should be simple enough that the initial configuration

should either be automatically generated or be specified with a high-level description. The

interface between our architecture and the system monitored should allow easy deployment

in production environment. This architecture should be flexible enough to accommodate

many algorithms, both on-line and off-line, without significant re-configuration. It should

also be easy to add or remove data streams and components.

The purpose of the system is also to make the algorithm implementation as easy as

possible, so that SLT researchers can focus on the algorithm rather than on tedious job of

accommodating various input formats of raw data.

We tried to make use of available software from other research projects. The major

component we use is TCQ.

The use of TCQ helped us to easily specify and add/remove continuous queries, which

solved the second and third problem discussed in Section 2.2.1.

Turn-around time is our next concern, or more specifically, the delay before one can

start evaluating an SLT algorithm. Our software architecture is build on TCQ,which allows

user to specify fine-grained parallel execution over a computer cluster toachieve short turn-

around time and scalability. The main features include:
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• All data flows in the system are modelled as data streams, which are easy to under-

stand and manipulate. Design of the system is driven by the flow of data. Theoutput

of one stream processor can be used as input of another. Any streamcan be buffered

and used by an off-line algorithm. Modelling everything as a stream also makes it

easier for people to understand and handle the data, since most people are familiar

with UNIX-style filters. Note that since most complex buffering is done in TCQ in-

stances, most of the filters can be implemented without keeping much state, making

the implementation of filters easier.

• It is easy to buffer a stream of data for a certain period of time to support off-line

algorithms that require chunks of data. Result-saving policy can be specified sepa-

rately for each stream in order to deal with temporal variation of stream datarate,

importance of different streams and storage constraints.

• It is also simple to cache/store any intermediate stream to disk and reuse it later.This

is especially important for research purposes, as we are constrained by the hardware

resources available to us.

• If users are unfamiliar with SQL, they can write filters in other languages such as

Java.
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Chapter 3

Related Work

This research involves multiple ares including statistical learning theory (SLT), data mining,

dependable system design, data warehousing, data stream processingand control theory. In

this chapter, we discuss related work in each of these areas.

3.1 Automated system problem detection

Automated system problem detection involves discovering problems from bothoutside the

system (intrusions) and within the system itself. Both areas require fast processing of sys-

tem logs.

There have been many techniques for intrusion detection. Hofmeyret al. uses short

sequences of system calls executed by processes as discriminator between normal and ab-

normal operations[19]. The normal and abnormal system call sequences are obtained both

by static analysis and runtime logging. Singhet al. proposes an automated approach for

detecting previously unknown worms and viruses [35]. This approach,called “content sit-

ting”, is based on the fast detection of worm behavior that is different from normal traffic.

The algorithm used is specific to this problem. The resulting system can run atnetwork

wire-speed. Instead of targeting at performance, we make the flexibility asour most impor-

tant goal.

Coodbook [43] approach considers that each problem causes manysymptoms events.
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The set of events caused by a problem are treated as a “code” that identifies the problem

and correlation is treated as “decoding” the set of observed symptoms. The codebook is an

optimal subset of events that must be monitored. However, dealing with the “noises” in the

codebook requires complicated algorithms.

More and more sophisticated SLT algorithms are being used for detecting andlocalizing

system failures and software bugs in runtime. Most of them involve time-related informa-

tion in the logs (i.e., a log entry is not processed by itself, but the correlation among a

sequence of logs are used).

The execution paths, which involve a sequence of log entries, have proved to be impor-

tant. Chenet al. uses decision trees for localization of failures on the eBay web site [9].

Each executed request reports attributes such as name, type, machine, version and status

of the request. A decision tree is trained to predict the status attribute and the generated

rules are used to localize what machine, type of request, or version of software is causing

problems.

In Pinpoint [8, 21], Kicimanet al. instrumented the JBoss application server so that a

J2EE application reportsexecution pathsof all requests. The path is a list of J2EE com-

ponents that the particular request used. Pinpoint can detect anomalouspaths and correlate

them to identify the failed components.

Vilalta et al. apply temporal data mining and time series analysis to predict critical

events in computer system such ashigh CPU utilizationor imminent router failure[40, 41,

34].

As more and more data are collected from the system, the correlations among them

become not that trivial to analyze. Cohenet al. uses Tree-Augmented Bayes Nets for

automated performance analysis [10]. They measure 124 types of performance metrics on

a sample server and the induced model is used for prediction of Service Level Objective
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violation.

The system can be instrumented to it writes arbitrary complex information into logs.

Liblit proposes a sampling infrastructure for gathering information about execution of C

programs [22]. He instruments the source code of the program at everybranch, assignment

and function call. The recorded information from runs of the crashed program is corre-

lated to obtain the possible bugs. Getting these data and analyze them in larger computers

systems will become very difficult due to the size of these logs.

3.2 System monitoring and management

There has been a lot of efforts on monitoring systems in both academia and industry. Simple

Network Management Protocol (SNMP) [7] allows user to instrument and monitor aggre-

gated performance of heterogeneous component in a network environment. It provides a

visualized and hierarchical infrastructure to support high volume data collection and sepa-

rating management boundaries.

There are commercial tools that allow user to monitor and do simple analysis on thedata

collected. The major tools include HP OpenView[11], IBM Tivoli[12] or Microsoft Opera-

tions Manager[13]. These tools allow user to navigate through the collectedand stored data,

and run statistical analysis on them. However, they are not designed for preparing data for

statistical learning algorithms.

Traditionally, the collected data are sent to some centralized servers which may waste

bandwidth. Both Astrolabe [39] and PIER [20] manage to collect and analyze the data

on the node where they are generated. Astrolabe makes use of gossip protocol and the

architecture is formed in a hierarchical structure of domains. PIER is implemented on a

DHT [37]. Both allow user to run queries in SQL which are then evaluated in adistributed

way in the system.
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Bodik et al. show that by combining automated detection of system failures with vi-

sualizations of system status information (such as transitions from one pageto another) to

system operators can reduce system problem detection time [3].

System events are not only used to predict system errors but also usedas the infras-

tructure of the network. Siena [6] is a content-based networking infrastructure, that uses a

specific component calledpublish/subscribe event-notification serviceto allow the efficient

dispatch of events among all the components in the system.

3.3 Stream data processing and mining

Our work is also related to the stream processing and data mining work in database com-

munity. Stream processing addressed the issue of dealing with data that arrive in multiple,

continuous, rapid and time-varying data streams [2].

A number of stream processing systems have been proposed to handle continuous

queries over the data stream. TCQ addressed this problem with eddy queryprocessing

framework that adapts the temporal variation of data streams in data rate and statistical

characteristic of the data stream [28]. It also allows to share evaluation path among multi-

ple queries.

Several new algorithms that are suitable for mining data streams are proposed. The

characteristic of most of these algorithms is that they only look at every tuple inthe stream

once [17]. In contrast, for most of the SLT algorithms it is not enough to look at each data

tuple just once. Buffering and caching of old data are supported in our work to solve this

problem.

Stream processing is also used in sensor network data monitoring and analysis [27].

Though the data rate from sensor network can also be high, it is much less complex than

logs generated by a large cluster of computers.
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3.4 Applying control theory to computer systems

Control theory has a long history and has been successfully applied to many areas of en-

gineering. However, the application of control theory to computer systems are quite a

new topic. Hellersteinet al. provides a introduction to the basic techniques as well as an

overview of recent research in the area of applying control theory in computer systems [18].

The general techniques of controller design and analysis in this report follows this book

closely.

Control theory has been successfully applied to many applications in computer systems.

It is usually used for adaptive configuration tuning. The controlled configuration parame-

ter can be resource (e.g. CPU time) allocation [24], buffer size [16, 15], or some other

configurable parameters such as max user allowed or HTTP keep alive [14].

The goal of controller can be regulation or optimization. For example, Liuet al. use

control theory achieve the goal of meeting service level objectives (SLOs) on response

time in a CPU that is shared by multiple processes [24]. The response time can also be

minimized, and thus this is formulated as a optimization problem [14].

Sometimes it is not easy to find the function to optimize, especially when the require-

ments are complex. The function to be minimized can be a cost function, which is an

artificial function that express the relationship between violating the objective and the cost

of control action [16].

Unlike many physical systems, there are few first principle models for software systems,

due to their complexity. However, queueing theory often provides alternative ways to design

a controller if desired metrics are not easy to obtain [16, 14].

28



Chapter 4

A Flexible Architecture for
Processing System Logs

4.1 Key component, Telegraph Continuous Query Processor

General stream processing techniques have been studied in database community in great

depth [1, 17]. A number of general purpose stream processing systems have been built [2,

28]. We use TCQ.

The queries are specified in PostgreSQL SQL, with all data types and functions. One

query is usually specified by a few lines of SQL and all query plans are automatically opti-

mized. This makes adding and modifying queries significantly easier than ad-hoc scripts.

As the characteristics of the data stream change, the query execution changes adaptively.

For example, during a system failure the average delay may suddenly go very high and thus

a selection condition “delay> 10 seconds”, which normally throws away almost all tuples,

suddenly becomes not selective. Without adaptive query execution, thequery evaluation

may become very inefficient for other operators in the query plan.

TCQ supports running multiple queries on a single data stream and generatingmultiple

outputs concurrently. This best fits our case of running different SLTalgorithms requiring

different input data on a single log file. The computation and storage are shared aggres-

sively, so running more queries on the same stream does not increase workload significantly.
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Figure 4.1: A general structure of our parallel system. We used TCQ as our major build-
ing block, and other components are written in Java. We use a load balancerto split the
the stream to two TCQ instances. The first tier of TCQ nodes performs queries that are
independent of time (i.e., queries that do not need a time window). The outputstreams are
reconstruct in time order at the combiner. After the streams are combined, thesecond tier
of TCQ instances performs time dependent queries to generate the final output, which can
be used in monitoring programs or as input to statistical learning algorithms for automatic
problem detection

TCQ is still in its early research stage [36]. The released version is functional, but

not optimized for performance. A single node running TCQ processes data at a maximum

throughput of about 1,800 tuples per second (see Chapter 5 for the experiment in which we

obtained this result).

In order to make the system scale to the data rate a large distributed system could gen-

erate, we used multiple instances of TCQ running in parallel. We are interactingwith the

TCQ research team to investigate higher performance and new features.

4.2 Description of the parallel architecture

Modularity is an important goal of our design. We designed the system so that it consists

of simple building blocks (see Figure 4.1) that communicate with each other usingsockets.

They can be deployed on a single physical node or over multiple nodes in a cluster. These

components were written in Java and comprise about 750 lines of code.

4.2.1 Two-tier parallel architecture

We use a load balancer to split the the stream to two TCQ instances. The first tier of TCQ

nodes performs queries that are independent of time (i.e., queries that donot need a time
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window). The output streams are reconstruct in time order at the combiner.

After the streams are combined, the second tier of TCQ instances performs timedepen-

dent queries to generate the final output, which can be used in monitoring programs or as

input to statistical learning algorithms for automatic problem detection

4.2.2 Building blocks

The system is composed of five building blocks

• Data sourceis the interface for getting the various kinds of data, translating them

into data streams and feed them into the stream processing system. It provides a

small interface to the production system, and can be overridden to use multiple types

of data, such as logs stored on disk, network monitoring readings, or livestream of

system event reports. We used a load simulator in our experiments, the design of

which is discussed in Chapter A.

• Load splitter/balancer is a small component used for load balancing that takes a

single input stream, divides it into multiple streams and redirects them on to multiple

nodes. When the data rate cannot be handled by a single TCQ instance, wecreate

multiple instances and use the load splitter to route the stream to all the instances.

The data processing within the load splitter should be simple and fast, since it is on

the critical path of the system and always sees a large data rate. However, the load

balancing must tolerate the disturbances in the system, so our initial round-robin load

balancer has serious problem when one of the node gets slow down. Thedetail of

this problem and our solution using control theory is discussed in Chapter 6.

• Stream combiner is a component used to combine multiple streams generated by

load splitter to re-create the original order of entries. It works on the original time-

stamp attached to each entry in the stream. If the time-stamp is too coarse grained

31



to order the entries (for example, there are 600 events in a single second and some

of them have causal dependency), we attach a unique sequence number to each entry

when it is pushed into the system.

The stream combiner acts as a barrier in common parallel computation systems. This

requires the load balanced on each component. We discuss this this problemin Chap-

ter 6.

• TCQ instances, as described in Section 4.1, are the key components in the system.

They take in multiple SQL queries, multiple data streams and output the results of

the queries as data streams. The output data streams can be buffered foroff-line

algorithms or written to files for future use. The raw stream can be configured to

be archived. The TCQ instances also output its own performance statisticsas data

streams (which is called introspective query) to centralized controllers.

• Applications are defined as a components taking data streams or a file as input and

output another data stream. The data stream can be interpreted by a GUI component

for human administrators to review or achieved for future reference. Publicly avail-

able algorithms can be plugged into the system with only a minor wrapper for reading

data streams (for example, through JDBC or simply through a UNIX pipe).

Note that the data streams between each component are not necessary in the same for-

mat. They can be implemented as text streams, but we can also use binary streams with

type definition which saves parse time. Changing the format of a stream is simple; it only

requires to change the output format of the sender and input format of the receiver or add a

separate wrapper around the receiver.

All the components can easily be changed, even while the system is running,with an-

other component with the same interface. This is useful. For example, we substitute the
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simple round-robin load balancer for one with feedback control in less than one minute time

of modifying the system configurations. This is also useful if the system operators are not

familiar with SQL and want to replace the TCQ nodes with his/her ad-hoc scripts.

4.2.3 Implementation

We provided a simple way to build the system from components with simple object ori-

ented specifications. All the components are modeled as a class. To build the system, one

only needs to specify the parameters of the components or override some ofthe functional-

ities and the interconnections among them. A program we provide automatically generates

a shell script that starts the components on multiple machines in the cluster. There are

separate scripts for adding and removing streams and queries from each.

There are two steps to add a new SLT algorithm. First, the algorithm ”subscribes” a

stream from the system, which is done by specifying a new query. Second, the user may

need to write a simple wrapper to generate the correct format and/or add a header.

The design and implementation of this architecture made use of many ROC principles

of distributed system design. For example, making system states measurable,separating

permutate states with temporal states etc. All the log data generated by this systemhave a

well-typed stream schema so that the logs can easily be manipulated by other monitoring

and control systems.
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Part II

Improving System Reliability and
Performance with Control Theory
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During the experiments with our parallel architecture, we found some problems with

the reliability of the system. For example, we need to enhance the flow control tohandle

random disturbances. We solved this problem using feedback control theory.

In this part, we mainly discuss three applications of control theory: solving aflow con-

trol problem of TCQ without breaking the black-box abstraction (Chapter5); implementing

a self-adaptive load balancer that achieves optimal response time and throughput even un-

der random disturbances (Chapter 6); implementing a load simulator that provides exactly

the specified amount of tuples to the system being tested (Chapter A in appendix). All

three applications used linear, first-order model for target system, and simple proportional

or proportional-integral controller, with are very simple control theory.

For readers who are not familiar with control theory, we provide detailed introduction to

components of a feedback control system, namely,system identification(i.e., estimate the

parameter for system model), andcontroller designwith the discussion of fixing TCQ flow

control problem. We also discuss the differences and tradeoffs between proportional (P)

controller and proportional-integral (PI) controller, together with the design and assessment

of the workload simulator in Chapter A in appendix.

In Chapter 7, we summarize of experience of applying control theory to computer sys-

tems, Including the difficulties we found and our solution, the advantages ofapplying con-

trol theory to traditional ad-hoc methods, and the limitations of classical control theory.

35



Chapter 5

TCQ Flow control

In order to make the log stream processing system scalable, we want to runTCQ in multiple

tiers, and in parallel within each tier, in order to handle the huge data rate of event logs.

Figure 4.1 shows that we connect multiple TCQ instances. In this part of the report, we

mainly focus on the first tier where the original stream is sampled and sanitized, because it

absorbs most of the load. A load balancer decides which TCQ node an event log entry is

sent to, and a timestamp is attached to every log entry so that time order can be reconstructed

in the combiner.

We begin by describing the flow control problem we found in TCQ, and its impact

on our application. We then discuss how to solve this problem as a control problem and

show the high level design of the control system. We present the technicaldetails of sys-

tem identification and controller design in Section 5.3 and the evaluation of the system in

Section 5.4.

5.1 Flow control issue in TCQ

There are some problems with TCQ flow control that cause data loss in some cases. In

order to understand this issue, we first take a closer look at the internal structure of TCQ.

TCQ is structured as a multi-process system. Every data tuple goes through the follow-

ing sequence of processing:
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Figure 5.1:Behavior of TCQ node without regulating result queue length. The top plot shows the
source data rate, the data rate enters TCQ backend, and the data being dropped per second. The
bottom plot shows the size of free space on result queue. We can see that tuples are dropped even if
overloading is only transient.

1. Wrapper cleaning house, which parses input data and translates theminto the internal

data structures.

2. TCQ backend, where the tuple is processed by multiple relational operators, such as

projection, selection, join and aggregation.

3. The resulting data are sent to a result queue, where they are fetchedby a frontend

process[28, 36].

Unfortunately, when the backend processes data faster than the frontend process, Fig-

ure 5.1 shows the result queue fills up and results are dropped.

Having a full queue is a serious problem in our application. If the tuple can get dropped

randomly after sampling, there is no way to guarantee the statistical distribution of the

output, which is required by most of our automated failure detection applications. What is

worse, it makes load balancing hard, since one can never tell in the beginning whether the

next log entry will cause the TCQ node to be overloaded until the tuple gets processed.

This problem is hard to fix internally, too. An naive idea is to let the process block when

result queue is full, i.e. apply back pressure on the on the earlier stage ofthe processing.

However, since all operators are shared and connected as multiple evaluation trees, blocking
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on one operator will cause unpredictable effects on other queries running in the same node.

There are also two uncertainties that make statically regulating the result queue length

infeasible:

1. Transient disturbances in the system cause throughput changes;

2. The percentage of the input will get to the result queue (a.k.a.selectivityof the query)

is unknown in advance.

Thus, we need some dynamic and self-adaptive way to regulate the result queue length.

5.2 Control problem formulation

We found that this problem can be formed as the followingcontrol problem: We need to

prevent the free space on the result queue from getting to zero, and maximize the utilization

of TCQ node, by controlling the input data rate. We also need to tolerate disturbances such

as a slow node or change of selectivity.

We construct the following model of the system, shown in Figure 5.2. In this case, the

target systemis the TCQ node. Thetransfer functionof the target system is:

y(k + 1) = au(k) + by(k) (5.1)
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In equation 5.1,y is called themeasured output. In this case, it is the free space of result

queue, measured in KB. This can be obtained by reading TCQ logs. Thecontrol input, u,

is the data rate pushed into the TCQ system (measured intuples/sec). Parametersa andb

relate the current output and input to thepredictedoutput of the next time periods.

Parametersa andb are obtained by a process calledsystem identification. We need to

conduct experiments to collect data foru(k) and the correspondingy(k + 1) and estimate

a andb with least squares regression, a well known procedure that can be found in many

textbooks and software packages.

System identification is not always easy in practice. First, we need to choose an oper-

ation point of the target system, i.e., the typical workload we want TCQ to handle. Then

we need to find thelinear operation range, which is the input range in which the output has

an linear relationship with the input. Linear models can not only make controller design

easier but also helps to prevent overfitting the model and thus better tolerateuncertainties

of the system. We also need to provide a carefully designed workload, which causes the

result queue to fill up / empty at different rates, but not too fast for usto observe. The

tricky process of designing a proper workload for system identification isdiscussed next in

Section 5.3.

From the process of system identification is presented in Section 5.3, we measured on

our experiment platform thata = 0.985 andb = −134. Note thata is a positive small

number andb is negative.a is the coefficient ofu(k), the last period input tuple rate, it is

positive, which means that increasing the workload will cause an increasein queue length.

An large negativeb is the coefficient ofy the last period queue length, andb shows how fast

the queue empties. This makes sense intuitively.

Having obtained the model for target system, we consider the controller design. The job

of the controller is, by looking at thecontrol errore and other current and previous states of
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the system, decides the next control inputu. We calculatee by e(k) = r(k) − y(k), where

r is thereference input. In our system,r is the size of free space we want to maintain in the

queue. Setting the desired free space smaller than the max size can ensure that the system

is operating at its max capacity, because the input data rate equals the outputdata rate.

We used Proportional-Integral (PI) controllers, a widely used controller in control the-

ory, because it tolerates the disturbances well. Thecontrol lawfor PI controller is:

u(k) = u(k − 1) + (KP + KI)e(k) − KP e(k − 1) (5.2)

whereKP andKI are controller parameters we need to design. It can be proved that PI-

controller will always drive the steady state error to zero, despite the disturbances.

The parametersKp andKI , are chosen with a technique known aspole placement,

which allows us to predict the stability, time required to converge, and maximum overshoot

before implementing the system. The detailed calculation of pole placement is shown in

Section 5.3.

Figure 5.2 shows the complete feedback control block diagram. Note that in this dia-

gram, the transfer functions and signals are represented in Z-domain, which is similar to

S-Domain in Laplace Transformation for analyzing continuous signals, butused in analyz-

ing discrete signals.

5.3 System Identification and Controller Design

In this section, we provide some technical details on system identification and controller

design. We also provide a short tutorial for readers who are not familiarwith control theory.

However, this section can be skipped without affecting further reading.
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Figure 5.3: Not carefully chosen workload cause the queue length to fill up. If the work load
for system identification is not well chosen, the queue fills up shortly, evenif the operation
point and linear operation range is correctly chosen. Comparing to Figure5.4, this will
result in a bad model for target system.

5.3.1 System Identification

In order to estimate parametersa andb in Eq. 5.1, we first conduct experiment on an off-

the-shelf version of TCQ. We want to measure the change ofy at different data rateu.

We vary the input data rate to make the result queue fill up or empty. The design of this

workload is very tricky, because the queue length is an integral of the input data rate. So if

we keep a high data rate for a relatively long time, the queue fills up (see Figure 5.3). This

will cause a lot of data points to cluster at a corner (see the left of Figure 5.5). In order

to solve this problem, we need to provide a carefully designed workload, which allows the

system to fill up / release the queue at different rates, but not filling up /releasing too fast

for us to observe. Figure 5.4 shows the workload we used.

Running the experiment long enough to getN data points, the data obtained are two

41



0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

Time (sec)

T
up

le
s 

pe
r 

se
c

source data rate
rate to TCQ

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6
x 10

5

Time (sec)

F
re

e 
sp

ac
e 

(K
B

)

free space

Figure 5.4: workload used in system identification. We set the operation point to be 1,850
tuples/sec, which is a little less than the max throughput of TCQ with settings described in
Section 5.4. Then we let the datarate fluctuate around this value in order to make the queue
fill up/empty. In the bottom figure, we can see that the free space in queue changes with the
change of the input data rate, but never goes to zero.

sequences of tuples{ũ(k) ,ỹ(k) }, 1 ≤ k ≤ N + 1. We need to normalize the input and

output around their operating points to do the regression. Letū be the mean input value ,

andȳ be the mean output value. We choose(ū, ȳ) to be the operation point. We calculate

the offset valuesu(k) andy(k) as:

u(k) = ũ(k) − ū (5.3)

y(k) = ỹ(k) − ȳ (5.4)

Equation 5.1 is a model to predicty(k + 1) from y(k) and u(k) . We denote the

predicted valueof y(k + 1) asŷ(k) .

ŷ(k + 1) = ay(k) + bu(k) (5.5)

Our goal is to find thea andb that makes the model “accurate”. We evaluate the accu-
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Figure 5.5: Models Constructed with good and bad workloads. The solid red line is the
model (a linear function), and the blue pionts are the actual data point. The left figure shows
the model constructed using a workload in Figure 5.3 (the bad one). Many data points are
clustered close to a corner. However, with carefully planned workload (Figure 5.4), the
actual data points are spread out, which results in a much better model.

racy of the model using is sum of the squared errors, reducing the problem to minimizing

the following function:

J(a, b) =
N∑

k=1

[y(k + 1) − ŷ(k + 1)]2 =
N∑

k=1

[y(k + 1) − ay(k) − bu(k)]2 (5.6)

whereN + 1 is the total number of observations.

This minimum value can be found either by taking derivatives of Equation 5.6 and

setting to zero, or with standeard optimization routines such asleast squares regression.

For example, this operation is done withmldivide function in Matlab. Figure 5.6 shows

the code segment that does this regression.

In our experiments, 105 data points are collected and the estimateda andb area =

0.985 andb = −134, respectively.

After obtaininga and b, we plot predicted valueŝy(k) in the same figure with the

actual data pointsy(k) (see Figure 5.5 (right) ). We see that the actual data points are in

the whole range and evenly distributed on both sides of the predicted value.This tells us

that this prediction works well. We can also use quantitative parameters, such asvariability

to evaluate the model. The variability,R2 , is defined as:
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function [a,b,y,u]=paramesti(up,yp)
u_mean = mean(up(1:end-1))
y_mean = mean(yp(2:end))
u = up -u_mean;
y = yp - y_mean;

H=[y(1:end-1) u(1:end-1)];
theta=(H\y(2:end))’;
a=theta(1);
b=theta(2);

Figure 5.6: Matlab routine that does the parameter estimation.

R2 = 1 −
var(y − ŷ)

var(y)
(5.7)

Usually we requireR2 to be larger than 0.8. In this case,R2 = 0.98, which is very

good.

5.3.2 Controller Design

Controller design is the mathematical process used to choose the values for the parameters

(KP andKI in this case) of the controller.

We focus on four properties of the controller, stability, accuracy, settlingtime and max-

imum overshoot.

In order to analyze the system and avoid working directly on difference equations like

Equation 5.1, we need a better representation of the transfer function thatallows us to deal

with delay easier. In discrete control theory, we often transform the difference equation

that is represented in time domain into a representation inz-domain. We can considerz

as a time shifting operator. Converting a time domain representation to z-domain is very

mechanical [18]. For example, thez-domainform of Equation 5.1 is:

G(z) =
Y (z)

U(z)
=

b

1 − a
(5.8)
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Also, thez-domainform of the control law for PI controller (Equation 5.2), is:

K(z) =
U(z)

E(z)
= KP +

KIz

z − 1
(5.9)

Z-domain representation of the transfer functions makes it easy to calculatethe com-

bined transfer function of large, complicated systems. We can calculate the transfer function

from reference inputR to measured outputY using the fact that:

FR(z) =
FFF (z)

1 + FLP (z)
(5.10)

WhereFR(z) is the transfer function from inputR to outputY , andFFF is the feed-

forward tranfer function fromR to Y (i.e., the transfer function as if the feedback loop does

not exist), andFLP is the loop transfer function.

Using Equation 5.10, we can easily obtain the transfer functionFR(z) for system in

Figure 5.2:

FR(z) =
((KP + KI)z − KP )G(z)

z − 1 + (KP + KI)z − KP )G(z)
(5.11)

From Equation 5.11, we can analyze the four properties described above. First we

can prove that this system will always get a steady state error of zero, regardless what the

disturbance input is [18]. That is to say, it is accurate at steady state. This is a also the

reason why we use PI controller in this case.

Then we need to choose the parametersKP andKI in order to achieve the following

goal: 1) the system is stable (i.e., for every bounded-sized input, we havea bounded-sized

output, aka, the BIBO property). 2) the settling time (i.e., the time required for thesystem

to reach steady state) does not exceedk∗
s . 3) maximum overshoot does not exceedM∗

P .

All three important properties depends mainly on thepolesof Equation 5.11. Poles

are the values ofz that make the denominator of the transfer function to be zero. The

45



denominator of Equation 5.11 is often called thecharacteristic polynomial. The system is

stable if and only if all its poles lay in the unit circle on the complex plane.

Obviously, there are two poles in Equation 5.11, since the characteristic polynomial is

quadratic. Let the two solutions bere±jθ. Control theory tells us that the settling time

ks < −4/ log r, Thus, an upper bound forr is:

r = e
−4

k∗s (5.12)

Also, we know from control theory analysis that the overshoot is mainly related toθ,

MP ≈ rπ/θ, so we have:

θ = π
log r

log M∗
P

(5.13)

With θ andr obtained, we can construct the characteristic polynomial as:

(z − rejθ)(z − re−jθ) = z2 − 2r cos θz + r2 (5.14)

By equalizing the coefficients for each power ofz in Equation 5.14 to the coefficients

(involving KP andKI ) of Equation 5.11, we can solve forKP andKI .

In this case, we havea = 0.985 and b = −134, from the calculation from system

identification described in last section.FR(z) is therefore:

FR(z) =
b(KP + KI)z − bKP

z2 + [b(KP + KI) − 1 − a]z + a − bKP
(5.15)

=
−134(KP + KI)z + 134KP

z2 + [−134(KP + KI) − 1.985]z + 134.985KP
(5.16)

Assume that we wantk∗
s =5 (five sample times), andM∗

P =0.2. Using Equation 5.12

and Equation 5.13, we obtain:

r = 0.4

θ = 1.7
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Using Equation 5.14, we have the characteristic polynomial of this system to be:

z2 + 0.1031z + 0.160 (5.17)

Equalizing the coefficients of each power ofz, we get

−134(KP + KI) − 1.985 = 0.1031 (5.18)

134.985KP = 0.160 (5.19)

Solve the equations above, we find :

KP = −0.0061 (5.20)

KI = −0.0094 (5.21)

Therefore, the transfer function of the close-loop system in Figure 5.2 is:

FR(z) =
2.088z − 0.8245

z2 + 0.1031z + 0.16
(5.22)

In order to verify that this system is stable, we calculate the magnitude of the largest

pole of Eq. 5.22. This is done by setting the denominator to be zero. We can obtain the

poles:−0.0515 ± 0.3967i. The magnitude of the largest pole is 0.4. Thus the system is

stable.

This process can be automated with Matlab. Figure5.7 shows the Matlab routinethat

does the calculation.

5.4 Assessment

In order to evaluate the effects of the controller, we implemented the controllerand other

components in Figure 4.1. We used unmodified version of TCQ, with default result queue

space set to 512MB.
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function [KP, KI] = PI_calculate(Ks, Mp, a, b)
r = floor(exp(-4/Ks) *10) /10
theta = floor( pi* (log(r))/log(Mp)*10) /10

char_poly = [1 -2*r*cos(theta) r*r]

A = [ b b; -b 0]
Y = [ char_poly(2)+a+1; char_poly(3)-a]

linsolve(A, Y)

KP =ans(1)
KI =ans(2)

Figure 5.7: Matlab routine for calculatingKP andKI for PI controller. It takes in four
parameters. Parametersa, b are parameters for target system, obtained from system identi-
fication. Parametersks andMP are desired settling time and max overshoot. Ifks andMP

are not possible, the routine will output no solution.

The controller is implemented as a input buffer. It reads the TCQ log to figureout the

current queue length every 2 seconds, and uses equation 5.2 to calculate the number of

tuples to send to TCQ in the next 2 second. The excessive load remains in theinput buffer.

We set the reference inputr to be 400MB, which means we always want to keep 400MB

empty space on the result queue. This turns out to be very conservative. In fact, as we can

see in our experiments, this size can be much smaller with our controller in place.

We can see in Figure 5.8 that output buffer set its output data rate at about 2000 tuples

per second and the queue length is stable at around 400MB, as expected.

In Figure 5.8, the free space drops at 100 seconds. This is the result of start up effect

(that is, the TCQ system needs to warm up and is thus slow). The controller stabilized it in

a very short time. From 50sec to 500 sec, the source data rate is actually higher than the

data source can handle, the extra tuples are queued in the input buffer.

In order to test the tolerance of disturbances to the system, we started a CPUintensive

processcpu hogon the TCQ node at time 180 seconds. The controller, almost at the same
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Figure 5.8: TCQ node with result queue length controller, under CPU contention. The top
plot shows the source data rate, the data rate entering the TCQ backend and the drop rate (always
0 in this case). The bottom plot shows the free space on the result queue. At time 180, we started
a CPU intensive process on the TCQ node. The controller automatically lowered the data rate and
keeped the free space on the result queue to be constant.

time whencpu hogis started, reduced the output data rate to around 1,500 tuples per second,

keeping the free space on the result queue unchanged. At time 480 seconds, we killed the

CPU intensive process. We can see that the controller increases the output data rate back to

normal level and the queue length still stays at the desired level.

This property is very useful for at least the following two reasons: 1) itautomatically

finds the operation point for maximum throughput even under unexpecteddisturbances; 2)

it keeps the correctness of the system, in terms of not dropping tuples, allowing time for

diagnosis of system failures, especially when an automated failure detectoris used.

Like all other computer systems, this system has limited linear operation range. Starting

from time 750 seconds, the input data rate is not big enough to keep the result queue size at

desired level; the input data rate is smaller than the output data rate, and the buffer becomes

empty. We used a quick-and-dirty fix to let the controller give up when the data rate is very

low. We believe using an adaptive controller will be better theoretically, but this fix works

fine here.
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Chapter 6

Building the load balancer with
control theory

Regulating input data rate to TCQ helps us avoid tuple dropping and automaticallyfind the

TCQ maximum throughput. However, it is not enough by itself to make the systemscale.

As Figure 4.1 shows, we want to run multiple instances of TCQ in parallel and reconstruct

the time order of input events at the combiner. This creates a load balancing problem.

Like all parallel computation systems that involves synchronization, load balancing is

important to minimize delays. A load balancer based on control theory works well in many

cases [15, 16]. However, in this case, the control output is not directlymeasurable. We

believe that it is a common issue when using black-box building blocks. We show our ways

to address this issue in this section.

6.1 Effect of imblanaces

Load balancing is particularly important in parallel computation system involvingsynchro-

nization, such as a barrier. This is because the fast node, even if got work done faster, needs

to wait for the slow nodes. Specifically, in our system, the combiner is a barrier coordinator.

Then each event log entry is processed in parallel. The combiner reads output from each

TCQ node, and performs a merge sort on timestamp. If one of the input is slower than the

other, the combiner waits for the slow input and queue up others. The response time, in this
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Figure 6.1: The Effect of disturbances with and without control.LEFT: Average tuple
response time using a simple round-robin load balancer. At time 150 seconds, we started
cpu hogprocess on one of the TCQ nodes, the response time quickly shoot up to anunac-
ceptable 15 seconds. At time 300 seconds, we killed thecpu hogprocesses, the response
time go back to normal.RIGHT: Response time when a load balancer with controller is
used. At time 80 seconds, we started thecpu hogprocess. The response time shoots up a
little, due to controller delay and over shoot, but it quickly become stable again. At time
300 seconds, thecpu hog is killed and the response time came back to normal.

case, depend on the slowest node.

Figure 6.1 (left) shows this effect in our experiment with a simple round-robin load

balancer that sends equal amount of tuples to each node. This experiment is done with a

constant data rate of 1000 tuples/seconds, smaller than the throughput ofonly one normal

TCQ node. It runs fine when there are no disturbance. However, when the disturbance

process introduced,cpu hog, started on one of the TCQ node at time 150 seconds, even

though the other node is completely normal, and by itself can handle the total load, the

overall delay still shoots up to an unacceptable 15 seconds. This is because the round-robin

load balancer always evenly divides the load onto both nodes, the combiner has to wait for

the slower one, so the normal node does not get used.

Usually, load balancing system uses input queue length as the indicator of system load.

However, this information cannot always be obtained easily from off-the-shelf systems.

This is common, especially for complex systems, which has many internal queues and not

designed to reveal its internal information. Unfortunately, TCQ is a system with unmeasur-

able queue lengths.
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Figure 6.2: The block diagram of controller in load balancer. Referenceinput R is the
desired difference in response time, which is always 0. The real input data rate is mod-
elled as disturbance input since we have no way to control it. Other two disturbance input
models the random disturbance. Target system is TCQ nodes (with the result queue length
controller described in Chapter 5. The transfer function of target system models response
time change due to input data rate change. The controller is still PI-controller. Error input
is calculated from difference in response time, and control output is the data rate needs to
be sent to TCQ node 1. Whatever data rate left are send to TCQ node 2.

We cope this issue by directly using average response time for each tuple time of the

TCQ nodes. Note that in these experiments, we assume that the each data tuplecause about

the same amount of work to the system, i.e. average is a metric good enough to letus obtain

a model. We treat how to eliminate this limitation as our future work. We get the best end-

to-end response time when the response time at each node is equal, because in this case, we

don’t need to wait for the slower node. We discuss how control theory isused to construct

this load balancer in Section 6.2.

6.2 Control problem formulation

Figure 6.2 shows the control diagram. The controller monitors the differentin response time

for TCQ node 1 and 2, and uses the difference to calculate data input rateat node 1. The

input data rate to node 2 is whatever data rate left in the total input. The systemhas four

inputs. The reference inputR is desired response time, which should be 0 in ideal case.

Note that the total input is modelled as disturbance input, which reflect the fact that this

data rate is determined by the data source, which cannot be controlled. Theremaining two

disturbance input models the random disturbances (e.g. selectivity change, CPU contention
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etc.) as described in previous section.

The target system are two TCQ nodes. The transfer function is obtained by experiments

and least square regression, exactly the same process as described inSection 5.3. In this

case, both nodes have identical transfer functions since we run them onidentical nodes,

but it can be easily extend to a system with heterogeneous nodes. The controller is also PI

controller and parameters are chosen by pole placement.

6.3 System Identification and Controller Design

In this section, we provide technical details on system identification and controller design.

We omitted some calculations that are very similar to those in Section 5.3.

6.3.1 System Identification

The system identification process is exactly the same as what we did in Chapter5. The only

difference is that we used TCQ with the input data rate controller we implementedin the

previous chapter. We found that with the input data rate controller, the system identification

process is actually easier, since we do not need to worry about the queue filling up.

In the experiment, we vary the input data rate and measure the response time of each

tuple, taking average over a period of 2 seconds (the global sample time used in the entire

system). The response time is obtained by comparing the timestamp from the input buffer

into each TCQ node with the time measured when the tuple get finished processing by TCQ.

Since both times are measured on the same node, there is no problem for clockdrifting.

Using the procedure shown in Figure 5.6, we obtain

a = 0.9380 (6.1)

b = 0.0321 (6.2)
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and thus the Z-domain transfer functions are

G(z) =
0.0321

z − 0.9380
(6.3)

as Figure 6.2 shows.

6.3.2 Controller Design

Since in this case, we still need to tolerate disturbances that not controllable,so we only

consider PI controller. A detailed comparison of P controller with PI controller is provided

in Section A.3.

Comparing to the control system of the queue length regulator in Chapter 5, the system

shown in Figure 6.2 is more complicated in that it has two target system blocks. The

difference of the measured outputs of these two target systems are used as feedback to the

controller.

However, we can use very similar method to obtain the close-loop transfer function

FR(z). The only difference is that the algebra is a little more complicated. We briefly

sketch the steps of calculatingFR(z) here.

FR(z) =
Y (z)

R(z)
=

Y1(z) − Y2(z)

R(z)
(6.4)

=
U(z)G1(z) − (L(z) − U(z))G2(z)

R(z)
(6.5)

=
K(z)G1(z) − L(z)G2(z) + K(z)G2(z)

1 + K(z)G1(z) + K(z)G2(z)
(6.6)

From the control law of PI controller in Equation 5.2

K(z) =
(KP + KI)z − KP

z − 1
(6.7)

and the transfer function of the target system

G1(z) = G2(z) =
0.0321

z − 0.9380
(6.8)
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substitute the two equations above into Equation 6.6, we get

FR(z) =

(KP +KI)z−KP

z−1
0.0321

z−0.9380 − L(z) 0.0321
z−0.9380 + (KP +KI)z−KP

z−1
0.0321

z−0.9380

1 + (KP +KI)z−KP

z−1
0.0321

z−0.9380 + (KP +KI)z−KP

z−1
0.0321

z−0.9380

(6.9)

simplifying Eq. 6.9, we obtain the characteristics polynomial

z2 + [2b(KP + KI) − (a + 1)]z − 2KP b + a (6.10)

Then using the same technique of queue placement, by setting settling timek∗
s =2, and

maximum overshootM∗
P =0, we can obtain

KP = 3.129 (6.11)

KI = 3.152 (6.12)

Figure 6.2 shows the result.

6.4 Assessments

We used the same configuration as the experiment described in Section 6.1, only letting the

load balancer to run with the controller. We can see a dramatic change in performance in

Figure 6.1 (right). When we start thecpu hogprocess, there response time shoot up a little

bit and quickly drops to normal level. Taking a closer look at the throughput data, we found

that there is a very small number of log entries sent to the slow node, which matches the

remaining capacity of this node and the response time on each TCQ node for alog entry is

almost equal.
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Chapter 7

Discussion

In this section, we discuss some experiences and hope to reveal some general ideas of

applying control theory to computer systems, the advantages and limitations.

7.1 The advantages of using control theory in computer systems

Correctness can be analyzed.

Software system design usually involves a lot of heuristics, including ad-hoc feedback.

For example, “when the load goes high, reduce the load”, is a very common heuristics

even if no control theory is considered. However, feedback can cause problems if it is not

analyzed and used correctly. This is because there is always a time delay inthe control

input change and the change of output. Failure to deal this delay correctlycan cause system

to become unstable spontaneously. Here we give an example which we experienced during

the development of TCQ input control.

Figure 7.1 illustrated the instability caused by careless implementation of controller.

The result queue length oscillates wildly, even with a small input data rate. Thisinstability

is caused by the delay in measurement of actual throughput. Although the controller design

took the delay between the input rate change and the result queue length change, it did not

consider the one period delay of calculating actual output data rate. This isa very subtle

problem if we only use heuristics. But with a little control theory analysis and simulation,
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Figure 7.1: An unstable control system.A careless implementation that build a feedback loop
for controlling the output rate of data sourceinside the feedback loop of the feedback loop for
queue length as shown in Figure7.2. Notice that even the loadis small, the system become unstable
spontaneously.

Figure 7.2: Block diagram of the unstable control system.A careless implementation that
build a feedback loop for controlling the output rate of datasourceinsidethe feedback loop of the
feedback loop for queue length.
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we can reason about this.

It is often hard to build a first principle model for software systems due to their complex-

ity and all the randomness in the operation environment. Models obtained fromstatistical

characteristics of black-box building blocks are usually not accurate enough to be used in

feed-forward control (i.e. without the feedback) A model with feedback control is more

robust against disturbances, as Chapter 5 and 6 show. It also tolerates, to some extent, the

inaccuracy of the model. For example, we used the same set of controller ontwo computers

with completely different configuration and they still works stably (thought the settling time

becomes a little worse).

Implementation and system management is easier.

Feedback control reduces the complexity of system design. It only takesa few lines of

Java code to implement a controller. Of course, we need to spend more codeto obtain

measurements, such as keeping record of the response time for tuples. Webelieve that this

worth the trouble, because all systems that can be managed should at leastbe observable.

Using control theory implicitly encourages a good practice of software design that will

make the system easier to monitor and understood by the system administrators.

7.2 Limitations of control theory in computer systems

In order to successfully apply control theory in computer systems, the target system must

have certain properties in addition to those discussed above.

A most important one is that the system, when takes in a finite input, must take a

bounded time and space to process it, and produce a output in bounded size. There are

certain cases that this property does not hold. In TCQ, when a data stream is joined with

a large table on disk, the output caused by one input tuple can be potentially unbounded.

We can deal with this problem by arranging data in blocks, and the next block of data is
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produced only when user explicitly requests it (make another input).

Also, we need a system to have linear relationships between input and output. The input

can be controlled, and the output must be measurable. In certain systems, this relationship is

not easy to find. We believe that there are two solutions. First, by using statistical learning

techniques, we can find usable relationships from a large number of data observed [10].

Second, with some simple modification of the target system, such as queueing explicitly,

we can make the system controllable.

Since not all current software systems are designed to be ”control theory friendly”,

sometimes control theory is hard to apply. An important goal of our future research is to

find some good practice to design systems that can be controlled.
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Chapter 8

Conclusion and Future Work

In this project, we designed and implemented a scalable, distributed system forsystem event

log processing based on TelegraphCQ. This log processing system canbe used in system

monitoring and implementing autonomic computing algorithms.

The main features of this system include:

1. The system fully supports the languages and data types provided by TelegraphCQ;

2. It provides an easy way to run TCQ in parallel and the resulting system isscalable;

3. This system is easy to customize and manage;

4. It is self-adaptive to disturbances in the system due to the use of feedback control

theory.

We also showed our experiences of applying feedback control theoryin data stream

processing systems, which can be generalized to other computer system too. We showed

how to fix the problem of TCQ flow control, while considering it as a black-box system.

We believe this is very common in building distributed systems using off-the-shelfsoftware

systems as building blocks. We also implemented a load balancer and load simulatorwith

control theory.

Our experience shows that control theory has the following benefits:
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1. The correctness can be analyzed mathematically;

2. Using control theory, we can usually get a self-adaptive system with an easy and

clean implementation;

3. It encourages good system design, including making states of system easy to monitor.

We consider the following as our future work.

First, making this stream processing system available to system operators and researchers.

We will implement a user interface allowing users to configure and monitor the whole sys-

tem.

Second, we want to further improve the system by allowing it to scale up and down

dynamically with the change of load and dynamic scheduling multiple streams.

Third, we want to investigate the use of adaptive controllers to allow wider operation

range of the target system. Adaptive control has been used in [24] to address the problem

of the narrow linear range by treating one large none linear range as several small linear

ranges. We want to explore possibility of improving operation range of the load balancer

using this technique.

Last but most important, we are investigating how to accommodate more variances in

workload, while still keeps the model and controller safe. We want to be ableto support

both queries running at each node changing and the changing of incomingtuple rate also.
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Appendix A

Controller for load simulator

In this chapter, we will present the load simulator we build to do experiment on this sys-

tem. We will also compare of two types of controllers, Proportional-Integral(PI) controller

discussed in Section 5.2 and Proportional (P) controller (with a pre-compensator).

A.1 The inaccuracy of load simulator

As in many cases, we need to accurately simulate the workload we sent to the target system.

In this experiment, we used a load simulator that reads input data from a file containing the

source data from the disk, puts the data into its own buffer, and sends themout at a specified

data rate. The data rate is specified as a function over time.

However, this naive implementation does not work well in practice. This is because time

required for thread scheduling, disk read delay, and network latency are all unpredictable

and cannot be controlled. Ignoring all those delays (by assuming them to zero) cause the

actual data output rate stays always smaller than the desired value (see Figure A.1).

This may not be a serious problem if the inaccuracy of the workload only has per-

formance impact but not affect correctness. However, this is not the case especially for

generating workload for system identification (as in Section 5.3). In that case, a smaller or

larger workload can cause the queue to fill up, causing inaccuracy in parameter estimation.

We believe this problem is typical to solve with feedback control theory, as itinvolves
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Figure A.1: A naive implementation of load simulator cannot achieve the desiredload.The
actual data rate is always lower than the desired data rate due to random disturbances in the system.
The goal of the controller is to make the actual data rate equals to the desired data rate. Compare
this with Figure A.4 and A.5

quantities that are hard to reason about accurately enough.

A.2 Control problem formulation

As we did in the previous examples, we first need to decide the inputs/outputs of the sys-

tem. We use the desired data rate (specified by the data rate function) as reference input

(R) and all the unknown factors, such as disk/network delay, thread scheduling delay etc.

as disturbance input (D). The measured output is the actual data rate sent to the next tier

(the load balancer in this case). This is obtained by counting the number of tuples we sent

to output and average them over the sample time (2 seconds in this case). The2 seconds

interval is a magic number that is consistently used on all data measurements throughout

the whole system. This sample time is obtained through observing the tradeoff between

accuracy, settling time and smoothness of the observed changes over time. The target sys-

tem is the output thread that takes in a desired number as data rate and outputa data rate

according to the desired number (from the previous time period).

The controller computes the control errors, and calculates control inputU , which is the

“fake” data rate that we want the data rate to generate instead of the lower real one. The
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block diagrams of the feedback control system are shown in Figure A.2 and A.3.

A.3 System Identification and Controller Design

A.3.1 System Identification

The system identification is easier than the case with controlling queue length Section5.3.

This is because the input range is large (in this case, we can use reference input ranging

from 100 tuples per second to 4,000 tuples per second). We see that even within this large

range,u andy keep a linear relationship and thus the predicted value and the experiment

data fit pretty well.

However, as the data rate getting higher, the error between predicted value and exper-

iment get larger; since more time is spend on the network delay and disk I/O. Until at a

certain point, no matter how we increase the desired data rate,y almost does not increase

any more. This kind of the non-linear relationships is common in computer systems, which

is calledsaturation.
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We choose the operation point at 2,140 tuples per second for inputR, and the corre-

sponding operation point for outputY is 1,775 tuples per second.

Using Matlab code in Figure 5.6, we obtain the model for the target system.

y(k + 1) = −0.05998y(k) + 0.8451u(k) (A.1)

Or expressed in z-domain as a transfer function as:

G(z) =
Y (z)

U(z)
=

0.8451

z + 0.5998
(A.2)

A.3.2 Controller Design

In this section, we discuss the use of Proportional (P) controllers and Proportional-Integral

(PI) controllers, both of which are simple but commonly-used controller designs in real

systems.

We implement both P controller and PI controller for load simulator control (Figure A.2

and Figure A.3) and compare the results.

PI controller

Proportional-integral (PI) controllers, as described in Section 5.3, calculate control input

using the current error as well as the last error and the control input for last step.

It can be proved that PI controller always drive the steady state errorto zero. However,

the PI controller it is usually slower than P Controller. We will show the effectof being

slower in Section A.4.

The control law for PI controller is (as Eq. 5.2):

u(k) = u(k − 1) + (Kp + KI)e(k) − Kpe(k − 1) (A.3)
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Following exactly the same procedure as in Section 5.3, we can obtain:

KP = −0.0828 (A.4)

KI = 1.06 (A.5)

P controller

In P Controller the control inputu is simply control errore multiplied by a constantKp. It

is simple and fast to converge to steady state. However, it does not handledisturbances well

in the system.

The advantage of P Controller is that it is relatively simple to design, since its control

input is control error multiplied by a constantKP . The control law is:

u(k) = KP e(k − 1) (A.6)

where

e(k − 1) = r(k − 1) − y(k − 1) (A.7)

P-Controller is also fast in terms of the time required to converge to the steady state.

This is because it does not use the integral term that requires several cycles to converge.

We also usepole placementtechniques to chooseKP . Using Eq. 5.10, we can write

the the close-loop transfer function from inputR to outputY as:

FR(z) =
Y (z)

R(z)
=

KP b

z − a + KP b
(A.8)

There is only one pole of Equation A.8, which is

p = a − KP b (A.9)

To make the system stable, the pole must lay within the unit circle on the complex plane.

That is to say

|a − KP b| < 1 (A.10)
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Or,

a − 1

b
< KP <

1 + a

b
(A.11)

We also want to consider settling timeks . The same as in Section 5.3, we have

ks =
−4

log |a − KP b|
(A.12)

Giving the the maximum settling time we can tolerate,k∗
s , we can solve for the possible

range forKP

−4

log |a − KP b|
< k∗

s (A.13)

When the dominate polep is real andp ≥ 0, there is no overshoot, soMP = 0. When

p is real andp < 0, the maximum overshootMP = |p|. So if we want to place the pole

to the negative half of real axis, we need to consider the maximum overshoot M∗
P we can

tolerate, so we need to the following condition:

MP = |a − KP b| < M∗

P (A.14)

The last thing we want to consider is the accuracy of the controller, i.e., the steady state

erroress . Basic results in control theory tells us

FR(1) =
yss

rss
(A.15)

Thus,

ess = rss[1 − FR(1)] (A.16)

Limiting the maximumess to bee∗ss , we obtain the following condition:

rss[1 − FR(1)] < e∗ss (A.17)

rss[1 −
KP b

1 − a + KP b
] < e∗ss (A.18)

Solving the set of inequalities A.11, A.13, A.14 and A.17 will provide us with the range

thatKP can be in. However, those four inequalities may not be able to hold at the same
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time. Of course, when this happens, we must keep stability (A.11) satisfied byrelaxing

other contraints.

The problem with P control is that it is not accurate, that isess is always greater than

zero. In fact, it can never achieve zero steady state error, since if that happened,e will be

zero, andu will also be zero (which means we don’t get any data output any more).

We make P controllers more accurate by adding a pre-compensator. A pre-compensator

is a transfer functionP (z) that changes the reference input in order to make the system

accurate.

The feedback system with pre-compensatorP (z) has transfer function

F ′

R(z) =
Y (z)

R(z)
=

KP bP (z)

z − a + KP b
(A.19)

Note that P(z) is not in the feedback loop so that P(z) only appears in the nominator, but not

the denominator ofF ′
R(z).

To make the steady state erroress to be zero for anyrss in Eq.A.16, we need to make

1 − F ′
R(1) = 1

F ′

R(1) =
Y (1)

R(1)
=

KP bP (z)

1 − a + KP b
= 0 (A.20)

Solve forP (z), we get

P (z) = 1 +
1 − a

KP b
(A.21)

From the calculation above, we can see that without disturbances, P controller with a

pre-compensator designed above always drives the steady state error ess to zero. How-

ever, it cannot eliminate the uncontrolled disturbance input. We will see this effect in the

assessment part.

With the data we get from system identification,

a = −0.0600 (A.22)

b = 0.845 (A.23)
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We notice thatKP must be a positive number, since a “negative” data rate does make

sense. This leads to an extra constraint onKP

KP > 0 (A.24)

For stability (Eq. A.11), we get

0 < KP < 1.11 (A.25)

We want maximum settling time to be 1 sample times, which is about 2 seconds. We get

from Eq. A.13

KP > 0.85 (A.26)

Let the maximum overshoot to be 0.05. Using Eq. A.14, we get

KP > −0.01 (A.27)

We did not consideress , since we want to use the pre-compensator. From inequality

constraints A.24,A.25,A.26 and A.27, we get

0.85 < KP < 1.1 (A.28)

We chooseKP to be 0.9, and estimate the pre-compensatorP (z) using Equation A.21,

we have

P (z) = 1 +
1 − a

KP b
= 2.39 (A.29)

The results obtained forKP andP (z) are shown in the block diagram (Figure A.2).

A.4 Assessment

In FigureA.4 and A.5, we can see both of the P and PI controllers make the output data rate

much more accurate than the case shown in Figure A.1. We varied the desireddata rate as

a sine wave around the desired operation point, and we can see that the actual output data

rate follows this change very closely.
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Figure A.4: Effect of P controller in work-
load simulator
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Figure A.5: Effect of PI controller in work-
load simulator

In order to make comparison between the P controller and PI controller, we take a

“zoomed in” version of the figures in Figure A.6 and A.7.

The interesting effect we can see is that the actual output for P controlleris always a

little higher than the desired data rate, even with the pre-compensator. This is because there

are always disturbances in the system which we did not capture during system identification

face. These disturbances can be short, such as a background daemon process, or can be

long and slow in effect, such as memory leaking. Also, the “linear” assumptionis only

approximately true. P controller does not help us correct those disturbances, and the error

cannot be zero.

In contrast, PI controller can always get steady state error to zero even though there

are disturbances that are not captured by the model of system. Intuitively, this is mainly

because it accumulates the past errors, and this integral of errors helps to drive the steady

state error to zero, regardless of the unknown disturbances.

We noticed that there are regular small oscillations in the both P and PI cases.It turns

out that those small disturbances come from Java garbage collection. Thegarbage collection

is running frequently in the workload simulator, because the simulator maintains afairly

large buffer pool as Java objects array, and creating and discardingstring objects for every
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Figure A.6: Effect of P controller in work-
load simulator (zoom in). The actual data
rate is a little higher than desired rate even
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Figure A.7: Effect of PI controller in work-
load simulator (zoom in). The actual data
rate oscillates around the desired data rate.
As expected PI controller helps us to getess

to be zero. However, it oscillates more than
P controller when there are lots of small dis-
turbances(such as Java garbage collection)
in the system. This is because of the rela-
tively slower settling timeks .

tuple it reads from disk and output to network.

The default Java garbage collection is not incremental, which will result in huge oscilla-

tions once every 20 seconds. Though the controller corrects this disturbance in a very short

period of time, the oscillation is still too big to tolerate. After we changed Java garbage col-

lection to be an incremental one, the big disturbances become many small ones,as shown

in Figure A.6 and A.7.

As a future topic, we want to eliminate those small disturbances by not letting Java

dynamically allocate buffer spaces. This will also improve the performance of our workload

simulator.
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