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lated solutions of polynomial systems with a particular structure is 
presented. This structure is quite specific but arises naturally, for 
example when computing the critical points of a symmetric poly-
nomial energy function. An illustrative example from magnetism is 
presented, along with some timing comparisons.
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1. Introduction

Let f :CNk →C
Nk be a polynomial system of the form

f (z1, z2, . . . , zN) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(z1, z2, . . . , zN)

f2(z1, z2, . . . , zN)
...

f N(z1, z2, . . . , zN)

✩ First and second authors partially supported by NSF grant DMS-1025564; third author partially supported by NSF grant 
DMS-1025544. First author partially supported by the Mathematical Biosciences Institute (MBI). Third author partially supported 
by the Simons Institute for the Theory of Computing and the Institute for Interdisciplinary Information Sciences (IIIS).

E-mail addresses: bates@math.colostate.edu (D.J. Bates), ajnewell@ncsu.edu (A.J. Newell), research@matthewniemerg.com
(M.E. Niemerg).

URLs: http://www.math.colostate.edu/~bates (D.J. Bates), http://www4.ncsu.edu/~ajnewell (A.J. Newell), 
http://www.matthewniemerg.com (M.E. Niemerg).
http://dx.doi.org/10.1016/j.jsc.2016.07.016
0747-7171/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2016.07.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:bates@math.colostate.edu
mailto:ajnewell@ncsu.edu
mailto:research@matthewniemerg.com
http://www.math.colostate.edu/~bates
http://www4.ncsu.edu/~ajnewell
http://www.matthewniemerg.com
http://dx.doi.org/10.1016/j.jsc.2016.07.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2016.07.016&domain=pdf


D.J. Bates et al. / Journal of Symbolic Computation 79 (2017) 508–515 509
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(z1) + h1(z1, z2, . . . , zN)

g2(z2) + h2(z1, z2, . . . , zN)

. . .
...

gN(zN) + hN(z1, z2, . . . , zN),

(1)

where each f i , gi , and hi is a k-tuple of non-constant polynomials and the zi are non-overlapping 
k-tuples of variables for i = 1, . . . , N (N ≥ 2). Notice that for each i, the polynomial system gi depends 
only on variables zi while hi may depend on all of the variables. We also require that any monomial in 
f i depending only on zi appears only in gi , not hi . Finally, we require that the polynomials gi all have 
exactly the same monomial structure. As a very simple example, suppose that the set of equations 
breaks into 1-tuples and, for each i, gi is a single polynomial given by gi(x) = ai x3

i + bi . Then the 
only difference between gi(xi) and another block g j(x j) is in their coefficients and the labels on their 
variables. While this structure seems quite specific, it arises naturally in at least one fairly general 
setting, described below.

The isolated solutions of

f (z1, z2, · · · , zN) = 0

in CNk (including all real solutions isolated over the complex numbers) may be approximated to 
arbitrarily high accuracy with the methods of numerical algebraic geometry, based on homotopy con-
tinuation. In this article, we present a novel method, decoupling, that will provide at least some of 
these solutions (sometimes all) much more efficiently and in a more scalable manner, for problems 
with the special structure described above.

While the structure required in (1) and the description around it may seem restrictive, it is pre-
cisely the structure attained when computing the critical points of a symmetric polynomial energy 
function by solving the system of first partial derivatives. We encountered this structure when work-
ing on a particular set of magnetism problems with multiple dipoles. The terms gi(zi) come from the 
energy that dipole i would have in the absence of the other dipoles, while the terms hi(z1, z2, · · · , zN )

come from interactions between dipoles. However, this structure is by no means restricted to mag-
netism and should arise whenever there is a system with both long-range interactions and internal 
energies.

Since the functions gi all have the same monomial structure up to a permutation on the labeling 
of the variables, we can do an ab initio solve for g∗ , where g∗ has the same monomial structure as 
each gi but with random complex values for its coefficients. Why we do this will be explained more 
precisely in §2.2. Then, we solve each of the gi blocks independently with a parameter homotopy. 
This is the source of the term decoupling – we remove the hi blocks to decouple the gi blocks from 
one another. Since each of the gi blocks is independent, i.e., there is no overlap of variables between 
the self-interaction terms, we can easily combinatorially build the solutions of the entire g block, i.e., 
g1 = g2 = . . . = gN = 0. Finally, we bring in the interaction terms hi that occur between the blocks 
using a simple homotopy. Whether this procedure yields all isolated solutions or only a proper subset 
of them depends on the structure of the system. This is described briefly at the end of §3.

In §2, we provide the necessary background on our computational engine, homotopy continuation, 
particularly in the polynomial system setting. We follow a formal statement of the method in §3
(including some comparisons to other common solving techniques) with an illustration in §4. In §5
we provide some computational results.

2. Homotopy continuation

Numerical continuation is a well-known and widely-used tool for approximating solutions of sys-
tems of equations. The book Allgower and Georg (2003) is a nice reference for these methods, in a 
general setting. If we restrict our attention to polynomial equations over complex space, we have a 
variety of useful guarantees that make feasible the computation of all isolated solutions. The field ded-
icated to the development and implementation of homotopy continuation for polynomial systems is 
commonly referred to as numerical algebraic geometry. General references include Bates et al. (2013b), 
Sommese and Wampler (2005), Li (1997).
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In this section, we introduce only the most basic ideas of homotopy continuation and parameter 
homotopies, leaving most details to the references. The section concludes with a few remarks about 
software available for these computations.

2.1. Basic homotopy continuation for polynomial systems

To find the solutions of a polynomial system f (z) = 0, homotopy continuation begins with a choice 
of start system g(z) that is similar to f (z) but easily solved. We then deform from g(z) to f (z) via a 
homotopy function,

h(z, t) = tg(z) + (1 − t)γ f (z),

as t goes from 1 to 0, and let γ ∈ C be random for technical reasons (Sommese and Wampler, 2005). 
With probability one, for each t ∈ (0, 1], h(z, t) = 0 is a polynomial system having the same number of 
solutions K as h(t, 1) = g(z) = 0. Thus, as t varies, we have K solution paths to follow, which can be 
traced via numerical predictor–corrector methods. Except for a set of measure 0, paths neither cross 
nor diverge, and they will either converge to a solution of f (z) = 0 or diverge to infinity at t = 0. This 
is the essence of homotopy continuation with virtually no details; refer to the references above for 
further details.

There is one finer point needed later in this article, the choice of start system g(z). There is a sim-
ple, canonical choice called the Bézout or total degree start system. For each i, polynomial gi is chosen 
to be of the form zdi

i − 1, where di is the degree of polynomial f i . This start system is guaranteed to 
have 

∏n
i=1 di isolated, nonsingular solutions for a polynomial system with n equations and variables. 

Although this start system is trivially built and solved, it also results in the most solution paths of 
virtually any start system.

Another efficient algorithm recently introduced is regeneration (Hauenstein et al., 2011; Bates et al., 
2014). This equation-by-equation solver does not quite fit the format above. However, the core of the 
method is still homotopy continuation and regeneration is sometimes the most efficient homotopy-
based method. In the example below, we chose to compare our method to both a total degree start 
system and regeneration.

2.2. Parameter homotopies

When needing to solve many polynomial systems which differ from one another only in the co-
efficients, one common choice is the parameter homotopy, first introduced in Morgan and Sommese
(1989) and Li et al. (1989). We begin by choosing a start system with the same monomial structure 
as all of the other polynomial systems in the parameterized family under consideration, with random 
complex coefficients. We solve this system using any standard homotopy method, e.g., a total degree 
homotopy or regeneration. With probability one, this system has the maximum number of solutions 
for any polynomial system with the same monomial structure. Thus, all solutions of all polynomial 
systems in our parameterized family may be solved by moving from the random system to the target 
systems one at a time. The number of paths saved by using parameter homotopies can be striking, 
sometimes dropping the number of paths by several orders of magnitude.

It is essential that the first system has random complex coefficients. While it may be tempting 
to use one of the target polynomial systems, there is no guarantee that any of these will have the 
maximum number of solutions.

2.3. Software

There are several software packages for computations in numerical algebraic geometry. In this pa-
per, we focus on Bertini (Bates et al., 2006). However, PHCpack (Verschelde, 1999) or HOM4PS-2.0 (Lee 
et al., 2008) could have been used equally well. The software package Paramotopy (Bates et al., 2013a)
was used to set up the parameter homotopies. Paramotopy uses Bertini for all path tracking, so all 
timings in this article used the same path tracker.
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3. Algorithm

Given a polynomial system of the form (1) including the various requirements mentioned in the 
discussion of (1) in the first paragraph of Section 1, the process of computing some or all of the 
isolated solutions of f = 0 using decoupling has four steps.

Algorithm 1 Decoupling.

Input: Polynomial system f : CNk → C
Nk , broken into k-tuples gi and hi for i = 1, . . . , N , as in (1). Let z1, . . . , zN be the N

k-tuples of variables.
Output: Some or all isolated solutions of f = 0.

1. Solve g∗(z) = 0, a k × k polynomial system with the same monomial structure as each gi(zi) but random, complex coeffi-
cients. Use any standard homotopy continuation technique for this.
2. For each i = 1, . . . , N , use a parameter homotopy from g∗(z) to find all isolated solutions of gi(zi) = 0 in Ck .
3. Combinatorially concatenate all solutions from all blocks to form N-tuples of solutions (s1, . . . , sN ) for g(z1, z2, . . . , zN ) = 0. 
These are the start solutions S for the final step.
4. Solve the original problem f (z1, z2, . . . , zN ) =0 by way of a parameter homotopy from g(z1, z2, . . . , zN ) to f (z1, z2, . . . , zN ), 
starting from all the solutions in S .

This algorithm clearly terminates as it consists of a finite number of homotopies, each with a finite 
number of paths.

Steps 1, 2, and 4 involve homotopies, but Step 3 involves no computation. This is just a reorgani-
zation of the data collected in the N Step 2 runs.

Complexity analysis. In homotopy continuation, one fundamental measure of complexity is the number 
of paths tracked. In fact, this is only part of the story as the quality of paths may vary from problem 
to problem or algorithm to algorithm. However, the well-conditioning of paths is difficult to quantify, 
so we focus this analysis on the number of paths tracked.

The number of paths to track with a Bézout homotopy is clear and easily computed, just the 
product of the degrees of the polynomials. Regeneration is more complicated to count as polynomial 
order and other factors affect both the number of paths and the total run time.

For decoupling, the number of paths in Steps 1 and 2 is virtually negligible compared to the Bézout 
number for the full system, at least for k > 1. Letting di be the total degree of the block gi , then

(N + 1)

k∏
i=1

di <<

k∏
i=1

dN
i

is certainly true for nontrivial nonlinear systems. Note that the left hand side is an upper bound on 
the number of paths tracked with decoupling. Furthermore, each of these systems consists of only 
k equations and variables, so the numerical linear algebra underlying homotopy continuation will be 
much faster than that for the full system. Step 3 is computationally trivial.

Thus, the main complexity consideration for decoupling is the number of paths in Step 4, which is 
difficult to predict a priori. If the number of solutions of each block gi(zi) = 0 is the Bézout number 
of that block, then decoupling is inefficient as Step 4 will involve tracking as many paths as a Bézout 
homotopy for the full system. However, if the number of solutions of each block gi(zi) = 0 is signif-
icantly less than the Bézout number for the block, we expect a savings in the total run time for the 
problem.

Of course, it should be noted that Bézout homotopies and regeneration will necessarily find all
isolated solutions of the system (at least if the perturbed version of regeneration (Bates et al., 2014)
is used). With decoupling, this is not always the case; see Remark 3.1.

Finally, it should be noted that polyhedral methods are particularly well-suited for highly struc-
tured, sparse polynomial systems. This comes into play in two ways. First, one could use such methods 
for the initial solve of the first block, g∗(z) = 0, particularly if the block has more than a few vari-
ables. Second, one could consider simply using polyhedral methods for the run in place of decoupling. 
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This could be a better choice for some problems, though it would be difficult at this point to provide 
criteria to decide which algorithm would be the better choice for any given problem.

Remark 3.1. The solutions coming from Steps 1–3 of the decoupling algorithm will yield all solu-
tions of g = 0, with probability one. One may wonder whether all solutions of the original system 
f = 0 will be found when homotoping g into f = g + h. The article Canny and Rojas (1991) provides 
some insight into this question. Indeed, under certain conditions described in that article, one may 
conclude that the sum of two polynomial systems has the same number of solutions as one of the 
summands (with probability one). However, those conditions are quite technical and would require 
a significant amount of development already available in that paper. Thus, we invite the reader to 
consider the article Canny and Rojas (1991) for technical statements assuring that all solutions are 
found via decoupling.

4. Illustrative example from magnetism

We illustrate the algorithm (described formally in §3) with an application in magnetism: a micro-
magnetic model for interacting single-domain ferromagnets as used in Newell (2009). A single-domain 
magnet has a moment of fixed magnitude that can only rotate. The moment of each magnet is 
represented by a vector μi = V Msmi , where V is the volume of the magnet, Ms the saturation mag-
netization (a property of the material), and mi a unit vector. The magnetic energy of a system of 
magnets is

E = Eh + Ed + Ea

where Eh is the energy of magnetostatic coupling with the external field; Ed is the magnetostatic 
self-energy (or “demagnetizing energy”) of the system; and Ea is the internal (anisotropy) energy.

If N magnets are in an external magnetic field H (measured in amperes per meter, or A m−1), the 
energy of coupling with the field is

Eh = −μ0MsH ·
N∑

i=1

V imi,

where μ0 is the permeability of free space (4π × 10−7 H m−1).
The demagnetizing energy is

Ed = μ0

2
M2

s

N∑
i=1, j=1, j �=i

V imiNi jm j,

where Ni j , called the demagnetizing tensor, depends only on the geometry of the system (the sizes, 
shapes, orientations and positions of the magnets).

The internal energy of each magnet is the sum of magnetostatic, magnetocrystalline, and mag-
netoelastic factors. To lowest order, the energy of each magnet can be approximated by a quadratic 
expansion in the direction cosines:

Ea =
N∑

i=1

V imiKimi,

where each matrix Ki depends on the shape of the magnet and the physical properties of the material.
The equilibrium states for this system satisfy ∂ E/∂mi = 0 and the constraints |mi | = 1 for all i. 

In translating these equations into a polynomial system, we assume that all the magnets and their 
moments are on the same plane, though this model naturally extends to 3 dimensions. Since the 
spatial coordinates do not appear directly, we can also represent unit vector components mx,i and 
mz,i as xi and zi . The constraints are enforced using Lagrange multipliers wi . For simplicity we also 
absorb the factors V i , μ0, and Ms into the coefficients. For N magnets, there are 3N equations and 
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3N variables (wi , xi , and zi for each i). The polynomial expressions for magnet i derived from ∂ E/∂mi
are:

f i =

⎧⎪⎨
⎪⎩

(
Kxx,i − wi

)
xi + Kxz,i zi − Hx + ∑N

j=1, j �=i

(
Nxx,i j x j + Nxz,i j z j

)
Kzx,i xi + (

Kzz,i − wi
)

zi − Hz + ∑N
j=1, j �=i

(
Nzx,i j x j + Nzz,i j z j

)
x2

i + z2
i − 1.

In these polynomials, the variables are in 3-tuples λi ≡ (xi, zi, wi). The isolated-magnet terms are

gi(xi, zi, wi) =
⎧⎨
⎩

(
Kxx,i − wi

)
xi + Kxz,i zi − Hx

Kzx,i xi + (
Kzz,i − wi

)
zi − Hz

x2
i + z2

i − 1
,

while the interaction terms are

hi(λ1, . . . , λN) =
⎧⎨
⎩

∑N
j=1, j �=i

(
Nxx,i j x j + Nxz,i j z j

)
∑N

j=1, j �=i

(
Nzx,i j x j + Nzz,i j z j

)
0

.

(The third polynomial is identically zero, i.e. there is no interaction term for the Lagrange multiplier 
constraint.)

We first solve g∗ = 0, a system with the same monomial support as each of the gi but with all 
coefficients set to random complex numbers. This is Step 1 of the Algorithm. Any standard homotopy 
continuation method could be used to solve this nonlinear system in 3 equations and 3 unknowns. 
Denote the set of isolated solutions of g∗ = 0 by S∗ .

For each i = 1, . . . , N , solve gi = 0 via parameter homotopy from g∗ and solutions S∗ . This is 
Step 2. This produces solution sets Si . Notice that there will need to be a trivial relabeling of variables 
to carry out these parameter homotopies.

The set of all solutions of the system g1 = . . . = gN = 0 is then simply the product S = S1 ×
S2 × · · · × SN (Step 3). The original system can then be solved via Step 4, with a homotopy from 
g1 = . . . = gN = 0, starting with the points in S .

In this example, half of the paths diverge to infinity in each Step 2 run. When combinatorially 
building the solutions, we attain a start system with the same number of solutions as the original 
system. None of the paths tracked from these starting points diverge to infinity, and we ultimately 
capture all solutions of the original system.

5. Computational results

There is a variation on the decoupling algorithm not described above. Rather than moving directly 
to each gi(zi) and to the final polynomial system, one could instead solve a randomized system 
(meaning random complex numbers chosen for the coefficients) in place of each gi(zi), then move 
from this randomized system to the final system. This generality is perhaps favorable in capturing 
more solutions, but analyzing this variant carefully goes beyond the scope of this paper.

The illustrative example of the previous section was run for varying N on a single 2.67 GHz Xeon 
processor running the CentOS operating system. Table 1 provides the average of 10 runs per entry 
for N = 2, . . . , 8, using a Bézout homotopy, regeneration, the basic decoupling algorithm, and the 
previously described variant. Timings were stopped at 24 hours. Decoupling clearly saves computation 
time for this example.

6. Conclusions

In this article, we have presented a method for splitting a large polynomial system of a partic-
ular structure into numerous smaller problems in order to expedite the numerical solution of the 
polynomial system. We have illustrated the effectiveness of the method with an example from mag-
netism. The structure required for this article is specific but does arise naturally in at least one type 
of problem.
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Table 1
Average run time of 10 runs for three ways of computing the 
solutions of the illustrative example – Bézout, regeneration, 
and decoupling – for various values of N . Timings in seconds 
except where stated otherwise.

N Bézout Regeneration Decoupling

2 0.5 0.6 0.4
3 11.0 2.4 0.8
4 268.6 13.2 1.6
5 3757.2 89.0 3.7
6 59131.5 519.9 18.9
7 > 24 hours 3470.7 105.2
8 > 24 hours 18109.6 903.6

It would be interesting to consider variations on this method. For example, for a system consisting 
of n blocks of size k (n even), one could instead break the system into n

2 blocks of size 2k (or oth-
erwise), perhaps yielding more efficiency. The value of this sort of variation on the method is likely 
problem-dependent.

The chief benefit of decoupling is that a large problem is replaced by many smaller problems and 
that these smaller problems can be solved very efficiently. We did not parallelize this method, but this 
latter round of solving many small problems is trivially parallelizable. Similarly, the final run could 
(and should) be parallelized, making this method even more efficient.

Decoupling in the specific setting of our example may have an interesting physical interpretation. 
The g blocks provide a system with self-interactions but no interactions between different magnets. 
The h terms that are introduced in Step 4 of the algorithm bring in interactions between magnets, 
thus making the solutions more physically meaningful.

Finally, it should be noted that a somewhat different version of this method was useful in the past. 
Hao et al. (2013) aimed to solve a system of partial differential equations related to tumor growth. 
They found it useful to first solve the system with an extra viscosity term, then let the coefficient of 
that term go to zero. This allowed them to solve polynomial systems that they were not otherwise 
able to solve.
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