Title: Quantum Journal Club:Evidence for quantum annealing with more than one hundred q
Speaker: Fei Wang Tsinghua University
Time: 2014-12-04 15:00-2014-12-04 16:00
Venue: FIT 1-222

Abstract:

Evidence for quantum annealing with more than one hundred qubits
Quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum random number generators and quantum simulators may be built with capabilities exceeding classical computers. A quantum annealer, in particular, solves optimization problems by evolving a known initial configuration at non-zero temperature towards the ground state of a Hamiltonian encoding a given problem. Here, we present results from tests on a 108 qubit D-Wave One device based on superconducting flux qubits. By studying correlations we find that the device performance is inconsistent with classical annealing or that it is governed by classical spin dynamics. In contrast, we find that the device correlates well with simulated quantum annealing. We find further evidence for quantum annealing in the form of small-gap avoided level crossings characterizing the hard problems. To assess the computational power of the device we compare it against optimized classical algorithms.

How “Quantum” is the D-Wave Machine?
Recently there has been intense interest in claims about the performance of the D-Wave machine. In this paper, we outline a simple classical model, and show that it achieves excellent correlation with published input-output behavior of the D-Wave One machine on 108 qubits. While raising questions about \how quantum" the D-Wave machine is, the new model also provides additional algorithmic insights into the nature of the native computational problem solved by the D-Wave machine.



Short Bio: