
Learning-Aided Scheduling for Mobile Virtual
Network Operators with QoS Constraints

Tianxiao Zhang⇤, Huasen Wu⇤, Xin Liu⇤, and Longbo Huang†
⇤Computer Science, University of California, Davis

†IIIS, Tsinghua University

Abstract—Mobile Virtual Network Operators (MVNOs) serve
their customers by leasing resource from physical Mobile
Network Operators (MNOs). Guaranteeing service quality by
connecting customers to appropriate MNOs based on their
performance is important for MVNOs, but obtaining accurate
statistics of performance for all MNOs is costly. In this paper,
we study the scheduling problem with QoS constraints for
MVNOs without a priori knowledge on the system statistics such
as traffic and service quality. We propose a Learning-Aided
Scheduling (LSchd) algorithm based on Lyapunov optimization
approaches. We show that LSchd achieves near-optimal network
utility subject to average QoS constraints. Further, we propose a
Dual-Learning-Aided Scheduling (DSchd) algorithm to accelerate
the convergence speed. The proposed algorithms are evaluated by
simulations based on real network traces. The simulation results
show that even when the system statistics are non-stationary, the
proposed algorithms achieve near-optimal utilities and the DSchd
algorithm quickly approaches the near-optimal performance.

I. INTRODUCTION

Mobile Virtual Network Operator (MVNO) is becoming
increasingly popular over the last decade, and is attracting
more attention from Internet service providers and equipment
manufacturers such as Google and Huawei [1–3]. For exam-
ple, Google announced Project Fi in April 2015, which is
essentially a virtual operator using T-Mobile, Sprint, and WiFi
hotspots all over the country to offer users the most appropriate
connection at a given moment [2]. A recent report [4] predicts
that global MVNO subscribers are expected to exceed 300
million by 2020, at a compound average growth rate (CAGR)
of 10.7% from 2014 to 2020, and the global MVNO market
is expected to reach USD 73 billion by 2020.

In addition to lower price and wider coverage-range, one
important advantage of MVNOs is that they can provide
services with specific quality guarantees by leasing wireless
network resource from multiple MNOs. Measurement study
shows that significant differences exist in service quality in
virtual networks depending on the physical network provider,
application type, and location [5]. Therefore, in such an
application scenario, the virtual operator (e.g., Google Fi)
needs to learn the service availability and quality of different
physical service providers, depending on the location, time,
and application requirements of its users. At the same time,
it needs to allocate its user traffic to the physical networks
based on available information, subject to the service quality
requirements. In this paper, we study scheduling algorithms

without prior knowledge to maximize the profit of MNVOs
subject to QoS constraints.

Plenty of work has been done on wireless scheduling in
literature [6–11]. In particular, Lyapunov optimization ap-
proaches, drift-plus-penalty, are proposed to asymptotically
optimize temporally average performance subject to con-
straints [6]. Recent work [8] studies Lyapunov optimization
approaches for maximizing profit of cognitive MVNO, which
can serve its subscribers by either leasing spectrum resource
from MNOs or accessing the spectrum as a secondary users.
Although these algorithms do not require the knowledge about
the distribution of system states, they assume the reward
or cost of an action under any state is known. In practice,
however, an MVNO may not be able to obtain the actual
value of the reward or service quality. For instance, the reward
of MVNO depends on the amount of MVNO customers and
their MNO traffic. The statics of reward are unknown if
the traffic statics is unknown, which typically occurs at the
initial stage of a time-varying system. Also it is difficult
for an MVNO to know all the actual QoS of all MNOs
when deploying its virtual networks. Scheduling algorithms
under systems with unknown statistics are studied in wireless
networks. [9] proposes a Max-Weight learning algorithm to
minimize the cost in unknown environments, where the system
state can only be partially revealed. However, the reward and
cost are known functions of the system state. [10] proposes a
learning plus scheduling algorithm to achieve the throughput
optimality under unknown channel/estimator statistics, but it
only considers the stability of the system rather than the
reward optimization in our paper. The most related work
[11] considers reward optimization problems with unknown
reward or state distributions, but with known arrival and
departure rate under a given action. In contrast, the QoS of
different operators, which is used to update the virtual queue
and equivalent in the arrival/departure rate in [11], need to
be estimated. This makes the analysis of the system more
challenging.

In this paper, we study scheduling algorithms for MVNO
without any prioir information on the statistics of the reward,
service quality, or system state. We propose a Learning-aided
Scheduling (LSchd) algorithm for the case where the MVNO
makes decision while learning the information of reward
and service quality. The main idea is to use the Lyapunov
optimization approach by constructing virtual queues for the

2016 14th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

978-1-5090-1311-1/16/$31.00 ©2016 IEEE



QoS requirements, and make decisions based on the estimated
information of reward and QoS. We can show that as long as
the estimates of the reward and QoS is close enough to the true
value, the LSchd achieve a O(1/V )-optimal performance for a
large parameter V . Further, we propose a Dual learning-aided
Scheduling (DSchd) algorithm to accelerate the convergence
speed by exploiting the obtained information of system states.
We evaluate the proposed LSchd and DSchd algorithms by
running simulations based on data collected from practical
networks. The results show that both LSchd and DSchd
achieve near optimal-performance while the DSchd algorithm
converge faster, which is very useful in practical systems. Even
when the system is non-stationary, the proposed systems can
guarantee desired QoS of different applications.

The key technical contribution is to apply Lyapunov opti-
mization method in MVNO traffic scheduling. We consider
the most practical case where the reward and cost are both
unknown. We leverage and integrate the existing techniques
[10] [11] for Lyapunov drift analysis with inaccurate reward
and cost, and use trace-driven approach to evaluate the QoS
performance. The remaining of the paper is organized as
follows. Section II describes the MVNO model. Section III
proposes the learning aided scheduling algorithms, LSchd and
DSchd, and Section IV analyzes their performance theoreti-
cally. Section V presents the simulation results and Section VI
concludes our work.

II. SYSTEM MODEL

We consider an MVNO system shown in Fig. 1, where
the MVNO provides wireless communication services to its
customers by utilizing network resource from multiple MNOs
or WiFi networks. The system is operated in a slotted manner,
i.e., the time t 2 {0, 1, 2, . . .}. We note that the MVNO
controls the network in an abstracted level and operates in
a large time-scale. Hence, we assume the slot-length is on the
order of seconds. We focus on the downlink of the MVNO
system, and our techniques can be extended to the uplink by
collecting the mobile-side information such as queue lengths.

Transmission Requests MNOs/WiFi

Fig. 1. Dynamic scheduling for MVNO. Transmission requests from different
applications are assigned to different MNOs based on service quality.

A. Demand Model

We consider a general case where the MVNO supports
multiple types of applications. Let K be the number of
application types, and Ak(t) be the number of type-k users

arriving at time t. We assume that the arrival rate is bounded
as 0 

PK
k=1

Ak(t)  A
max

. Let A(t) be the set of users
arriving at time t, and Ak(t) ✓ A(t) be the set of type-k users.
We assume that each user arriving at time t should be either
served or rejected, which provides service similar to current
cellular providers. For each type k, Ak(t)’s are i.i.d. random
variables with the expectation E[Ak(t)] = �k. However, prior
knowledge about the distribution or the expectation of Ak(t)
is unknown to the MVNO.

B. MNO Model

The MVNO serves its customers by acquring network
resource from existing MNOs or WiFi. Note that a cellular BS
and a WiFi AP have no conceptual differences, except that the
service quality and the price may have different characteristics.
Thus, we treat WiFi as a special MNO. Let N be the number of
MNOs that carry transmissions for the MVNO. The available
resource provided by the n-th MNO for the MVNO, denoted
as Bn(t), is time varying due to the variations of its own
traffic.

1) Pricing Model: The MVNO charges its customers and
pays the MNOs based on the amount of transmitted data. Let
gn(t) be the per-unit-size profit, i.e., the difference between
the price charged from the user and that paid to the MNO, of
transmitting a unit-size of data (e.g., per gigabytes) through
the n-th MNO. Moreover, an MNO can also apply dynamic
pricing to coordinate the transmission. We let Cn(t) be the
additional price charged by the n-th MNO at time t for each
user, and let Rn(t) be the actual amount of transmitted data
by the n-th application. Based on the pricing model, we have
that the total utility at time t is

U(t) =
X

i2A(t)

[gn(i)Ri(t)� Cn(i)(t)]. (1)

2) QoS Model: The service quality and amount of data
transmitted by user i is random due to the network conditions.
Let Yi(t) be the service quality experienced by user i, which
follows an unknown distribution. Let k(i) be the application
type of user i, and n(i) be the MNO allocated to serve i. The
distribution of Yi(t) depends on the application type k(i) and
the serving MNO n(i), and its cumulative probability function
is given as

'k,n(y) = P{Yi(t)  y|k(i) = k, n(i) = n}.

The user of type-k application is unsatisfied when the quality
is worse than yk, whose probability is given as follows when
it is served by the n-th MNO:

pk,n = 'k,n(yk) = P{Yi(t)  yk|k(i) = k, n(i) = n}.

The number of users with unsatisfied service quality is denoted
as

Zk(t) =
X

i2A
k

(t)

(Yi(t)  yk). (2)



C. Online Matching and Utility Maximization
Let X(t) = (A(t),B(t),C(t)) be the system state

at time t, where A(t) = (A
1

(t), A
2

(t), . . . , AK(t)),
B(t) = (B

1

(t), B
2

(t), . . . , BN (t)), and C(t) =

(C
1

(t), C
2

(t), . . . , CN (t)) are the arrival state,
available resouce, and price, repectively. We assume
that X(t) is i.i.d. and is from a finite set, i.e.,
X(t) 2 X = {x(1), x(2), . . . , x(J)}. Let ⇡j = P{X(t) = x(j)}
for j = 1, 2, . . . , J .

At each time slot, the MVNO serves its users by leasing net-
work resources, such as bandwidth, from MNOs. Specifically,
the MVNO maps each user i 2 A(t) to one of the MNOs
based on the system state X(t) and the historic information.
The amount of resource required by each user is fixed and
determined by its application type and the serving MNO. Let
mk,n be the amount of resource required by type-k application
at MNO n. Hence, in each time slot, the feasible mapping
satisfies the following resource constraint:

X

i2A(t):n(i)=n

mk(i),n  Bn(t). (3)

Each type of application has an average QoS requirement
represented by (yk, ⌘k), i.e., P{Yi(t)  yk|k(i) = k}  ⌘k.
On the other hand, Ri(t) follows certain unknown distribution
with expectation E[Ri(t)|k(i) = k, n(i) = n] = rk,n.

We consider the temporally average performance, and de-
fined the average utility and quality violation as follows:

¯U = lim

T!1

1

T

T�1X

t=0

E[U(t)], (4)

¯Zk = lim

T!1

1

T

T�1X

t=0

E[Zk(t)] (5)

The objective of the MVNO is to maximize the average utility
subject to the QoS requirement:

max ¯U (6)
s. t. ¯Zk/�k  ⌘k, 8k. (7)

If the MVNO knows the system statistics, it can solve the
above problem by linear programming. However, we consider
a cold start problem where the system statistics, including
the arrival rates, the serving rates and service quality, are
unknown. We also do not assume the knowledge of the
violation probability, which is different from the previous work
[11]. In this paper, we discuss how to solve this constrained
problem by learning-aided scheduling.

III. LEARNING-AIDED SCHEDULING

We use the Lyapunov stochastic optimization techniques
[6] to solve the network utility maximization problem with
QoS constraints. We first present Backpressure [12] when we
assume the distributions of amount of transmitted traffic and
service quality are known. We then propose LSchd where we
do not assume prior knowledge on the previous system statis-
tics. Last, we propose DSchd that has the same assumption

as LSchd but utilizes the learned system state information and
dual learning to speed up the convergence rate.

A. Backpressure

When the expected amount of transmitted data rk,n and the
QoS violation probability pk,n are known, we can solve the
constrained utility maximization problem with the drift-plus-
penalty method.

Specifically, note that the QoS constraint (7) can be rewriten
as

¯Zk  ⌘k�k = ⌘k lim

T!1

1

T

T�1X

t=0

Ak(t). (8)

Thus, we introduce a counter (“virtual queue”) ⇥k(t), such
that ⇥k(0) = 0, and

⇥k(t+ 1) =⇥ k(t)� ⌘kAk(t) + Zk(t). (9)

Note that we do not require ⇥k(t) to be nonnegative as
existing work [6, 8–12]. This will not affect the convergence
of the proposed algorithms, as will be discussed later. Let
⇥(t) = ( ⇥

1

(t),⇥
2

(t), . . . ,⇥K(t)) and define the Lyapunov
function as L(t) = 1

2

||⇥(t)||2, where || · || is the `
2

-norm. For
a given parameter V > 0, we define the one-slot utility-based
conditional Lyapunov drift as follows:

�V (t) = E
⇢
L(t+ 1)� L(t)� V U(t)

��⇥(t)

�
. (10)

According to the evolution of ⇥(t), we can show that

�V (t)

 K � E
⇢
V U(t)�

KX

k=1

⇥k(t)(Zk(t)� ⌘kAk(t))
��⇥(t)

�

 K � E
⇢ X

i2A(t)

wi,n(i)(t) +
KX

k=1

⌘kAk(t)⇥k(t)
��⇥(t)

�
,

(11)

where wi,n(t) is given by

wi,n(t) = V
⇥
gnrk(i),n � Cn(t)

⇤
� pk(i),n⇥k(t).

Then, the MVNO obtains the scheduling decision to minimize
the Lyapunov drift �V (t) by solving the following problem:

(P1) max
n(i)

X

i2A(t)

wi,n(i)(t),

s.t.
X

i2A(t):n(i)=n

mk(i),n  Bn(t).

This is a generalized assignment problem with reward weights
wi,n(t) and cost weights mi,n, which is NP-hard. We assume
that one user can be served by multiple MNOs and the
above problem becomes a linear programming problem. This
relaxation will obtain an approximate solution when there are
many users.



B. LSchd

When the expected amount of data and service quality
are unknown, we propose to apply estimates obtained from
learning module for implementing the Lyapunov approach
proposed in the previous section. We first define the capability
of a learning module. For any matrix W and its estimate
ˆW provided by a learning module, we denote the maximum

estimation error as �w = || ˆW � W ||
max

, where ||x||
max

=

maxij |xij |. We adopt the definition in [11] to capture the
capability of a learning module.

Definition 1 An algorithm � is called a (T�, P�, �)-learning
module, if (i) it completes learning in T� slots, (ii) it guaran-
tees P{�w < �} � P� , and (iii) P� does not decrease if the
algorithm is run for T > T� time slots.

As discussed in [11], two sampling-based learning algorithms,
Threshold-Based Sampling (TBS) and Time-Limited Sampling
(TLS), are examples of this type of learning module.

We propose a Learning-aided Scheduling (LSchd) that
applies the estimates of the transmitting rate and QoS for
scheduling for MVNO, as shown in Algorithm 1.

Algorithm 1 Learning-aided Scheduling (LSchd)
Learning: Apply any (T�

r

, P�
r

, �r)-learning module for r
and any (T�

p

, P�
p

, �p)-learning module for p; terminate at
T
1

= max{T�
r

, T�
p

} and output ˆr and ˆp;
Scheduling: Set ⇥(T

1

+ 1) = 0 and implement the drift-
plus-penalty method with the estimates ˆr and ˆp.

C. DSchd

In this section, we propose a scheduling algorithm that
utilizes the learned system state information to speed up
the convergence rate. When the system statistics are fully
known, we can maximize the network utility using an X-only
policy that makes stationary decisions and hence independent
of queue size [6]. Specifically, let nl

j be one of a feasible
scheduling when the system state is x(j) and an X-only policy
↵ defines the probability of choosing one of the feasible
schedules under any state. The MVNO obtains the optimal
X-only policy by solving the following problem.

(P2) max
↵

V
JX

j=1

⇡jrj(↵),

s.t.
JX

j=1

⇡jzj,k(↵)  ⌘k�k, 8k,

nj 2 N (j), 8j.

where rj(↵) is the expected reward and zj,k(↵) is the
expected number of type-k QoS violations at state xj under
policy ↵. This problem is an LP problem.

On the other hand, the Lagrangian is given by

L(�,↵) = V

JX

j=1

⇡jrj(↵)�
KX

k=1

�k
⇥ JX

j=1

⇡jzj,k(↵)� ⌘k�k

⇤
,

(12)

Where � = (�
1

, �
2

, . . . , �K) is the Lagrangian multiplier.
The dual function is defined as

G(�) = max

↵
L(�,↵). (13)

The dual problem is

min G(�),

s.t. � ⌫ 0. (14)

When the system statistics are known, we can obtain the
Lagrangian multipliers by solving the above dual problem.
Otherwise, we can obtain the approximate multipliers by
solving the empirical dual problem. In this case, we propose
a Dual Learning-aided Scheduling algorithm. As shown in
Algorithm 2, we first learn the system statistics, and then use
the estimates to solve the dual problem. After that, we choose
the scheduling decisions by using the estimate Lagrangian
multipliers as the initial value of the “counters”. Specifically,
we introduce another counter ˜

⇥k(t), such that ˜

⇥k(0) = 0, and

˜

⇥k(t) = ⇥k(t) + �̂⇤
k � ⇣k (15)

where ⇣k = (log V )

2. Also we have

⇥k(t) = max(⇣k � �̂⇤
k ,⇥k(t� 1)� ⌘kAk(t)) + Zk(t) (16)

Algorithm 2 Dual Learning-aided Scheduling (DSchd)
Learning:
(1) Apply any (T�

r

, P�
r

, �r)-learning module
for r, (T�

p

, P�
p

, �p)-learning module for p, and
(T�

⇡

, P�
⇡

, �⇡)-learning module for ⇡; terminate at
T
2

= max{T�
r

, T�
p

, T�
⇡

} and output ˆr, ˆp, and ˆ⇡;
(2) Solve the empirical dual problem with ˆr, ˆp, and ˆ⇡.

min G(�),

s.t. � ⌫ 0. (17)

Let ˆ�⇤
= (�̂⇤

1

, �̂⇤
2

, . . . , �̂⇤
K) be the optimal solution.

Scheduling: Set ⇥(T
2

+1) = 0; Assign the users by solving
the assignment problem P with ˆr, ˆp, ˆ⇡, and ˜⇥(t), where
⇥k(t) = max(⇣k � �̂⇤

k ,⇥k(t� 1)� ⌘kAk(t)) + Zk(t) and
˜

⇥k(t) = ⇥k(t) + �̂⇤
k � ⇣k with ⇣k = (log V )

2.

IV. PERFORMANCE ANALYSIS

In this section, we study the performance of the proposed
LSchd and DSchd algorithms. To indicate the different in-
formation used, we use ˆG(�) to denote the dual function
when r is replaced with ˆr and p is replaced with ˆp, and
the actual distribution ⇡ is used. Similarly, we use Gˆ⇡

(�)
and ˆGˆ⇡

(�) to denote the dual function with (r,p, ˆ⇡) and
(

ˆr, ˆp, ˆ⇡), respectively.



A. Preliminaries
We define the following polyhedral system structure:

Definition 2 A system is polyhedral with parameter ⇢ > 0 if
the dual function G(�) satisfies:

G(�⇤
)  G(�)� ⇢||�⇤ � �||, (18)

where �⇤ is the optimal dual solution.

We also make the following assumptions.

Assumption 1 There exist constants ✏r, ✏p, ✏⇡ = ⇥(1) > 0

such that for any valid estimates ˆr, ˆp, and ˆ⇡ with ||ˆr� r||
✏r, ||ˆp � p|| ✏p , and ||ˆ⇡ � ⇡|| ✏⇡ , there exits a set of
actions (nl

j : 1  j  J, 1  l  1) and variables(�l
j : 1 

j  J, 1  l  1) with
P

l �
l
j = 1 (possibly depending on

the estimates), such that
JX

j=1

⇡̂j

X

l

�l
j [

X

i2A(j)

p̂k(i),nl

j

(i) � ⌘k�k]  �⌘
0

�k, (19)

where ⌘
0

= ⇥(1) > 0 is independent of ˆr, ˆp, and ˆ⇡

Assumption 2 There exist constants ✏r, ✏p, ✏⇡ = ⇥(1) > 0

such that for any valid estimates ˆr, ˆp, and ˆ⇡ with ||ˆr� r||
✏r, ||ˆp � p|| ✏p , and ||ˆ⇡ � ⇡|| ✏⇡ , if G(�) is
polyhedral with parameter ⇢, then ˆG⇡

(�) is also polyhedral
with parameter ⇢.

Assumption 3 There exist constants ✏r, ✏p, ✏⇡ = ⇥(1) > 0

such that for any valid estimates ˆr, ˆp, and ˆ⇡ with ||ˆr� r||
✏r, ||ˆp � p|| ✏p , and ||ˆ⇡ � ⇡|| ✏⇡ , ˆG⇡

(�) space has a
unique optimal solution.

Let  (⌘) be the optimal value of problem P2, using
the perturbation-analysis for LP problems [13] we have the
following lemma.

Lemma 1 For a given set of parameters satisfying Assump-
tion 1, for any ✏

0

2 [0, ⌘
0

] and ⌘ � ✏
0

1, there is an X-only
policy satisfying

JX

j=1

⇡jzj,k(↵)  (⌘k � ✏
0

)�k,

V
JX

j=1

⇡jrj(↵) =  (⌘ � ✏
0

1).

B. Utility and Constraint Performance
We first present the utility performance for LSchd.

Theorem 1 Suppose T
1

= max(T�
r

, T�
p

) < 1 with proba-
bility 1. Under LSchd, we have with probability P�

r

P�
p

that

¯ULSchd � ¯U⇤ � K +O(�r + �p)

V
� 2�rAmax

g
max

. (20)

and
¯ZLSchd

k  ⌘k�k, 8k. (21)

Note that there is performance loss due to estimation error
�r in the last term, while we could guarantee the desired QoS

for all types of applications. Then we present the performance
result for DSchd.

Theorem 2 Suppose T
2

= max(T�
r

, T�
p

, T�
⇡

) < 1 with
probability 1. Under DSchd, we have with probability
P�

r

P�
p

P�
⇡

that

¯UDSchd � ¯U⇤ � K +O(�r + �p)

V
� 2�rAmax

g
max

�O(

1

V
).

(22)
and

¯ZDSchd

k  ⌘k�k, 8k. (23)

In both LSchd and DSchd, the effect of inaccurate estima-
tion is not guaranteed to be always eliminated when increasing
the learning period, since the estimation error and its evolution
is largely related to the strategies made on early stage, which
is sensitive to change based on system statistics.

C. Convergence Time
Convergence time plays an important role when system

statistics can change. We introduce the formal definition of
convergence time as follows.

Definition 3 For a given constant D, the D-convergence time
of a scheduling algorithm ⇧, denoted by T⇧

D , is the time it
takes for the queue vector ⇥(t) to get to within D distance
of �⇤, i.e.,

T⇧

D = inf{t : ||⇥(t)� �⇤|| D}. (24)

With definition above, we present the following results:

Theorem 3 Suppose G(�) is polyhedral with ⇢ = ⇥(1) > 1,
�r  ✏r, �p  ✏p, and �⇡  ✏⇡ . Then with a sufficiently large
V , we have

E[TLSchd

D
1

] = O(T
1

+O(V )) w.p. P�
r

P�
p

,

E[TDSchd

D
2

] = O(T
2

+O(�pV )) w.p. P�
r

P�
p

.

V. SIMULATION

We now provide the simulation results for LSchd and DSchd
to demonstrate the near-optimal performance and fast conver-
gence speed. The proposed algorithms are evaluated based
on traces collected from real cellular network, provided by
Speedometer1 and Mobile Network Dataset. Speedometer is an
Android custom mobile network measurement app developed
by Google and is running on thousands of volunteer phones.
The data consists of ping, traceroute, DNS lookup, HTTP
fetches, and UDP packet-loss measurements from 2011-10
to 2013-08. Mobile Network Dataset comes from a tier-1
operator in China, which records all the session details of 5
neighboring base stations for one week.

We consider A(t) to be the number of sessions at time t,
and R(t) to be the total downlink size of sessions at time
t, both from Mobile Network Dataset. We also consider the
reciprocal of average RTT of Verizon, T-Mobile and Sprint
from Speedometer dataset as a metric of user experienced

1This dataset is available at https://storage.cloud.google.com/speedometer



service quality Y (t). We consider a system that has K = 2,
N = 3, A = 5 and B = 2, where A and B are quantization
levels of arrivals and available resources. In this case we have a
total of 200 different system state combinations. We also have
per-unit-size profit gn(t) = {0.4, 0.6, 0.2}, quality requirement
level y = {0.2, 0.25}, and quality requirement probability ⌘
to be 5% for both application types.

Time
0 2000 4000 6000 8000 10000

Q
ue

ue
 S

iz
e

�104

0

2

4

6

8

10

12

14

Backpressure Queue
LSchd Queue
DSchd Virtual Queue
DSchd Queue

(a) Convergence performance

Time �105
0 0.5 1 1.5 2 2.5 3

U
til
ity

�104

6

7

8

9

10

11

12
Backpressure
LSchd
DSchd

(b) Utility performance

Fig. 2. Performance under three algorithms

We compare the proposed two algorithms LSchd and
DSchd with Backpressure, which assumes the distributions of
amount of transimitted traffic and service quality are known.
Figs. 2(a) and 2(b) show that LSchd and DSchd achieve near-
optimal performance even when the system statistics are non-
stationary. In Fig. 2(a), we can see the behavior of the first
queue under the three different algorithms with V = 300.
The average queue size after being stable is indistinguishable
among Backpressure, LShed and DSchd, which indicates same
scheduling decisions in the long run. In Fig. 2(b), LSchd and
DSchd could also achieve near-optimal average utility when
compared with Backpressure. For Backpressure and LSchd,
the queue size is not accumulated in the early slots, therefore
the decision is inclined to high-profit-low-quality MNOs which
dramatically increase the utility. While for DSchd, the queue
size is quickly raised to the stable level after the short learning
period, thus the average utility changes smoothly.

Then we look at the convergence rate of the algorithms.
As shown in Fig. 2(a), the first virtual queue and actual queue
size under DSchd converge much faster than Backpressure and
LSchd, which is very useful in practical systems. For example,
when V = 300, the convergence time of Backpressure is
4900 timeslots, while DSchd is only about 1500 timeslots.
The performance of the second queue is similar and we do
not present here. The quick convergence rate demonstrates
the power of learning-aided scheduling techniques, especially
when the system statistics are non-stationary as in our case.

Figs. 3 to 6 show the behavior of the proposed algorithms
when we tune V and the length of learning period. For
comparison, besides the real trace scenario, we also simulate
using synthetic data. We consider a system with K = 2,
N = 3, A = 2 and B = 2. We have gn(t) = {0.6, 0.4, 0.2},
y = {0.1, 0.2}, and ⌘ to be 4.5% and 9% respectively, in
order to simulate applications with different quality-violation
tolerance. We assume that Aj(t) is i.i.d with either 10 or

V
200 400 600 800 1000

U
til
ity

7.5

7.6

7.7

7.8

7.9

8

Backpressure
LSchd
DSchd

(a) Overall
V

200 400 600 800 1000

U
til
ity

7.6

7.7

7.8

7.9

8

Backpressure
LSchd
DSchd

(b) After Learning
V

200 400 600 800 1000

U
til
ity

7.6

7.7

7.8

7.9

Backpressure
LSchd
DSchd

(c) Stable

Fig. 3. Average utility under sythetic data when changing V

V
200 400 600 800 1000

U
til
ity

�104

7.835

7.84

7.845

7.85

7.855

7.86 Backpressure
LSchd
DSchd

(a) Overall
V

200 400 600 800 1000

U
til
ity

�104

7.835

7.84

7.845

7.85

7.855

7.86 Backpressure
LSchd
DSchd

(b) After Learning
V

200 400 600 800 1000

U
til
ity

�104

7.82

7.83

7.84

7.85
Backpressure
LSchd
DSchd

(c) Stable

Fig. 4. Average utility under real trace when changing V

Learning Period �104
5 10 15

U
til

ity

7.7

7.8

7.9

8 Backpressure
LSchd
DSchd

(a) Overall

Learning Period �104
5 10 15

U
til

ity

7.7

7.8

7.9

8

Backpressure
LSchd
DSchd

(b) After Learning

Learning Period �104
5 10 15

U
til

ity

7.6

7.7

7.8

7.9

8

Backpressure
LSchd
DSchd

(c) Stable

Fig. 5. Average utility under synthetic data when changing learning period

Learning Period
500 1000 1500 2000 2500 3000

U
til

ity

�104

7.832

7.834

7.836

Backpressure
LSchd
DSchd

(a) Overall

Learning Period
500 1000 1500 2000 2500 3000

U
til

ity

�104

7.832

7.834

7.836

Backpressure
LSchd
DSchd

(b) After Learning

Learning Period
500 1000 1500 2000 2500 3000

U
til

ity

�104

7.82

7.83

7.84

7.85
Backpressure
LSchd
DSchd

(c) Stable

Fig. 6. Average utility under real trace when changing learning period

20 with probabilities pj and 1 � pj , where p
1

= 0.3 and
p
2

= 0.4. The mean value of service quality experienced
by user is Ymean = {1, 1.2, 1.4}, and the mean amount
of transmitted data is Rmean = {0.5, 0.5}, both of which
are uniformly distributed. For better illustration, we separately
plot the average utility in the whole period, the after-learning
period and the stable period, where the after-learning period
starts from the end of the learning period, and the stable period
starts when the system statistics are stabilized.

Firstly we see from Figs. 3 and 4 that the overall average
utility increases as we increase the value of V , especially in
Fig. 3(c) which indicates a O(1/V ) close-to-optimal perfor-
mance. The utility gap between Backpressure and learning-



aided algorithms in the stable stage of synthetic data is due to
the insufficient learning length, which is solved in real trace
scenario when we have long enough learning slots. Notice that
LSchd and DSchd have different sentitivity towards V. Also
notice that even for Backpressure, when V is large enough,
the performance is hard to improve further.

Figs. 5 and 6 then show the utility performance with
different learning length. We see that in the after-learning
stage, as learning period increases, LSchd and DSchd achieve
higher average uility since the system dynamics is learned
more accurately. All the algorithms converge to the same value
in the stable stage under a sufficient learning period. We also
observe that when learning period is overly large, the average
utility begins to drop. This is because the algorithm has learned
fairly well already, while wasting a lot performance to explore
different strategies in learning stage. Since the real trace data
is periodic, it’s easier to learn correctly in a short period, thus
the utility is always dropping.

VI. CONCLUSION

In this paper, we study the scheduling problem with QoS
constraints for MVNOs without a priori knowledge. We
propose two learning-aided scheduling algorithms LSchd and
DSchd for the case where the MVNO makes decision by
leveraging the information of reward and service quality based
on Lyapunov optimization approaches. We show that even
when the system statistics are non-stationary, both LSchd and
DSchd can achieve a O(1/V )-optimal network utility subject
to average QoS constraints for a large parameter V, and DSchd
significantly improves the convergence speed. We evaluate the
proposed LSchd and DSchd algorithms by simulations based
on traces collected from real cellular network, which guarantee
the QoS of different application and provide insights into the
design of learning-aided algorithms for practical systems.

Acknowledgments: The work was partially supported by
NSF (Grants: CNS-1547461, CNS-1457060, CCF-1423542),
NBRPC (Grants: 2011CBA00300, 2011CBA00301) and
NSFC (Grants: 61361136003, 61303195).

REFERENCES

[1] C. Liang and F. R. Yu, “Wireless virtualization for next generation
mobile cellular networks,” Wireless Communications, IEEE, vol. 22,
no. 1, pp. 61–69, 2015.

[2] “Project Fi,” https://fi.google.com/about/.
[3] “Skytone,” https://skytone.vmall.com/.
[4] Grand View Research, “Mobile Virtual Network Operator (MVNO)

market analysis and segment forecasts to 2020,” Tech. Rep., 2015.
[5] F. Zarinni, A. Chakraborty, V. Sekar, S. R. Das, and P. Gill, “A first look

at performance in mobile virtual network operators,” in Proceedings of
the 2014 Conference on Internet Measurement Conference. ACM, 2014,
pp. 165–172.

[6] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[7] H. Wu, X. Lin, X. Liu, K. Tan, and Y. Zhang, “CoSchd: coordinated
scheduling with channel and load awareness for alleviating cellular
congestion,” IEEE/ACM Trans. on Networking, to appear.

[8] S. Li, J. Huang, and S.-Y. R. Li, “Dynamic profit maximization of
cognitive mobile virtual network operator,” vol. 13, no. 3, pp. 526–540,
2014.

[9] M. J. Neely, S. T. Rager, and T. F. La Porta, “Max weight learning
algorithms for scheduling in unknown environments,” IEEE Trans. on
Automatic Control, vol. 57, no. 5, pp. 1179–1191, 2012.

[10] W. Ouyang, S. Murugesan, A. Eryilmaz, and N. B. Shroff, “Scheduling
with rate adaptation under incomplete knowledge of channel/estimator
statistics,” in Communication, Control, and Computing (Allerton), 2010
48th Annual Allerton Conference on. IEEE, 2010, pp. 670–677.

[11] L. Huang, “The value-of-information in matching with queues,” in ACM
MobiHoc. ACM, 2015.

[12] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and
cross-layer control in wireless networks. Now Publishers Inc, 2006.

[13] J. Renegar, “Some perturbation theory for linear programming,” Math-
ematical Programming, vol. 65, no. 1, pp. 73–91, 1994.

[14] L. Huang, X. Liu, and X. Hao, “The power of online learning in
stochastic network optimization,” in ACM Sigmetrics. ACM, 2014,
pp. 153–165.

APPENDIX A
PROOF OF THEOREM 1

Let

�t(n)

=

X

i2A(t)

�
V [gn(i)rk(i),n(i) � Cn(i)(t)]� pk(i),n(i)⇥k(i)(t)

 
.

Lemma 2 Under LSched, we have with probability P�
r

P�
p

that for each time t > T
1

,

|�t(nt)� �t(ˆnt)|  2�rAmax

g
max

V + 2�pAmax

KX

k=1

⇥k(t),

where nt is the optimal scheduling using the drift-plus-penalty
with full size and QoS information, and ˆnt is the scheduling
under LSched.

The idea is to compare the utility of optimal scheduling
with utility of sub-optimal scheduling under the same accurate
system statistics. We could bound the difference through an
intermediate step using the utility of sub-optimal scheduling
under estimated system information.

Let ↵ be the optimal X-only policy for ⌘ � ✏
0

1 for any
✏
0

2 [0, ⌘
0

], then

�t(nt) �  (⌘ � ✏
0

1)�
KX

k=1

⇥k(t)(⌘k � ✏
0

)�k. (25)

Then we calculate the Lyapunov drift under LSched. Taking
an expectation over ⇥(t), carrying out a telescoping sum from
t = 0 to T � 1, we have

E[L(T )� L(0)]� V

T�1X

t=0

U(t)

 KT � T (⌘ � ✏
0

1) + 2�rAmax

g
max

TV

� (✏
0

�
min

� 2�pAmax

)

T�1X

t=0

KX

k=1

⇥k(t). (26)

Let ✏
0

= 2�pAmax

/�
min

. If the estimate of p satisfies
2�pAmax

/�
min

 ⌘
0

, we have

1

T

T�1X

t=0

U(t) � 1

V
 (⌘ � ✏

0

1)� K

V
� 2�rAmax

g
max

. (27)



By perturbation theory for linear programming [13], we have

| (⌘)� (⌘ � ✏
0

1)|  O(�r + �p) (28)

Taking a limit as T ! 1, we have

¯ULSched � ¯U⇤ � K +O(�r + �p)

V
� 2�rAmax

g
max

. (29)

On the other hand, when 2�pAmax

/�
min

 ⌘
0

/2 and let
✏
0

= ⌘
0

, we have

⌘
0

�
min

2

KX

k=1

¯

⇥k  1

T

T�1X

t=0

U(t) +K + ✏
1

V < 1. (30)

Given the stability of time-averaging virtual queues, we have
¯Zk  ⌘k�k for all k.

APPENDIX B
PROOF OF THEOREM 2

Let ˜�⇤ be the optimal solution for ˆG(�), and ˆ�⇤ be the
optimal solution for ˆGˆ⇡

(�).

Lemma 3 Suppose G(�) is polyhedral with ⇢ = ⇥(1) > 0,
and that �r  ✏r, �p  ✏p, and �⇡  ✏⇡ . Then, with probability
P�

r

P�
p

P�
⇡

, we have

||�⇤ � ˜�⇤|| A
max

g
max

V �r + 2V f
max

�p/(⌘0�min

)

⇢
,

||ˆ�⇤ � ˜�⇤|| A
max

g
max

V �r + 2V f
max

�p/(⌘0�min

)

⇢
. (31)

Proof: Let f
max

= A
max

g
max

. Using Assumption 1 in
Section IV and Lemma 1 in [14], we can show that with
probability P�

r

P�
p

P�
⇡

, we have

KX

k=1

�̂k  V f
max

⌘
0

�
min

, (32)

which also holds for �⇤ and ˜�⇤. Then similar to the analysis
in Appendix of [11], we get

G(�⇤,↵⇤
) � G(

˜�⇤, ˆ↵⇤
)� 2A

max

g
max

V �r � 2

f
max

V �p
⌘
0

�
min

.

Finally we get the result by using the polyhedral of G(�).
To prove Theorem 2, we firstly need to show that given (16),

�V (t) should still be the same with (10). It is trivial when
⇥k(t)�⌘kAk(t) � ⇣k��̂⇤

k . When ⇥k(t)�⌘kAk(t)  ⇣k��̂⇤
k ,

since ⇣k = (log V )

2 and �̂⇤
k = O(V ), given a sufficiently large

V , ⇣k � �̂⇤
k should be negative. Therefore we have

�V (t)

 E
⇢ KX

k=1

[

1

2

(⇥k(t)� ⌘kAk(t))
2

+ Zk(t)⇥k(t) +
1

2

Zk(t)
2

� 1

2

⇥k(t)
2

]� V U(t)
��⇥(t)

�

 K � E
⇢
V U(t)�

KX

k=1

⇥k(t)(Zk(t)� ⌘kAk(t))
��⇥(t)

�

Then we define the following drift-augmentation term:

�a(t) ,
KX

k=1

(�̂⇤
k � ⇣)E[Zk(t)� ⌘k�k|⇥(t)]. (33)

Adding it to both side of (11), similar to the proof of
Theorem 1, we can show that with probability P�

r

P�
p

, for
✏
0

�
min

= 2�pAmax

and any t,

¯UDSched

� 1

V
 (⌘ � ✏

0

1)� K

V
� 2�rAmax

g
max

� lim

T!1

1

TV

T�1X

t=0

�a(t).

Using Theorem 2 in [11], we know that the system is stable
under DSched. Thus, using Lemma 4 in [11], we have that

¯Zk � ⌘k�k  lim

t!1
A

max

P{⇥k(t)  A
max

} (34)

By choosing ⌫ =

lnV A
max

 and D = ⇠ � A
max

� lnV A
max

 ,
we have ¯Zk � ⌘k�k  ⇠/V . Furthermore, we can show
that �̂k = O(V ) as in Appendix F of [11], and thus
limT!1

1

TV

PT�1

t=0

�a(t) = O(1/V ).

APPENDIX C
PROOF OF THEOREM 3

To prove the convergence time, we define a different Lya-
punov function as follows:

L
0

(t) =
1

2

||⇥(t)� ˜�⇤||2, (35)

Then, we define a one-slot conditional Lyapunov drift as
�

0

(t) = E[L
0

(t + 1) � L
0

(t)|⇥(t)], which can be bounded
as follows

�

0

(t)  K +

KX

k=1

(⇥k(t)� �̃⇤
k)E[Zk(t)� ⌘k�k|⇥(t)]. (36)

Similar to the analysis of Theorem 3 in [11], we can show that
the Lyapunov function has a constant negative drift. From the
definition of G(�) and ˆG(�), we know that under LSched,
KP

k=1

E[Zk(t)�⌘k�k] is the subgradient of ˆG(�) at ⇥(t). Thus

�

0

(t)  K � ⇢||⇥(t)� �̃⇤|| (37)

When ||⇥(t)� �̃⇤||� K
⇢�✏

0

(0  ✏
0

 ⇢), we have

E[||⇥(t+ 1)� �̃⇤|||⇥(t)]  ||⇥(t)� �̃⇤||� ✏
0

(38)

Let D0
1

=

K
⇢�✏

0

. According to (33),

D
1

= D0
1

+

A
max

g
max

V �r + 2V f
max

�p/(⌘0�min

)

⇢
(39)

Note that �̃⇤
k = O(V ). Thus, E[TLSched

D
1

] = E[T
1

+O(V )].
For DSched, it uses the estimated value of Lagrangian

mulitipliers. Thus, the initial value of the algorithm jumps
to �̂⇤. The convergence time of DSched is E[TDSched

D
2

] =

E[T
2

+O(

2�
p

V f
max

⇢✏
0

⌘ )].


