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Quantum random number generation
Xiongfeng Ma1, Xiao Yuan1, Zhu Cao1, Bing Qi2,3 and Zhen Zhang1

Quantum physics can be exploited to generate true random numbers, which have important roles in many applications, especially
in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness—
coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine
randomness is generally considered impossible with only classical means. On the basis of the degree of trustworthiness on devices,
quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on
fully trusted and calibrated devices and typically can generate randomness at a high speed by properly modelling the devices. The
second category is self-testing QRNG, in which verifiable randomness can be generated without trusting the actual implementation.
The third category, semi-self-testing QRNG, is an intermediate category that provides a tradeoff between the trustworthiness on the
device and the random number generation speed.
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INTRODUCTION
Random numbers have essential roles in many fields, such as
cryptography,1 scientific simulations,2 lotteries and fundamental
physics tests.3 These tasks rely on the unpredictability of
random numbers, which generally cannot be guaranteed in
classical processes. In computer science, random number
generators (RNGs) are based on pseudo-random number
generation algorithms,4 which deterministically expand a random
seed. Although the output sequences are usually perfectly
balanced between 0 and 1 s, a strong long-range correlation
exists, which can undermine cryptographic security, cause
unexpected errors in scientific simulations or open loopholes in
fundamental physics tests.5–7

Many researchers have attempted to certify randomness solely
based on the observed random sequences. In the 1950s,
Kolmogorov developed the Kolmogorov complexity concept to
quantify the randomness in a certain string.8 An RNG output
sequence appears random if it has a high Kolmogorov complexity.
Later, many other statistical tests9–11 were developed to
examine randomness in the RNG outputs. However, testing an
RNG from its outputs can never prevent a malicious RNG from
outputting a predetermined string that passes all of these
statistical tests. Therefore, true randomness can only be obtained
via processes involving inherent randomness.
In quantum mechanics, a system can be prepared in a

superposition of the (measurement) basis states, as shown in
Figure 1. According to Born’s rule, the measurement outcome of a
quantum state can be intrinsically random—i.e., it can never be
predicted better than blindly guessing. Therefore, the nature of
inherent randomness in quantum measurements can be
exploited for generating true random numbers. Within a
resource framework, coherence12 can be measured similarly to
entanglement.13 By breaking the coherence or superposition of
the measurement basis, it is shown that the obtained intrinsic
randomness comes from the consumption of coherence. In turn,
quantum coherence can be quantified from intrinsic
randomness.14

A practical QRNG can be developed using the simple process as
shown in Figure 1. On the basis of the different implementations,
there exists a variety of practical QRNGs. Generally, these QRNGs
are featured for their high generation speed and a relatively low
cost. In reality, quantum effects are always mixed with classical
noises, which can be subtracted from the quantum randomness
after properly modelling the underlying quantum process.15

The randomness in the practical QRNGs usually suffices for
real applications if the model fits the implementation adequately.
However, such QRNGs can generate randomness with
information-theoretical security only when the model
assumptions are fulfilled. In the case that the devices are
manipulated by adversaries, the output may not be genuinely
random. For example, when a QRNG is wholly supplied by a
malicious manufacturer, who copies a very long random string
to a large hard drive and only outputs the numbers from the
hard drive in sequence, the manufacturer can always predict
the output of the QRNG device.
On the other hand, a QRNG can be designed in such a way

that its output randomness does not rely on any physical
implementations. True randomness can be generated in a
self-testing way even without perfectly characterising the
realisation instruments. The essence of a self-testing QRNG
is based on device-independently witnessing quantum
entanglement or non-locality by observing a violation of the Bell
inequality.3 Even if the output randomness is mixed with
uncharacterised classical noise, we can still get a lower bound
on the amount of genuine randomness based on the amount of
non-locality observed. The advantage of this type of QRNG is the
self-testing property of the randomness. However, because the
self-testing QRNG must demonstrate non-locality, its generation
speed is usually very low. As the Bell tests require random
inputs, it is crucial to start with a short random seed. Therefore,
such a randomness generation process is also called randomness
expansion.
In general, a QRNG comprises a source of randomness and a

readout system. In realistic implementations, some parts may be
well characterised, while others are not. This motivates the
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development of an intermediate type of QRNG, between practical
and fully self-testing QRNGs, which is called semi-self-testing.
Under several reasonable assumptions, randomness can be
generated without fully characterising the devices. For instance,
faithful randomness can be generated with a trusted readout
system and an arbitrary untrusted randomness resource. A
semi-self-testing QRNG provides a trade off between practical
QRNGs (high performance and low cost) and self-testing QRNGs
(high security of certified randomness).
In the past two decades, there has been tremendous

development for all the three types of QRNG: trusted device,
self-testing and semi-self-testing. In fact, there are commercial
QRNG products available in the market. A brief summary of
representative practical QRNG demonstrations that highlights the
broad variety of optical QRNG is presented in Table 1. These QRNG
schemes will be discussed further in Sections ‘Trusted-device
QRNG I: single-photon detector’ and ‘Trusted-device QRNG II:
macroscopic photodetector’. A summary of self-testing and
semi-self-testing QRNG demonstrations is presented in Table 2,
which will be reviewed in detail in Sections ‘Self-testing QRNG’
and ‘Semi-self-testing QRNGs’.

TRUSTED-DEVICE QRNG I: SINGLE-PHOTON DETECTOR
True randomness can be generated from any quantum process
that breaks coherent superposition of states. Because of the
availability of high-quality optical components and the potential
of chip-size integration, most of today’s practical QRNGs are
implemented in photonic systems. In this survey, we focus on
various implementations of optical QRNGs.
A typical QRNG includes an entropy source for generating

well-defined quantum states and a corresponding detection
system. The inherent quantum randomness in the output is
generally mixed with classical noises. Ideally, the extractable
quantum randomness should be well quantified and be the
dominant source of the randomness. By applying randomness
extraction, genuine randomness can be extracted from the
mixture of quantum and classical noise. The extraction procedure
is detailed in Materials and Methods.

Qubit state
Random bits can be generated naturally by measuring a qubit.
(A qubit is a two-level quantum-mechanical system, which, similar
to a bit in classical information theory, is the fundamental unit of
quantum information.) þj i ¼ 0j i þ 1j ið Þ= ffiffiffi

2
p

in the Z basis, where
|0〉 and |1〉 are the eigenstates of the measurement Z. For example,
Figure 2a shows a polarisation-based QRNG, where |0〉 and |1〉
denote horizontal and vertical polarisation, respectively, and |+〉
denotes +45° polarisation. Figure 2b presents a path-based QRNG,
where |0〉 and |1〉 denote the photon travelling via path R and T,
respectively.
The most appealing property of this type of QRNGs lies on their

simplicity in theory that the generated randomness has a clear
quantum origin. This scheme was widely adopted in the early
development of QRNGs.16–18 As at most one random bit can be
generated from each detected photon, the random number
generation rate is limited by the detector’s performance, such as
dead time and efficiency. For example, the dead time of a typical
silicon SPD based on an avalanche diode is tens of nanoseconds.19

Therefore, the random number generation rate is limited to tens
of Mbps, which is too low for certain applications such as
high-speed quantum key distribution (QKD), which can be
operated at GHz clock rates.20,21 Various schemes have been
developed to improve the performance of QRNG based on SPD.

Temporal mode
One way to increase the random number generation rate is to
perform measurement on a high-dimensional quantum space,
such as measuring the temporal or spatial mode of a photon.
Temporal QRNGs measure the arrival time of a photon, as shown
in Figure 2c. In this example, the output of a continuous-wave
laser is detected by a time-resolving SPD. The laser intensity can
be carefully controlled such that within a chosen time period
T there is roughly one detection event. The detection time is
randomly distributed within the time period T and digitised with a
time resolution of δt. The time of each detection event is recorded
as raw data. Thus, for each detection, the QRNG generates about
log2(T /δt) bits of raw random numbers. Essentially, δt is limited by
the time jitter of the detector (typically in the order of 100 ps),
which is normally much smaller than the detector deadtime
(typically in the order of 100 ns).19

One important advantage of temporal QRNGs is that more than
one bit of random number can be extracted from a single-photon
detection, thus improving the random number generation rate.
The time period T is normally set to be comparable to the detector
deadtime. Comparing with the qubit QRNG, the temporal-mode
QRNG alleviates the impact of detection deadtime. For example, if
the time resolution and the dead time of an SPD are 100 ps and
100 ns, respectively, the generation rate of temporal QRNG is
around log2(1,000) × 10 Mbps, which is higher than that of the
qubit scheme (limited to 10 Mbps). The temporal QRNGs have
been well studied recently.22–26

Spatial mode
Similar to the case of temporal QRNG, multiple random bits can be
generated by measuring the spatial mode of a photon with a
space-resolving detection system. One illustrative example is to
send a photon through a 1 ×N beam splitter and to detect the
position of the output photon. Spatial QRNG has been
experimentally demonstrated by using a multi-pixel single-photon
detector array,27 as shown in Figure 2d. The distribution of the
random numbers depends on both the spatial distribution of light
intensity and the efficiency uniformity of the SPD arrays.
The spatial QRNG offers similar properties as the temporal

QRNG, but it requires multiple detectors. In addition, correlation
may be introduced between the random bits because of

N

S

Figure 1. Electron spin detection in the Stern–Gerlach experiment.
Assume that the spin takes two directions along the vertical axis,
denoted by 9↑〉 and 9↓〉. If the electron is initially in a superposition
of the two spin directions, -j i ¼ mj i þ kj ið Þ= ffiffiffi

2
p

, detecting the
location of the electron would break the coherence, and the outcome
(↑ or ↓) is intrinsically random.
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cross talk between different pixels in the closely packed
detector array.

Multiple photon-number states
Randomness can be generated not only from measuring a single
photon but also from quantum states containing multiple
photons. For instance, a coherent state

αj i ¼ e - αj j2
2

X1
n¼0

αnffiffiffiffi
n!

p nj i ð1Þ

is a superposition of different photon-number (Fock) states {|n〉},
where n is the photon number and |α|2 is the mean photon
number of the coherent state. Thus, by measuring the photon
number of a coherent laser pulse with a photon number-resolving
SPD, we can obtain random numbers that follow a Poisson
distribution. QRNGs based on measuring photon number have
been successfully demonstrated in experiments.28–30 Interestingly,
random numbers can be generated by resolving photon-number
distribution of a light-emitting diode (LED) with a consumer-grade
camera inside a mobile phone, as shown in a recent study.31

Note that the above scheme is sensitive to both the
photon-number distribution of the source and the detection
efficiency of the detector. In the case of a coherent state source, if
the loss can be modelled as a beam splitter, the low detection
efficiency of the detector can be easily compensated by using a
relatively strong laser pulse.

TRUSTED-DEVICE QRNG II: MACROSCOPIC PHOTODETECTOR
The performance of an optical QRNG largely depends on the
detection device used. Besides SPD, high-performance
macroscopic photodetectors have also been applied in various
QRNG schemes. This is similar to the case of QKD, where protocols
based on optical homodyne detection32 have been developed,
with the hope to achieve a higher key rate over a low-loss channel.
In the following discussion, we review two examples of QRNG
implemented with macroscopic photodetector.

Vacuum noise
In quantum optics, the amplitude and phase quadratures of the
vacuum state are represented by a pair of non-commuting
operators (X and P with [X, P] = i/2), which cannot be determined
simultaneously with an arbitrarily high precision33—i.e.,
〈(ΔX)2〉× 〈(ΔP)2〉⩾ 1/16, with ΔO defined by O − 〈O〉 and 〈O〉
denoting the average of O. This can be easily visualised in the
phase space, where the vacuum state is represented by a
two-dimensional Gaussian distribution centred at the origin with
an uncertainty of 1/4 (the shot-noise variance) along any
directions, as shown in Figure 3a. In principle, Gaussian distributed
random numbers can be generated by measuring any field
quadrature repeatedly. This scheme has been implemented by
sending a strong laser pulse through a symmetric beam splitter
and detecting the differential signal of the two output beams with
a balanced receiver.34–36

Given that the local oscillator is a single-mode coherent state
and the detector is shot-noise limited, the random numbers

Table 1. A brief summary of trusted-device QRNG demonstrations

Year Entropy source Detection Raw Refined Acquisition

2000 Spatial mode16 SPD 1 Mbps — Dedicated
2000 Spatial mode17 SPD 100 Kbps — Dedicated
2014 Spatial mode27 MCP-PCID 8 Mbps — Dedicated
2008 Temporal mode22 SPD 4.01 Mbps — Dedicated
2009 Temporal mode23 SPD 55 Mbps 40 Mbps Dedicated
2011 Temporal mode24 SPD 180 Mbps 152 Mbps Dedicated
2014 Temporal mode25 SPD 109 Mbps 96 Mbps Dedicated
2010 Photon number28 PNRD 50 Mbps — Dedicated
2011 Photon number29 PNRD 2.4 Mbps — Dedicated
2015 Photon number30 PNRD — 143 Mbps Oscilloscope
2010 Vacuum noise34 Homodyne 10 Mbps 6.5 Mbps Dedicated
2010 Vacuum noise35 Homodyne — 12 Mbps Dedicated
2011 Vacuum noise36 Homodyne 3 Gbps 2 Gbps Dedicated
2010 ASE-intensity noise46 Photo detector 12.5 Gbps — Dedicated
2011 ASE-intensity noise47 Photo detector 20 Gbps — Dedicated
2010 ASE-phase noise40 Self-heterodyne 1 Gbps 500 Mbps Oscilloscope
2011 ASE-phase noise41 Self-heterodyne 1.2 Gbps 1.11 Gbps Oscilloscope
2012 ASE-phase noise42 Self-heterodyne 8 Gbps 6 Gbps Oscilloscope
2014 ASE-phase noise43 Self-heterodyne 80 Gbps — Oscilloscope
2014 ASE-phase noise44 Self-heterodyne 82 Gbps 43 Gbps Oscilloscope
2015 ASE-phase noise45 Self-heterodyne 80 Gbps 68 Gbps Oscilloscope

Abbreviations: Acquisition, data acquisition by dedicated hardware or commercial oscilloscope; BS, beam splitter; CMOS, complementary metal-oxide
semiconductor; MCP-PCID, microchannel plate-based photon-counting imaging detector; PNRD, photon number-resolving detector; Raw, reported raw
generation rate; Refined, reported refined rate; SPD, single-photon detector.
Detailed description of these schemes can be found in Sections ‘Trusted-device QRNG I: single-photon detector’ and ‘Trusted-device QRNG II: macroscopic
photodetector’. Note that the quality/security of random numbers in different demonstrations may be different.

Table 2. A summary of self-testing and semi-self-testing QRNG
demonstrations

Year Type Detection Speed Acquisition

2010 Self-testing63 Ion-trap Very slow Dedicated
2013 Self-testing64 SPD 0.4 bps Dedicated
2015 SI81 SPD 5 kbps Dedicated
2015 CV-SI83 Homodyne 1 Gbps Oscilloscope
2015 Self-testing with fixed

dimension85
SPD 23 bps Dedicated

Abbreviations: CV, continuous variable; MDI, measurement device inde-
pendent; SI, source independent.
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generated in this scheme follow a Gaussian distribution, which is
on demand in certain applications, such as Gaussian-Modulated
Coherent States (GMCS) QKD.32 There are several distinct
advantages of this approach. First, the resource of quantum
randomness, the vacuum state, can be easily prepared with a high
fidelity. Second, the performance of the QRNG is insensitive to
detector loss, which can be simply compensated by increasing the
local oscillator power. Third, the field quadrature of vacuum is a
continuous variable, suggesting that more than one random bit
can be generated from one measurement. For example, 3.25 bits
of random numbers are generated from each measurement.34

In practice, an optical homodyne detector itself contributes
additional technical noise, which may be observed or even
controlled by a potential adversary. A randomness extractor is
commonly required to generate secure random numbers. To
extract quantum randomness effectively, the detector should be
operated in the shot noise-limited region, in which the
overall observed noise is dominated by vacuum noise. We remark
that building a broadband shot noise-limited homodyne
detector operating above a few hundred MHz is technically
challenging.37–39 This may in turn limit the ultimate operating
speed of this type of QRNG.

Amplified spontaneous emission
To overcome the bandwidth limitation of shot noise-limited
homodyne detection, researchers have developed QRNGs
based on measuring phase40–45 or intensity noise46,47 of amplified
spontaneous emission(ASE), which is quantum mechanical by
nature.15,48,49

In the phase noise-based QRNG scheme, random numbers are
generated by measuring a field quadrature of phase-randomised
weak coherent states (signal states). Figure 3c shows the
phase-space representation of a signal state with an average
photon number of n and a phase variance of 〈(Δθ)2〉. If the
average phase of the signal state is around π/2, the uncertainty of
the X-quadrature is of the order of n〈(Δθ)2〉. When n is large, this
uncertainty can be significantly larger than the vacuum noise.
Therefore, phase noise-based QRNG is more robust against

SPD
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ΔΤ ΔΤ ΔΤ

PBS SPD BS SPD

Figure 2. Practical QRNGs based on single-photon measurement. (a) A photon is originally prepared in a superposition of horizontal (H) and
vertical (V) polarisations, described by Hj i þ Vj ið Þ= ffiffiffi

2
p

. A polarising beam splitter (PBS) transmits the horizontal and reflects the vertical
polarisation. For random bit generation, the photon is measured by two single-photon detectors (SPDs). (b) After passing through a symmetric
beam splitter (BS), a photon exists in a superposition of transmitted (T) and reflected (R) paths, Rj i þ Tj ið Þ= ffiffiffi

2
p

. A random bit can be generated by
measuring the path information of the photon. (c) QRNG based on measurement of photon arrival time. Random bits can be generated, for
example, by measuring the time interval, Δt, between two detection events. (d) QRNG based on measurements of photon spatial mode. The
generated random number depends on spatial position of the detected photon, which can be read out by an SPD array.

Figure 3. QRNGs using macroscopic photodetector. (a) Phase-space
representation of the vacuum state. The variance of the X-quadrature
is 1/4. (b) QRNG based on vacuum noise measurements. The system
comprises a strong local oscillator (LO), a symmetric beam splitter
(BS), a pair of photon detectors (PD) and an electrical subtracter (Sub).
(c) Phase-space representation of a partially phase-randomised
coherent state. The variance of the X-quadrature is in the order of
n× 〈Δθ2〉, where n is the average photon number and 〈Δθ2〉 is the
phase noise variance. (d) QRNGs based on measurements of laser
phase noise. The first coupler splits the original laser beam into two
beams, which propagate through two optical fibres of different
lengths, thereafter interfering at the second coupler. The output
signal is recorded by a photon detector. The extra length ΔL in one
fibre introduces a time delay Td between the two paths, which in turn
determines the variance of the output signal.
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detector noise. In fact, this scheme can be implemented with
commercial photo-detectors operated above GHz rates.
QRNG based on laser phase noise was first developed using a

cw laser source and a delayed self-heterodyning detection
system,40 as shown in Figure 3d. Random numbers are generated
by measuring the phase difference of a single-mode laser at times
t and t+Td. Intuitively, if the time delay Td is much larger than the
coherence time of the laser, the two laser beams interfering at the
second beam splitter can be treated as generated by independent
laser sources. In this case, the phase difference is a random
variable uniformly distributed in [− π, π), regardless of the classical
phase noise introduced by the unbalanced interferometer itself.
This suggests that a robust QRNG can be implemented without
phase-stabilising the interferometer. On the other hand, by
phase-stabilising the interferometer, the time delay Td can be
made much shorter than the coherent time of the laser,40

enabling a much higher sampling rate. This phase-stabilisation
scheme has been adopted in a ≥ 6 Gbps QRNG42 and a 68-Gbps
QRNG demonstration.45

Phase noise-based QRNG has also been implemented using a
pulsed laser source, in which the phase difference between
adjacent pulses is automatically randomised.41,43,44 A speed of
80 Gbps (raw rate as shown in Table 1) has been demonstrated.43

It also played a crucial role in a recent loophole-free Bell
experiment.50 Here we want to emphasise that, strictly speaking,
none of these generation speeds are real time, because of the
speed limitation of the randomness extraction.15 Although such a
limitation is rather technical, in practice, it is important to develop
extraction schemes and hardware that can match the fast random
bit generation speed in the future.

SELF-TESTING QRNG
Realistic devices inevitably introduce classical noise that affects
the output randomness, thus causing the generated random
numbers depending on certain classical variables, which might
open up security issues. To remove this bias, one must properly
model the devices and quantify their contributions. In the
QRNG schemes described in Sections ‘Trusted-device QRNG I:
single-photon detector’ and ‘Trusted-device QRNG II: macroscopic
photodetector’, the output randomness relies on the device
models.15,49 When the implementation devices deviate from the
theoretical models, the randomness can be compromised. In this
section, we discuss self-testing QRNGs, whose output randomness
is certified independent of device implementations.

Self-testing randomness expansion
In QKD, secure keys can be generated even when the
experimental devices are not fully trusted or characterised.51,52

Such self-testing processing of quantum information also occurs
in randomness generation (expansion). The output randomness
can be certified by observing violations of the Bell inequalities;3

see Figure 4. Under the no-signalling condition53 in the Bell tests,
it is impossible to violate Bell inequalities if the output is not
random or predetermined by local hidden variables.
As Colbeck54,55 suggested that randomness can be expanded

by untrusted devices, several protocols based on different
assumptions have been proposed. For instance, in a non-
malicious device scenario, we can consider that the devices are
honestly designed but get easily corrupt by unexpected classical
noises. In this case, instead of a powerful adversary that may
entangle with the experiment devices, we can consider a classical
adversary who possesses only classical knowledge of the quantum
system and analyses the average randomness output conditioned
by the classical information. On the basis of the Clauser–Horne–
Shimony–Holt (CHSH) inequality,56 Fehr et al.57 and Pironio et al.58

proposed self-testing randomness expansion protocols against

classical adversaries. The protocols quadratically expand the input
seed, implying that the length of the input seed is O

ffiffiffi
n

p
log 2

ffiffiffi
n

pð Þ,
where n denotes the experimental iteration number.
A more sophisticated exponential randomness expansion

protocol based on the CHSH inequality was proposed by Vidick
and Vazirani,59 in which the lengths of the input seed is O(log2 n).
In the same work, they also presented an exponential expansion
protocol against quantum adversaries, where quantum
memories in the devices may entangle with the adversary. The
Vidick–Vazirani protocol against quantum adversaries places strict
requirements on the experimental realisation. Miller and Shi60

partially solved this problem by introducing a more robust
protocol. Combined with the work by Chung et al.,61 they also
presented an unbounded randomness expansion scheme. By
adopting a more general security proof, Miller and Shi62 recently
showed that genuinely randomness can be obtained as long as
the CHSH inequality is violated. Their protocol greatly improves
the noise tolerance, indicating that an experimental realisation of
a fully self-testing randomness expansion protocol is feasible.
The self-testing randomness expansion protocol relies on a

faithful realisation of Bell test excluding the experimental
loopholes, such as locality and efficiency loopholes. The
randomness expansion protocol against classical adversaries is
first experimentally demonstrated by Pironio et al.63 in an ion-trap
system, which closes the efficiency loophole but not the locality
loophole.
To experimentally close the locality loophole, a photonic system

is more preferable when quantum memories are unavailable.
As the CHSH inequality is minimally violated in an optically
realised system,64,65 the randomness output is also very small
(with min-entropy of Hmin = 7.2 × 10− 5 in each run), and the
randomness generation rate is 0.4 bits per s. To maximise the
output randomness, the implementation settings are designed to
maximally violate the CHSH inequality. Because of experimental
imperfections, the chosen Bell inequality might be sub-optimal for
the observed data. In this case, the output randomness can be
optimised over all possible Bell inequalities.66,67

Although non-locality or entanglement certifies the
randomness, the three quantities, non-locality, entanglement
and randomness, are not equivalent.68 Maximum randomness
generation does not require maximum non-local correlation or a
maximum entangled state. In the protocols based on the CHSH
inequality, maximal violation (non-locality and entanglement)

Figure 4. Illustration of a bipartite Bell test. For random inputs x and
y, two spacelikely separated parties Alice and Bob output a and b,
respectively, without any signaling. A Bell inequality is defined as a
linear combination of the probabilities p(a,b|x,y). For instance,
the Clauser–Horne–Shimony–Holt (CHSH) inequality56 is defined
by S ¼ P

a;b;x;y - 1ð Þaþbþxyp a; b x; yj Þ�SC ¼ 2ð , where all of the inputs
and outputs are bit values, and SC is the classical bound
for all local hidden-variable models. With quantum settings,
that is, performing measurements Ma

x �Mb
y on quantum state

ρAB, p a; b x; yj Þ ¼ Tr ρABM
a
x �Mb

y

h i�
, the CHSH inequality can be

violated up to SQ ¼ 2
ffiffiffi
2

p
. Quantum features (such as intrinsic

randomness) manifest as violations of the CHSH inequality.
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generates 1.23 bits of randomness. It is shown that 2 bits of
randomness can be certified with little involvement of non-locality
and entanglement.68 Furthermore, as discussed in a more generic
scenario involving non-locality and randomness, it is shown that
maximally non-local theories cannot be maximally random.69

Randomness amplification
In self-testing QRNG protocols based on the assumption of
perfectly random inputs, the output randomness is guaranteed by
the violations of Bell tests. Conversely, when all the inputs are
predetermined, any Bell inequality can be violated to an
arbitrary feasible value without invoking a quantum resource.
Under these conditions, all self-testing QRNG protocols cease to
work any more. Nevertheless, randomness generation in the
presence of partial randomness is still an interesting problem.
Here an adversary can use the additional knowledge of the inputs
to fake violations of Bell inequalities. The task of generating
arbitrarily free randomness from partially free randomness is also
called randomness amplification, which is impossible to achieve in
classical processes.
The first randomness amplification protocol was proposed

by Colbeck and Renner.70 Using a two-party chained Bell
inequality,71,72 they showed that any Santha–Vazirani weak
sources73 (defined in Methods), with ϵo0.058, can be amplified
into arbitrarily free random bits in a self-testing way by requiring
only no-signalling. A basic question of randomness amplification is
whether free random bits can be obtained from arbitrary weak
randomness. This question was answered by Gallego et al.,74 who
demonstrated that perfectly random bits can be generated using
a five-party Mermin inequality75 with arbitrarily imperfect random
bits under the no-signalling assumption.
Randomness amplification is related to the freewill

assumption5–7,76–79 in Bell tests. In experiments, the freewill
assumption requires the inputs to be random enough such that
violations of Bell inequalities are induced from quantum effects
rather than predetermined classical processes. This is extremely
meaningful in fundamental Bell tests, which aim to rule out local
realism. Such fundamental tests are the foundations of self-testing
tasks, such as device-independent QKD and self-testing QRNG.
Interestingly, self-testing tasks require a faithful violation of a Bell
inequality, in which intrinsic random numbers are needed.
However, to generate faithful random numbers, we in turn need
to witness non-locality, which requires additional true random-
ness. Therefore, the realisations of genuine loophole-free Bell tests
and, hence, fully self-testing tasks are impossible. Self-testing
protocols with securities independent of the untrusted part can be
designed only by placing reasonable assumptions on the
trusted part.

SEMI-SELF-TESTING QRNGS
Traditional QRNGs based on specific models pose security risks in
fast random number generation. On the other hand, the

randomness generated by self-testing QRNGs is information-
theoretically secure even without characterising the devices, but
the processes are impractically slow. As a compromise,
intermediate QRNGs might offer a good tradeoff between trusted
and self-testing schemes—realising both reasonably fast and
secure random number generation.
As shown in Figure 5, a typical QRNG comprises two main

modules: a source that emits quantum states and a measurement
device that detects the states and outputs random bits. In
trusted-device QRNGs, both source and measurement devices15,49

must be modelled properly, whereas the output randomness
in the fully self-testing QRNGs does not depend on the
implementation devices.
In practice, there exist scenarios that the source (respectively,

measurement device) is well characterised, whereas the
measurement device (respectively, source) is not. Here we review
the semi-self-testing QRNGs, where parts of the devices are
trusted.

Source-independent QRNG
In source-independent QRNG, the randomness source is assumed
to be untrusted, whereas the measurement devices are trusted.
The essential idea for this type of scheme is to use the
measurement to monitor the source in real time. In this case,
normally one needs to randomly switch among different
(typically, complement) measurement settings, so that the source
(assumed to be under control of an adversary) cannot predict the
measurement ahead. Thus, a short seed is required for the
measurement choices.
In the illustration of semi-self-testing QRNG, Figure 5, the

source-independent scheme is represented by a unique
x (corresponding to a state ρx) and multiple choices of the
measurement settings y. In Section ‘Trusted-device QRNG I:
single-photon detector’, we present that randomness can be
obtained by measuring |+〉 in the Z basis. However, in a source-
independent scenario, we cannot assume that the source emits
the state |+〉. In fact, we cannot even assume the dimension of the
state ρx. This is the major challenge facing this type of scheme.
To faithfully quantify the randomness in the Z basis

measurement, first a squashing model is applied so that the
to-be-measured state is equivalent to a qubit.80 Note that this
squashing model puts a strong restriction on measurement
devices. Then, the measurement device should occasionally
project the input state onto the X basis states, |+〉 and |− 〉, and
check whether the input is |+〉.81 The technique used in the
protocol shares strong similarity with the one used in QKD.82

The X basis measurement can be understood as the phase
error estimation, from which we can estimate the amount of
classical noise. Similar to privacy amplification, randomness
extraction is performed to subtract the classical noise and output
true random values.
The source-independent QRNG is advantageous when the

source is complicated, such as in the aforementioned QRNG
schemes based on measuring single-photon sources,16–18 LED
lights31 and phase fluctuation of lasers.42 In these cases, the
sources are quantified by complicated or hypothetical physical
models. Without a well-characterised source, randomness can still
be generated. The disadvantage of this kind of QRNGs compared
with fully self-testing QRNGs is that they need a good
characterisation of the measurement devices. For example, the
upper and the lower bounds on the detector efficiencies need to
be known to avoid potential attacks induced from detector
efficiency mismatch. In addition, the intensity of light inputs into
the measurement device needs to be carefully controlled to avoid
attacks on the detectors.
Recently, a continuous-variable version of the source-

independent QRNG is experimentally demonstrated83 and

Figure 5. A semi-self-testing QRNG. Conditional on the input setting
x, the source emits a quantum state ρx. Conditional on the input y,
the detection device measures ρx and outputs b.
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achieves a randomness generation rate over 1 Gbps. Moreover,
with state-of-the-art devices, it can potentially reach the speed in
the order of tens of Gbps, which is similar to the trusted-device
QRNGs. Hence, semi-self-testing QRNG is approaching practical
regime.

Measurement-device-independent QRNGs
Alternatively, we can consider the scenario that the input source is
well characterised, whereas the measurement device is untrusted.
In Figure 5, different inputs ρx (hence multiple x) are needed to
calibrate the measurement device with a unique setting y. Similar
to the source-independent scenario, the randomness is originated
by measuring the input state |+〉 in the Z basis. The difference is
that here the trusted source sends occasionally auxiliary quantum
states ρx, such as |0〉, to check whether the measurement is in the
Z basis.84 The analysis combines measurement tomography
with randomness quantification of positive-operator valued
measure, and it does not assume to know the dimension of the
measurement device—i.e., the auxiliary ancilla may have an
arbitrary dimension.
The advantage of such QRNGs is that they remove all detector

side channels, but the disadvantage is that they may be subject to
imperfections in the modelling of the source. This kind of
QRNG is complementary to the source-independent QRNG, and
one should choose the proper QRNG protocol based on the
experimental devices.
We now turn to two variations of measurement-device-

independent QRNGs. First, the measurement tomography step
may be replaced by a certain witness, which could simplify the
scheme at the expense of a slightly worse performance. Second,
similar to the source-independent case, a continuous-variable
version of measurement device-independent QRNG might
significantly increase the bit rate. The challenge lies on
continuous-variable entanglement witness and measurement
tomography.

Other semi-self-testing QRNGs
Apart from the above two types of QRNGs, there are also some
other QRNGs that achieve self-testing except under some mild
assumptions. For example, the source and measurement devices
can be assumed to occupy independent two-dimensional
quantum subspaces.85 In this scenario, the QRNG should use
both different input states and different measurement settings.
The randomness can be estimated by adopting a dimension
witness.86 A positive value of this dimension witness could certify
randomness in this scenario, similar to the fact that a violation of
the Bell inequality could certify randomness of self-testing QRNG
in Section ‘Self-testing QRNG’.

OUTLOOK
The needs of ‘perfect’ random numbers in quantum
communication and fundamental physics experiments have
stimulated the development of various QRNG schemes, from
highly efficient systems based on trusted devices to the more
theoretically interesting self-testing protocols. On the practical
side, the ultimate goal is to achieve fast random number
generation at low cost, while maintaining a high level of
randomness. With the recent development on wave-guide
fabrication technique,87 we expect that chip-size, high-
performance QRNGs could be available in the near future. To
guarantee the output randomness, the underlying physical
models for these QRNGs need to be accurate, and both the
quantum noise and classical noise should be well quantified.
Meanwhile, by developing a semi-self-testing protocol, a QRNG
becomes more robust against classical noises and device
imperfections. In the future, it is interesting to investigate the

potential technologies that are required to make the self-testing
QRNG practical. With the new development on single-photon
detection, the readout part of the self-testing QRNG can be
ready for practical application in the near future. The
entanglement source, on the other hand, is still away from the
practical regime (Gbps).
On the theoretical side, the study of self-testing QRNG has not

only provided a means of generating robust randomness, but also
greatly enriched our understanding on the fundamental questions
in physics. In fact, even in the most recent loophole-free Bell
experiment88–91 in which high-speed QRNG has played a crucial
role, it is still arguable whether it is appropriate to use randomness
generated based on quantum theory to test quantum physics
itself. Other random resources have also been proposed for
loophole-free Bell’s inequality tests, such as independent comic
photons.92 It is an open question whether we can go beyond
QRNG and generate randomness from a more general theory.

MATERIALS AND METHODS
Min-entropy source
Given the underlying probability distribution, the randomness
of a random sequence X on {0, 1}n can be quantified by its
min-entropy

Hmin ¼ - log max
vA 0;1f gn

Prob X ¼ v½ �
� �

ð2Þ

Santha–Vazirani weak sources
We assume that random bit numbers are produced in the time
sequence x1, x2, ..., xj, .... Then, for 0oϵ⩽ 1/2, the Santha–Vazirani
weak source73 is called ϵ-free if

ε�P xj x1; x2; :::; xj - 1; e
�� ��1 - ε;

� ð3Þ
for all values of j. Here e represents all classical variables generated
outside the future light-cone of the Santha–Vazirani weak sources.

Randomness extractor
An RNG typically consists of two components: an entropy source
and a randomness extractor.87 In a QRNG, the entropy source
could be a physical device whose output is fundamentally
unpredictable, whereas the randomness extractor could be an
algorithm that generates nearly perfect random numbers from the
output of the above preceding entropy source, which can be
imperfectly random. The two components of QRNG are
connected by quantifying the randomness with min-entropy.
The min-entropy of the entropy source is first estimated and then
fed into the randomness extractor as an input parameter.
The imperfect randomness of the entropy source can already be

seen in the SPD-based schemes, such as the photon-number
detection scheme. By denoting N as the discrimination upper
bound of a photon number-resolving detector, at most log2(N )
raw random bits can be generated per detection event.
However, as the photon numbers of a coherent state source
follows a Poisson distribution, the raw random bits follow a
non-uniform distribution; consequently, we cannot obtain
log2(N) bits of random numbers. To extract perfectly
random numbers, we require a post-processing procedure
(i.e., randomness extractor).
In the coherent detection-based QRNG, the quantum

randomness is inevitably mixed with classical noises introduced
by the detector and other system imperfections. Moreover, any
measurement system has a finite bandwidth, implying
unavoidable correlations between adjacent samples. Once
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quantified, these unwanted side effects can be eliminated through
an appropriate randomness extractor.15

The composable extractor was first introduced in classical
cryptography,93,94 and it was later extended to quantum
cryptography.95,96 To generate information-theoretically provable
random numbers, two typical extractors, the Trevisan’s extractor
or the Toeplitz-hashing extractor, are generally used in practice.
Trevisan’s extractor97,98 has been proven to be secure against

quantum adversaries.99 Moreover, it is a strong extractor
(its seed can be reused) and its seed length is the polylogarithmic
function of the input. Tevisan’s extractor comprises two main
parts, a one-bit extractor and a combinatorial design. The Toeplitz-
hashing extractor was well developed in the privacy amplification
procedure of the QKD system.100 This kind of extractor is also a
strong extractor.101 By applying the fast Fourier transformation
technique, the runtime of the Toeplitz-hashing extractor can be
improved to O(n log n).
On account of their strong extractor property, both of these

extractors generate random numbers even when the random
seed is longer than the output length of each run. Both extractors
have been implemented15 and the speed of both extractors have
been increased in follow-up studies,102,103 but they remain far
below the operating speed of the QRNG based on laser-phase
fluctuation (68 Gbps45). Therefore, the speed of the extractor is the
main limitation of a practical QRNG.
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