Login [Center] Logout Join Us Guidelines  I  中文  I  CQI

Lingxiao Huang
Institute for Interdisciplinary Information Sciences

Address: Huawei TCS lab, Shanghai
Tel: +86 15011592858


Education Background

2008-2012 IIIS, Tsinghua University, Bachelor

2012-2017 IIIS, Tsinghua University, PhD

2017-2019 EPFL, postdoc

2019-2020  Yale University, postdoc

2020-now Huawei TCS Lab

Research Interests

Theoretical computer science: algorithm design, algorithmic machine learning, computational social choice


Coresets for Time Series Clustering. Lingxiao Huang, K. Sudhir, Nisheeth K. Vishnoi, NIPS 2021. https://arxiv.org/abs/2110.15263

Fair Classification with Noisy Protected Attributes: A Framework with Provable Guarantees. L. Elisa Celis, Lingxiao Huang, Vijay Keswani, Nisheeth K. Vishnoi, ICML 2021. https://arxiv.org/abs/2006.04778

Coresets for Regressions with Panel Data. Lingxiao Huang, K. Sudhir, Nisheeth K. Vishnoi, NIPS2020. https://arxiv.org/abs/2011.00981

Coresets for Clustering in Graphs of Bounded Treewidth. Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, Xuan Wu, ICML2020. https://arxiv.org/abs/1907.04733

Coresets for Clustering in Euclidean Spaces: Importance Sampling is Nearly Optimal. Lingxiao Huang, Nisheeth K. Vishnoi, STOC2020. https://arxiv.org/abs/2004.06263
Towards Just, Fair and Interpretable Methods for Judicial Subset Selection. Lingxiao Huang, Julia Wei, L. Elisa Celis, AIES2020. https://dl.acm.org/doi/pdf/10.1145/3375627.3375848
Coresets for Clustering with Fairness Constraints. Lingxiao Huang, Shaofeng Jiang and Nisheeth K. Vishnoi, NIPS2019. https://arxiv.org/abs/1906.08484
Stable and Fair Classification. Lingxiao Huang and Nisheeth K. Vishnoi, ICML2019. https://arxiv.org/abs/1902.07823
Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees. L. Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi, FAT*2019. https://arxiv.org/abs/1806.06055
Epsilon-Coresets for Clustering (with Outliers) in Doubling Metrics. Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and Xuan Wu, FOCS2018. https://arxiv.org/abs/1804.02530
Improved Algorithms for Structured Sparse Recovery. Lingxiao Huang, Yifei Jin, Jian Li, and Haitao Wang.  https://arxiv.org/abs/1701.05674
Multiwinner Voting with Fairness Constraints. L. Elisa Celis, Lingxiao Huang, and Nisheeth K. Vishnoi, IJCAI-ECAI2018. https://arxiv.org/abs/1710.10057
SVM via Saddle Point Optimization: New Bounds and Distributed Algorithms. Lingxiao Huang, Yifei Jin, and Jian Li, SWAT2018. https://arxiv.org/abs/1705.07252 
Capacitated Center Problems with Two-Sided Bounds and Ourliers. Hu Ding, Lingxiao Huang, Lunjia Hu, and Jian Li, WADS2017. https://arxiv.org/abs/1702.07435
Stochastic k-Center and j-Flat-Center Problems. Lingxiao Huang, and Jian Li, SODA2017. https://arxiv.org/abs/1607.04989
Epsilon-Kernel Coresets for Stochastic Points. Lingxiao Huang, Jian Li, Jeff M. Phillips, and Haitao Wang, ESA2016. https://arxiv.org/abs/1411.0194
K-Means Clustering with Distributed Dimensions. Hu Ding, Lingxiao Huang, Jian Li, and Yu Liu, ICML2016. http://jmlr.org/proceedings/papers/v48/ding16.pdf
Canonical Paths for MCMC: from Art to Science. Lingxiao Huang, Pinyan Lu and Chihao Zhang, SODA2016. https://arxiv.org/abs/1510.04099
Approximating the Expected Values for Combinatorial Optimization Problems over Stochastic Points. Lingxiao Huang and Jian Li., ICALP2015. https://arxiv.org/abs/1209.5828

Approximation Algorithms for the Connected Sensor Cover Problem. Lingxiao Huang, Jian Li and Qicai Shi, COCOON2015; Theor. Comput. Sci. 2020. https://arxiv.org/abs/1505.00081

Egalitarian Pairwise Kidney Exchange: Fast Algorithms via Linear Programming and Parametric Flow. Jian Li, Yichang Liu, Lingxiao Huang and Pingzhong Tang, AAMAS2014. http://dl.acm.org/citation.cfm?id=2615804

The Multi-shop Ski Rental Problem. Lingqing Ai, Xian Wu, Lingxiao Huang, Longbo Huang, Pingzhong Tang and Jian Li. SIGMETRICS2014. https://arxiv.org/abs/1404.2671


2014 Zhangmingwei Prize

2015 Tsinghua 12.9 Prize

2016 National Scolarship