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Abstract

Based on a ‘shortcut-to-adiabaticity’ (STA) scheme, we theoretically design and experimentally realize
aset of high-fidelity single-qubit quantum gates in a superconducting Xmon qubit system. Through a
precise microwave control, the qubit is driven to follow a fast ‘adiabatic’ trajectory with the assistance
of a counter-diabatic field and the correction of derivative removal by adiabatic gates. The
experimental measurements of quantum process tomography and interleaved randomized bench-
marking show that the process fidelities of our STA quantum gates are higher than 94.9% and the gate
fidelities are higher than 99.8%, very close to the state-of-art gate fidelity 0£ 99.9%. An alternate of
high-fidelity quantum gates is successfully achieved under the STA protocol.

1. Introduction

Quantum computation and quantum information processing are programmed through sequential operations
of various quantum gates, which are built bottom up from simple but fundamental single- and two-qubit gates
[1,2]. A gate error has to be controlled below a fault-tolerant threshold in scale-up quantum computation. Since
this error threshold is usually small (0.1%—1%), the experimental realization of high-fidelity quantum gates is an
essential task in various artificial quantum systems such as nuclear magnetic resonance [3, 4], ion traps [5] and
superconducting circuits [6].

A unitary transformation occurs when a single- or multi-qubit system is operated by a quantum gate. For a
single-qubit, such a unitary transformation can be viewed as a rotation of a qubit vector, which can be mapped
onto a spin, on the Bloch sphere. Subject to an external magnetic field along a fixed direction, the rotation angle
of the spin is controlled by adjusting the amplitude of the magnetic field over time. By mapping a driving pulse,
e.g., Gaussian-shaped, onto a magnetic field, we can build a single-qubit quantum gate based on the above
scheme. This standard approach has been applied in almost all the artificial quantum devices. In
superconducting qubit systems, the highest single-qubit fidelity is achieved at the level of >99.9% by optimizing
the pulse amplitude and frequency [6].

An alternative way of constructing quantum gates is to change the direction of the magnetic field over time.
In a special moving reference frame, the motion of the spin can be highly simplified. In a quantum adiabatic
operation, the qubit is kept at its instantaneous eigenstates. With respect to the instantaneous eigenbasis, the
qubit vector is rotated along a fixed latitude on a moving Bloch sphere by accumulating dynamic and geometric
phases[7, 8]. At the end of such an quantum adiabatic operation, an arbitrary quantum gate is realized by the
combined effect of a simple spin rotation in the moving frame and the rotation of the reference frame.

However, an ideal adiabatic operation can only be performed with an infinitely slow speed. A practically
adiabatic implementation inevitably includes errors due to non-adiabatic transition and quantum dissipation.
The associated long operation time leads to a technical difficulty in scale-up quantum computation. The
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shortcut-to-adiabaticity (STA) procedure has been proposed to solve these problems by introducing a counter-
diabatic field in addition to the reference fast ‘adiabatic’ field [9-17]. The qubit system is driven to follow the
reference ‘adiabatic’ trajectory by suppressing the non-adiabatic transitions. As the quantum operation is
accelerated ten to hundred times, the decoherence induced error can be significantly reduced. The STA protocol
has been well implemented experimentally soon after it was proposed theoretically [18—22]. In our recent
experiments with a superconducting phase qubit, we successfully measured the Berry phase [23] and achieved a
high-fidelity state transfer under the STA protocol [24]. The state transfer technique was further applied to
simulate a quantum topological phase transition [24].

In this paper, we extend our previous work of quantum state transfer for the purpose of single-qubit STA
quantum gates. Our theoretical design shares the same principle as in a recent proposal in the system of NV
centers [25]. The detailed driving pulse is different but preserves the utilization of the phase accumulation in the
fast ‘adiabatic’ evolution. The STA gate operations are also discussed in recent theoretical proposals [26, 27].
With the improvement from a superconducting phase to Xmon qubit, the high-fidelity STA quantum gate is
successfully achieved, as demonstrated by our quantum process tomography (QPT) and interleaved randomized
benchmarking measurements. For our examples of the rotations about X-, Y- and Z-axes and the Hadamard
gate, the gate fidelity is consistently higher than 99.8%, which promises an alternative choice of quantum gates
for a practical application.

2. Theory

In this section, we demonstrate our theoretical design of a general single-qubit gate performed under the
‘shortcut-to-adiabaticity’ (STA) protocol.

2.1. Adiabatic quantum gate
A single-qubit of {|0), |1)} can be mapped onto a spin-1/2 particle {|1), |])} driven by an external field [1]. In
the rotating frame, the time-dependent Hamiltonian is written as

Hy(t) = hBo(1) - /2, ()

where By(t) = Q(t)(sinf (¢) cosp (t), sinf (¢t)sing (¢), cosf(t)) is the vector of an external field and

o = (ox, 0y, 0;)is the vector of Pauli matrices. The amplitude €2(%), the polar angle 6(¢) and the azimuthal angle
¢(t) are modulated by microwave pulse sequences in our experiment [23, 24]. At a given time ¢, the instantaneous
eigenstates, { |1, (¢)), [12_(¢))}, are obtained by a rotation of the reference states, {|1), || )}, where the rotation
matrix to change the frame is given by

cos@ sin%e*ié(”

S(t) = 2

_Sinweid)(ﬂ COSM
2 2

For an extremely slow variation of the external field, the spin-1/2 particle remains at the same
instantaneous eigenstate, |1, ,_(t)), if it is prepared at [t ,_(0)) initially. During this adiabatic propagation,
only the dynamic and geometric phases are accumulated. With respect to the instantaneous eigenbasis, a
unitary transformation is thus defined as U, (t) = [¢0.(£)) Ung.o s (1) (101 (0)| + |¢(#)) Upg.— _(#) (2b_(0) | with

. . . . t
Und;4+ (1) = expligg(t) + iy, (£)]and Uyg,— (£) = exp[—ig(t) + i (¢)]. Here @ (t) = —(1/2) fo Q(r)dr

- . . . .
and v, (t) =i fo (4(7)|0-|Y(7)) dT are the dynamic and geometric phases, respectively. In a matrix
representation, this adiabatic unitary transformation is explicitly written as

(eia+in0 0
Usa(t) —( N 3)
In our experiment, we consider a special form of the amplitude evolution,
Q) = Asin(zﬂ), @
T
where the parameter T 'is the time of our quantum operation. The accumulated dynamic phases vanish, i.e.,
wa(T) = 0. After a global phase shift, the unitary transformation is simplified to
1 0
Usa(T) = ( . emvm)’ ®)
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with Ay (T) = ~,(T) — ~v.(T).1f theinitial preparation and final measurement are performed in the reference
basis of {|1), |])}, the combined unitary transformation is given by

U = ST(T) U (T)S(0), (6)

which leads to an arbitrary single-qubit quantum gate [1]. This adiabatic construction can be straightforwardly
extended to multi-qubit gates, which will be studied in the future.

2.2.STA protocol

In practice, the remaining non-adiabatic transition introduces an inevitable error for an adiabatic quantum gate.
In the STA protocol, an additional counter-diabatic Hamiltonian is applied to cancel this non-adiabatic error
[9-17]. A general time-dependent Hamiltonian H(f) can be expanded in its instantaneous eigenbasis, giving
Ho(t) = X, €01, (1)) (1, ()| with €,,(¢) the nth eigenenergy and |1, (¢)) the nth eigenstate. Accordingly, the
counter-diabatic Hamiltonian H4(¢) is formally written as [10]

Hea(t) = 10 J[10:a (D) ($n (D] — (u(0)10:30(0)) [¥0n(0)) (YD1, )

which suppresses the non-adiabatic transition for each eigenstate ¢, (¢)). The quantum system driven
H(t) = Hy(t) + Heq(t) rigorously evolves along the instantaneous eigenstates of Hy(f). The time propagator
becomes exactly diagonal in the reference instantaneous eigenbasis, i.e.,

Usta(t) = D [1n () Ustaun (£) (¢ (0)]. ®)

Each diagonal element of the time propagator is written as Usta;u (1) = exp{ilgy,, (£) + 7, (£)]} where
Ghen (t) and ~,,(t) are accumulated dynamic and geometric phases of the nth reference adiabatic state. The
adiabatic quantum gate introduced in equation (6) is thus changed to a STA quantum gate,
U = SH(T) Usta(T)S(0), )

by replacing U,4(T) with Usta(T) and excluding the global phase. As the quantum operation time T'is decreased, the
error induced by relaxation and decoherence can be significantly reduced while the non-adiabatic error is fully
suppressed in the ideal scenario. The STA protocol provides an alternative design of high-fidelity quantum gates [25].

For the spin-1/2 particle under the Hamiltonian in equation (1), the counter-diabatic Hamiltonian follows a
similar form,

Hq(t) = hBa(t) - 0/2. (10)
Through a tedious but straightforward derivation from equation (7), the three elements of the counter-
diabatic field B4 (t) are explicitly given by
Begix (1) = —0O(t)sing (t) — ¢ (£)sinf(¢) cosh (1) cose (t)
Begy (1) = O(t)cosg(t) — ¢ (¢)sind () cosd (t)sing () (11)
Beg:z (1) = ¢ ()sin® 0(1).
Equation (11) can be further organized into a cross product formas [10, 23, 24]
o
|Bo () *

which is always orthogonal to the reference field By (¢). By applying the external field, B(t) = By (t) + B (?),
to a single-qubit, the STA gates will be testified experimentally in our Xmon qubit system.

B(t) = By(t) x By(1), 12)

2.3. DRAG correction

In many artificial systems, the influence of higher excited states cannot be fully ignored so that the two-level
qubit has to be re-modeled as a multi-level anharmonic oscillator [ 1, 32]. For example, the Hamiltonian of a
three-level anharmonic oscillator in the rotating frame is written as [24]

H(@t) = gB(t) -S4 HA2) (2], (13)
where the operator vector § is given by
Se =3 N H L(n+ 1) (n] + |n) (n + 1))
Sy =30 nt L(iln + 1) (n] — iln) (n + 1)) (14)
S. =30 (1= 2m)n)(n]
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and A, is an anharmonic parameter. In the STA protocol, the external field is given by B(t) = By(t) + B4 (2).
Atechnical treatment is to apply the derivative removal by adiabatic gates (DRAG) method, which decouples the
interaction between the lowest two levels (qubit) and higher excited states [24, 28—31]. With the increment of
another field, B4 (t) = (Bg;x(t), Ba;y (t), Ba;; (1)), the total external field is changed to By (t) = B(t) + Bq4(t)
and the total Hamiltonian in equation (13) is modified tobe H'(t) = (h/2)Bo (t) - S + hA,[2) (2|.In
addition, we introduce the DRAG frame (D-frame), in which the total Hamiltonian is transformed into

Hp(t) = DY )H' (1) D(t) + iD () D(r) (15)

where D(t) is a unitary operator. The density matrix in the D-frame is given by p, (1) = D(t) p(t) DT (t). With
adelicate design of By, (¢) and D(t), the transformed Hamiltonian Hp(¢) is factorized into

Hp(t) = [6(1‘) + gB(t) : U] ® £2(1)12) (2, (16)

where () and £,(¢) are two shifted energies [24, 29]. The qubit subspace of {|0), |1)} is decoupled with the
second excited state |2). To avoid an artifact of the D-frame, we would expect an requirement of

Dt=0)=1 and Dt=T) =1, (17)

so that the density matrices at the initial and final moments of the quantum operation are unaffected, i.e.,
pp(0) = p(0)and p(T) = p(T).Inthe DRAG method, By (¢) and D(t) are evaluated by a perturbation
approach with the assumption of a large anharmoncity, i.e., |A;| > |B(¢)|. On the first order correction, the
DRAG field By(¢) is explicitly given by [24, 29]

Buu (1) = iwm ~ B.()B:(0)]
2

By, (1) = —iw‘x(t) + B.(1B,(1)] (18)
2

Bd;z (t) =0,

under a presumption of By, (#) = 0. In our experiment, the Xmon qubit is driven by the total external field,
Byt (t) = Bo(t) + Bg(t) + Bq(t), under the STA protocol and with the DRAG correction.

3. Experimental setup

A cross-shaped transmon (or called Xmon) qubit [6, 32, 33] is applied in this experiment. The Xmon qubit
sample is fabricated on a silicon substrate. After initially cleaned in buffered hydrofluoric acid to remove the
native oxide, the substrate is immediately loaded into a high vacuum electron beam evaporator, followed by a
deposition of an aluminum (Al) film. The superconducting resonators and control lines are patterned using
photolithography in a wafer stepper and etched with BCl;/Cl, in an inductively coupled plasma dry etcher. The
superconducting Josephson junctions are patterned with an electron beam lithography and developed with Al
double-angle evaporation. An additional ‘bandage’ DC electrical contact is fabricated to reduce the capacitive
loss [34].

Figure 1(a) displays an optical micrograph of a single Xmon qubit. Four arms of the cross are connected to
different elements for separate functions of coupling, control and readout. At the bottom of the cross, a flux
current (Z control) line biases the qubit at a resonance frequency of wy /27 = 4.85 GHz, which is the energy
difference between the ground (|0)) and excited (/1)) states of the qubit. The qubit nonlinearity is
A,/2m = —253 MHz. Another XY control line provides a microwave drive signal to the qubit to manipulate the
qubit state [6, 32, 33]. The top arm of the cross is coupled to a readout resonator whose bare frequency is
w,/2m = 6.56 GHz. By sending a microwave signal through the readout line, we can detect the qubit state
information from the dispersive interaction between the qubit and readout resonator. The readout signal goes
through a series of circulators, being reflected from a Josephson parametric amplifier [35, 36] and further
amplified by a high electron mobility transistor for a high-fidelity measurement. By heralding the ground state
[37], the readout fidelity for the ground state |0) and excited state | 1) are 99.8% and 95.1%, respectively. With the
qubit biased at a sweet point here, the coherence is characterized by a relaxation time, T; = 20 us, and a pure
decoherence time, T = 38 us (see figures 1(b) and (c)). Our current sample is designed as a linear array with six
qubits. All the qubits have comparable values of T; and T;". The qubit chip is mounted in a sample box and
cooled in a dilution refrigerator whose base temperature is ~10 mK.

4, Results

In this section, we present our experimental realization of various single-qubit STA quantum gates.

4
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Figure 1. (a) An optical micrograph of a single cross-shaped Xmon qubit. (b) Energy decay of the qubit, giving a relaxation time of
T, = 20 ps. (c) Ramsey fringes of the qubit, giving a pure decoherence time of T = 38 us.

4.1. X and X/, rotations
The unitary matrices representing the 7 and 7/2 rotations about the X-axis (X, and X/, rotations) are explicitly
writtenas [1]

0 —i V21 i
To design the X rotation, the reference ‘adiabatic’ field By (t) is specified as
BO;x (t) =0
By, (1) = —Q(t)sin O(¢) (20)

Bo,. (1) = Q(t)cos 0(¢).

The drive amplitude, polar and azimuthal angles are Q2(¢) = A sin(2wt/T), 0(¢t) = (n/2)[1 — cos(wt/T)],
and ¢(t) = —m/2, respectively. In our experiment, we set the pulse length (operation time) at T = 30 ns and the
maximum drive amplitude at A/27w = 20 MHz. The same two parameters will be used in other STA gates. The
pulse length is comparable to the typical value of a truncated Gaussian pulse. In principle, these two parameters
can be modified independently under the STA protocol. The counter-diabatic field B.4(¢) and the DRAG field
B4 (t)are calculated using equations (11) and (18). Due to the limitation of space, we will not present the
analytical forms of B.4(t) and B4 (¢). In figures 2(a) and (b), we plot the x-, y- and z-components of the reference
field By(t) and the total field By (t) = Bo(t) + B4 (t) + Bq4(t). As a comparison, the major difference
between the two fields appears in their x-components. With the condition of |A| < |4,;|, the DRAG correction
is a minor effect. Notice that if the amplitude of By (¢) is gradually decreased to zero, the dominant counter-
diabatic field B q4(t) recovers the standard X, -pulse along the x-direction. Thus, other gate schemes can in
principle be mapped onto their counterparts in the STA protocol. For an initial preparation at the spin-up state
(1) = 10)), the fast ‘adiabatic’ trajectory of the qubit is shown in figure 2(c). In an ideal scenario, the qubit vector
evolves from the north to south pole along 270°-longitude of the Bloch sphere, and the final qubit state is the
spin-down state (||) = |1)). Figure 2(c) shows that this trajectory can be excellently generated under the STA
control field B, (t) [24].

With the consideration of the errors in state preparation, STA operation and readout, the output state is
obtained through a map of the input state [1], i.e.,

4
e:p—e(p) =) EipE], 1)
i=1

with p the initial density matrix of the qubit. Each linear operators E;_, ... , can be expanded over a fixed set of
operators, {E,, = I, oy, 0y, 0,}, giving E; = 3_ e;, E,,. The output density matrix is rewritten as

5
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Figure 2. (a) The reference ‘adiabatic’ and (b) total (with the counter-diabatic and DRAG corrections) fields for a w rotation about the
X-axis. The maximum drive amplitude is A/2m = 20 MHz and the operation timeis T = 30 ns. (c) The fast ‘adiabatic’ trajectory of

the qubit vector for the initial state at |0). The ideal result is shown in a red arrowed curve on the Bloch sphere while the experimental
result after the correction of the measurement error is shown in blue dots.

e(p) =Y XpmEmpE, (22)
with x,,, = 3_; eime;r. The y matrix thus completely characterizes the behavior of a specific gate. To experimentally
determine the y matrix, we perform the QPT by selecting 6 different initial states, {|0), |1), (|0} £ [1))/ V2,

(10) £ i]1)) /~/2 }[1, 38, 39]. Each input state is driven by By, (¢) and the output state is measured by the quantum
state tomographymethod. The x matrix is then numerically calculated by solving equation (22). For the STA X -gate,
the experimental result of the x(X,;) matrix is plotted in figures 3(a) and (b). Consistent with the theoretical prediction
of an ideal X,-gate, the dominant element of the x(X,;) matrix is the operator of 7,. To quantify the fidelity of the
whole quantum process, we calculate the process fidelity using [1]

Fp = TT{XXideal}- (23)

The experimental resultis Fp(X,;) = 95.21%. To exclude the errors in state preparation and readout, we
perform an interleaved randomized benchmarking measurement (see section 4.4), which gives the gate fidelity
of the STA X rotation at F, (X) = 99.82%. This number is very close to the current highest fidelity of a Xmon
qubit [6], and the 0.1% deviation could be improved by the future optimization of our system. On the other
hand, if the operation time is increased to T = 500 ns, the counter-diabatic field becomes nearly negligible and
the process fidelity of the adiabatic X, -gate is decreased to Fp(X,;) = 92.15% due to the accumulation of the
dissipation-induced error.

To design the X, /, rotation, we take the same reference ‘adiabatic’ field By () except for that the azimuthal
angle is changedto 0 (t) = (w/4)[1 — cos(rt/T)]. The counter-diabatic and DRAG fields, B.4(¢) and Bq4(¢),
are analytically calculated accordingly. After the QPT measurement, the experimentally reconstructed x (X /2)
matrix is plotted in figures 3(c) and (d), agreeing excellently with the theoretical prediction of an ideal X/ gate.
As compared to the x(X) matrix, the x(X,/,) matrix includes auto and cross correlations between the operators
ofI'and o,. The experimental measurement shows that the process and gate fidelities of our STA X , rotation
are Fp(Xr/2) = 95.03% and Fy (X/2) = 99.81%.

4.2.Z.and Z ., rotations
The second group of STA quantum gates we inspect are the mand 7/2 rotations about Z-axis. The corresponding
unitary matrices are [1]

_(-i 0 _ e 0
Uzﬁ—(0 i)’ and UZW'Z—( 0 ei”/“)' (24)

To design these two gates, the reference ‘adiabatic’ field B, (t) is specified as

Bo (1) = Q(t)cos o(t)
By (1) = Q(t)sin ¢ (1) (25)
BO;z(t) = O)
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Figure 3. The experimental measurement of y matrices for (a), (b) X and (c), (d) X rotations. The left and right panels are the real
and imaginary parts of the two y matrices, respectively.

where the drive amplitude is €2(+) = A sin(27¢/T) and the polar angle is 0(t) = /2. The azimuthal angles for
Zrand Z, , rotations are ¢(t) = (7/2)[1 — cos(wt/T)]and ¢(t) = (7/4)[1 — cos(wt/T)], respectively. The
control parameters, A and T, are the same as those in the X-rotation gates. The counter-diabatic and DRAG
fields, B.4(t) and Bq4(¢), are also analytically calculated for the experimental generation. The QPT measurements
of x(Z,) and x (Z,/,) matrices are presented in figures 4(a)—(d), also agreeing excellently with the results in an
ideal scenario. The process fidelities of these two STA gates are Fp(Z;) = 95.23% and Fp(Z,2) = 95.20%.

After excluding errors in state preparation and readout, the gates fidelities are F, (Z) = 99.89% and F,(Z/,) =
99.87%.

4.3. Hadamard gate

An arbitrary single-qubit quantum gate can be realized by a combination of sequential rotations about X-, Y- and
Z-axes. For example, the Hadamard gate can be generated by 7/2 rotation about the Y-axis followed by
rotation about the X-axis[1], i.e.,

N3
Uy = Uy Uy, , = 7(} _11)- (26)

In the STA protocol, the Hadamard gate can be realized by a one-step operation, which reduces the errors
accumulated through multiple steps. Our reference ‘adiabatic’ field By (t) is designed as

Box(t) = %Q(t)cow(t)
B, (1) = Qt)sin (1) 27)

By (1) = —gﬂ(t)cosw(t)

with Q(t) = AsinQnt/T)and p(t) = (7/2)[1 — cos(wt/T)]. After including counter-diabatic field B4 (t)
and the DRAG field By (¢), we perform the same QPT measurement as above. The experimentally reconstructed
x(H) matrix is displayed in figures 5(a) and (b). The process fidelity is Fp(H) = 94.93% while the gate fidelity
with the errors in state preparation and readout excluded is F(H) = 99.81%.

7



10P Publishing

New J. Phys. 20 (2018) 065003 T Wangetal

(a) T

Ret(Zw

(b) B

el .

o m(ze)

(d) ///// , \
- //IIIIX (Znr) S

Figure 4. The experimental measurement of y matrices for (a), (b) Z, and (c), (d) Z; , rotations. The left and right panels are the real
and imaginary parts of the two y matrices, respectively.

Figure 5. The experimental measurement of the x matrix for the Hadamard gate: (a) real and (b) imaginary parts.

4.4. Interleaved randomized benchmarking measurement

In the QPT measurement, the errors of state preparation and readout are mixed with the error of a quantum gate
operation. To extract the gate fidelity, we perform the Clifford-based randomized benchmarking measurement
[6,40—43]. For a single-qubit, the Clifford group consists of 24 rotations preserving the octahedron in the

Bloch sphere. In principle, each Clifford operator can be realized by a combination from the elements of

{I, Xr» Xsn/2> Yo Yir/2}. The qubitis initially prepared at the spin-up state (|T) = |0)), and then driven bya
sequence of m randomly selected Clifford gates. The combined operation is described by a unitary matrix,

Uc = ITZ, U.. Since the Clifford group is a closed set, Uc is always a Clifford operator. Subsequently, the

(m + 1)thstep is the reversed step of Ucand the total quantum operation is written as

m
Utot = USH Uz (28)
i=1

The remaining population Py(t,) of the initial state is measured afterwards. After repeating the above random
operation sequence k (=50 in our experiment) times, we calculate the average result of Py(t), which represents a
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Figure 6. Randomized benchmarking measurement for a set of single-qubit STA quantum gates. The reference and interleaved
sequence fidelities are displayed as functions of the number of Cliffords. Each sequence fidelity is averaged over k = 50 randomized
operation (see text), with its standard deviation from the mean shown as an error bar. All the gate fidelities are calculated and shown in
the figure.

sequence fidelity, F
function [41],

q(M). As shown in figure 6, this sequence fidelity can be well fitted by a power-law decaying

Feq = Aop™ + Bo, (29)

where Ay and B, absorbs the errors in state preparation and readout, and p is a depolarizing parameter. The
average error over the randomized Clifford gates is given by [41]

d—1

where d = 2" is the dimension of the Hilbert space for an array of N qubits. In our experiment, the value of the
average error isr = 0.0011, or equivalently the fidelity of a randomized Clifford gate is 99.89%, which serves as a
reference for our next interleaved operation (see figure 6).

To extract the fidelity of a specific gate U, we make an interleaved operation [41]. At each step, the qubit is
driven by a combination of a randomly select Clifford operator followed U,. With the product operator,
UL = [T, (G; U), and the (m + 1)th operator of ( Ul)*, the total quantum operation is described by
Upye = (UDTTIE, (G Uy [6, 41]. Similarly, we measure the sequence fidelity FS'eq (m). As shown by the examples
in figure 6, FS/eq (m) can also be well fitted by equation (29) with a new depolarizing parameter p’. Here p’ canbe
considered as a product of the average number p of a randomized Clifford operator and the intrinsic number p,
of the specific gate Uy, i.e., p, = p’ /p. Substituting pginto equation (30), we obtain the intrinsic error ryand the
gate fidelity of U, is given by

d—1 P’
E=1-2""|1-£] 31
¢ d( p) b

In figure 6, we list the results of 8 example STA gates, and all the values of F, are equal or greater than 99.8%.
In the STA protocol, the fidelity of the Hadamard gate (Fy(H) = 99.81%) is higher than the product of the
fidelities of the Y., and X, gates (F, (X)) F, (Yz/2) = 99.65%). Thus, our one-step STA gate can efficiently
reduce the error accumulation in a combined operation of multiple gates.

5. Summary

In this paper, we propose a scheme of building a universal quantum gate using a ‘STA’ trajectory, which shares
the same spirit as in [25] but with a different design. This scheme is successfully implemented in a high-quality
superconducting Xmon qubit, and various single-qubit STA quantum gates are created through a precise
microwave control. As demonstrated by the examples of rotations about X- and Z-axes and the Hadamard gate,
we have achieved high process and gate fidelities (F, > 94.9% and F, > 99.8%), which are very close to the
state-of-the-art values (F, > 99.91%) in the superconducting Xmon qubit system. In principle, the STA
quantum gates allow a large flexibility in the control parameters, such as the pulse amplitude, operation time and
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pulse shape. Although this paper is focused on single-qubit gates, the STA scheme can be extended to a multi-
qubit system [6, 25]. The improvement and extension of our STA quantum gates will be addressed in the near
future.
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