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Controlling topological superconductivity by magnetization dynamics
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We study theoretically a chain of precessing classical magnetic impurities in an s-wave superconductor.
Utilizing a rotating wave description, we derive an effective Hamiltonian that describes the emergent Shiba
band. We find that this Hamiltonian shows nontrivial topological properties, and we obtain the corresponding
topological phase diagrams both numerically and analytically. We show that changing precession frequency offers
control over topological phase transitions and the emergence of Majorana bound states. We propose driving the
magnetic impurities or magnetic texture into precession by means of spin-transfer torque in a spin Hall setup,
and manipulate it using spin superfluidity in the case of planar magnetic order.
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Introduction. The search for topological phases of matter
during the last decade has led to remarkable advancements in
engineering systems with preassigned exotic excitations such
as the Dirac, Weyl, or Majorana fermions. The latter have
been pursued in numerous condensed matter setups [1], as they
have been suggested as promising candidates for fault-tolerant
topological quantum computing [2].

Ubiquitous and destructive by its nature for other phenom-
ena, disorder has become one of the most interesting and
reliable tools to build the sought-for topological systems. Dis-
covered more than half a century ago [3–6], impurity-induced
bound states in superconductors have been recently brought
to life in the experiments [7,8]. The latter, along with the rise
of topological phases of matter, initiated a series of works,
both theoretical [9–26] and experimental [27–30], proposing
to use Shiba states as promising building blocks for desired
Majorana-supporting systems. The underlying mechanism is
reminiscent of that of electronic bands appearing in solids:
Being brought together, discrete Shiba levels originating from
different impurities hybridize and form Shiba bands, with
electrons filling them according to the Pauli principle. The
resulting band structure corresponds to that of a p-wave, or
topological, superconductor that can exhibit Majorana edge
modes depending on the parameters of the system under
consideration. The drawback of such an implementation,
however, is that system parameters are typically fixed, and
one cannot explore easily the full phase diagram.

In this Rapid Communication, motivated by recent progress
in the so-called dynamical, or Floquet topological, insulators
[31,32], we present a promising setup not only for engineering
a topological superconducting phase, but most remarkably
for controlling the topological phase transition by means of
magnetization texture dynamics. We consider theoretically a
“dynamical Shiba chain”, that pertains to a set of classical
magnetic impurities with precessing spins deposited on top of
a two-dimensional (2D) s-wave superconductor (see Fig. 1).
We find that such a dynamical magnetic texture can give rise
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FIG. 1. Sketch of the precessing spin helix in a two-dimensional
s-wave superconductor (the blue plane). The classical spins (red
arrows) are separated by a distance a and precess around the z axis
with a frequency ω0 at a polar angle θ . The precession azimuthal
angle φj (t) = ω0t + khja, with kh the step of the helix and j the
position of the spin in the chain. The local dynamical Shiba state
wave functions which overlap to eventually give a dynamical Shiba
band are shown in green.

to a nontrivial Shiba band which can be controlled by tuning
the precession frequency. Such features are different from
previous time-dependent Floquet superconducting systems
(see, for example, Refs. [33]), in that the band is not
manipulated directly by external fields, but indirectly, by the
dynamics of the magnetic texture that stirs the superconductor
underneath and causes the appearance of such a band. This is
inherently a strong coupling regime, as the magnetic texture is
the reason for such a band to occur in the first place.

Model. The Hamiltonian describing our dynamical systems
reads [10]

Htot(t) = H0 + Himp(t), (1)

where

H0 = ξkτz + �sτx, (2)

Himp(t) = J
∑

j

Sj (t) · σ δ(r − rj ) (3)

are the sum of the Bogoliubov–de Gennes Hamiltonian
for the superconductor and its coupling to the magnetic
impurities, respectively. Here, H0 is written in the Nambu

basis {ck↑,ck↓,c
†
−k↓,−c

†
−k↑}T

, with σ = (σx,σy,σz) and τ =
(τx,τy,τz) matrices acting in spin and particle-hole sub-
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spaces, respectively. The superconducting order parameter
is denoted by �s , and the spectrum of free electrons is
defined as ξk ≡ k2/2m − εF , where εF is the Fermi en-
ergy, and J is the exchange coupling between the spins
and the electrons in the superconductor. Below, we also
set h̄ to unity. For the periodically driven magnetic chain
we assume that the impurities are localized at positions
rj , and have precessing spins that are defined as Sj (t) ≡
[sin θ cos(ω0t + φj ), sin θ sin(ω0t + φj ), cos θ ], with preces-
sion frequency ω0, polar angle θ as shown in Fig. 1, and
equidistant individual phase shifts φj ≡ khaj , j ∈ Z. In the
latter, a denotes the spacing between impurities, and kh is the
so-called helix step.

The time-dependent Schrödinger equation reads
i∂t�(r,t) = Htot�(r,t). This Hamiltonian is periodic,
Htot(t + T ) = Htot(t), with T = 2π/ω0 and, moreover,
the symmetry of the problem allows us to perform a
time-dependent unitary transformation that makes the
problem fully static. We can write �(r,t) = U (t)�(r)e−iEt ,
with U (t) = e−iω0tσz/2, so that we obtain the stationary
Schrödinger equation

HF �(r) = E�(r), (4)

where HF ≡ Htot(0) − Bσz. Here, B ≡ ω0/2 is a fictitious
magnetic field perpendicular to the plane of the supercon-
ductor, which will be referred to as the “driving frequency”
hereinafter, and E is the quasienergy defined modulo ω0/2.
Now, let us make a more concise connection with the usual
stroboscopic, or Floquet, description of periodically driven
systems. The full evolution operator for the driven chain can
be written as

Utot(t) = e−iBσzt e−iHF t . (5)

After one period T , the evolution operator can be written
Utot(T ) = exp (−iHF T ) (up to a sign), with HF identifying as
the Floquet Hamiltonian describing the evolution of the system
at t = nT , with n ∈ N (stroboscopically). The Hamiltonian
HF gives rise to a quasienergy spectrum defined up to integer
multiples of 2B and, as in the static case, can result in nontrivial
topological properties which in an open system are identified
with the appearance of edge states. However, it does not fully
characterize the topological structure and the entire spectrum
of edge states of the driven system. Such a complete description
was developed recently in several works, where they showed
that in order to fully describe that, one needs the evolution
operator at all times t , not only at t = T . However, for our
situation of circular spin texture precession, it turns out thatHF

describes fully the topological structure of the driven system,
and thus we focus on that aspect only in the following.

As discussed in Ref. [34], a single magnetic impurity with
a periodically driven spin gives rise to a pair of Shiba states
residing in the effective gap �eff

s = �s − B, provided the
driving frequency B is smaller than the superconducting gap
�s . This condition is essential to have a gapful system and
well-defined impurity-induced subgap states. The energies of
these states in the deep-dilute regime (α ∼ 1) are given by
±ε0(B), where

ε0(B) ≡
[(

1 − 1

α

)
�s − B cos θ

]
, (6)

and α ≡ πν0J is the dimensionless impurity strength pa-
rameter written in terms of normal-phase density of states
ν0. It has been shown in Refs. [13,14] that a static helical
chain of magnetic impurities produces a 4 × 4 Shiba band
structure with nontrivial topological properties. Moreover,
for α ≈ 1, one can project the resulting 4 × 4 Hamiltonian
onto an effective 2 × 2 that fully characterizes the low-energy
spectrum (the energy separation between the bands is of
order �s).

Hereafter we use Eq. (4) and, following the procedure de-
scribed in Ref. [13], we derive the effective 2 × 2 Hamiltonian
for the emerging Shiba band. The details of this derivation are
given in the Supplemental Material (SM) [35].

Effective band structure. The effective Hamiltonian describ-
ing the Shiba band in the rotating frame in both aforementioned
cases can be written by exploiting the d-vector notation as

HS(k) = d0(k) + d(k) · �, (7)

with

d0(k) = [�s cos θ − B(1 − α sin2 θ )]F0(B,ka,kF a),

dx(k) = (�s − αB cos θ )Fx(B,ka,kF a) sin θ,

dz(k) = −ε0(B) + (�s − B cos θ )Fz(B,ka,kF a), (8)

and dy(k) ≡ 0. Equations (8) represent one of our main results.
Here, � = (�x,�y,�z) represents a resulting Nambu space
which, however, is a complicated admixture of σ and τ .
The form of the functions F0,x,z(B,ka,kF a) is in general
too complicated to be displayed. However, there are various
limiting cases where analytical progress is possible. In this
Rapid Communication we focus on two limiting cases that
can be studied both analytically and numerically, i.e., the short
and the long coherence length, respectively. The first case
corresponds to a chain with only nearest-neighbor hopping, in
other words, the case of a small coherence length ξ � a, where
ξ ≡ vF /

√
�2

s − B2. In this limit, we need to set in Eq. (8) the
following functions,

F0,x(B,ka,kF a) ≡ X̃0,1(a) sin
kha

2
sin ka,

Fz(B,ka,kF a) ≡ X̃0(a) cos
kha

2
cos ka, (9)

where

X̃0(1)(a) = − 2

π
Im(Re) K0

[
−i

(
1 + i

1

kF ξ

)
kF a

]
,

with kF being the Fermi momentum and K0 denoting the zeroth
modified Bessel function of the second kind (for further details,
see Ref. [35] as well as Ref. [36]). Note that the functions X̃0,1

depend at least quadratically on the fictitious magnetic field B,
and for B � �s we can neglect such dependence in leading
order.

The second limiting case describes a chain with very
extended Shiba states, i.e., with a large coherence length
compared to the impurity spacing, ξ 	 a. Contrary to the
small coherence length regime, here all the higher-order
hopping processes become possible. In this regime we obtain
the following expressions for the functions F0,x,z in Eq. (7),
F0,x ≡ [F−

0,1(k) − F+
0,1(k)]/2 and Fz ≡ [F−

0 (k) + F+
0 (k)]/2,

020507-2



RAPID COMMUNICATIONS

CONTROLLING TOPOLOGICAL SUPERCONDUCTIVITY BY . . . PHYSICAL REVIEW B 96, 020507(R) (2017)

where we defined

F s
0(1)(k) ≡

√
2

πkF a
Im(Re) fs(k),

with s = ± and

fs(k) = e−i π
4
[
Li 1

2
(ei(k+skh/2−kF )a) + Li 1

2
(e−i(k+skh/2+kF )a)

]
,

(10)

expressed in terms of the polylogarithm function Li(x).
Note that dx(k) in the expressions given above plays the role

of the gap parameter �k from Ref. [13], which, in the limit of
B � �s , is only slightly reduced by the fictitious field. On the
other hand, dz(k) is strongly affected by the driving, as it results
in a shift of the alignment of the Shiba bands, and eventually
their topology. While d0(k) does not change the topology of
the bands, it does affect their overlap (the absolute gap), and
it can also depend strongly on B for θ → π/2 (planar helix).
In fact, in such a case, the entire dependence on the magnetic
field arises through this term in leading order which, however,
is small for α ∼ 1.

Quasispectrum and topology. In what follows, we study
the topological properties of the Hamiltonian in Eq. (7)
in the short and long coherence length regimes introduced
above. The spectrum can be found easily as E(k) = d0(k) ±√

d2
z (k) + d2

x (k), which, because of the periodic drive, is
uniquely defined only up to an integer multiple of B.
Thus, we need to fold the resulting spectrum into the first
quasienergy Brillouin zone, E(k) ∈ [−B,B). The resulting
one-dimensional Hamiltonian is real, and thus it belongs to the
BDI symmetry class [37]. In this case the number of Majorana
states emerging at one end in the case of open boundary
conditions is given not by a Z2, but by a Z invariant [38],
which reads

W = 1

2π

∫ π

−π

dθ (k), (11)

with θ (k) = Arg[dx(k) + idz(k)]. This winding number char-
acterizes the number of edge states. However, it does not
indicate the presence of an absolute gap in the system, meaning
that it can be well defined even if the system is gapless.
We depict such surprising features in Fig. 2, where we plot
the absolute gap between the Shiba bands, as well as the
corresponding winding number, as functions of the driving
frequency B against the Fermi momentum kF (angle θ ) in
the left (right) column. Both the driving frequency and the
precession angles are tunable parameters and, most strikingly,
this shows that the system can undergo a topological phase
transition by changing the driving frequency.

We note that for the small coherence length regime (top
row) the winding number can be calculated analytically (see
Ref. [35]), whereas for the large coherence length (bottom row)
we restrict ourselves to computing the integral in Eq. (11)
only numerically [39]. A few more comments are in order.
As expected for θ = 0 (corresponding to a ferromagnetic
arrangement of the impurity spins), the gap is absent and the
system is in a gapless trivial phase with zero winding number.
Conversely, when θ = π/2, the spin helix is planar. This in
turn means that the fictitious magnetic field B appearing in the
rotating frame [see Eq. (4)] does not couple to the chain, which
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FIG. 2. The gap around quasienergy E = 0 and the winding
number of the Shiba band for the small and large coherence length
regimes (first and second rows, respectively), plotted as functions of
the driving frequency B and the Fermi momentum kF (precession
angle θ ) in the left (right) column. The continuous black lines
separate regions with different winding numbers W which are well
defined even for the gapless regions. The vertical red lines highlight
the existence of localized Majorana end states in an open system
(see Fig. 3 for details). We set kh = π/4, vF = 0.2, �s = 1, a = 1,
α = 0.9999. The polar angle θ = π/3 and kF = 159 in the left and
right columns correspondingly.

explains why no change of phase occurs while changing the
driving frequency for θ = π/2. Therefore, the system always
enters a topological superconducting phase.

One of the most important signatures of topological
systems are topological edge states. In Fig. 3 we show the
quasispectrum for a dynamical chain with open boundary
conditions and for the case of a short coherence length. We see
that Majorana bound states (MBS) emerge at zero energy (red
line), and that their existence range is in perfect agreement
with the bulk winding number calculation. Moreover, we
found that the MBS even exist in regions where the system
is gapless, albeit they are no longer protected by the gap and
any impurities could easily mix them with the bulk (extended)
states. By changing the driving frequency of the precessing
spins, we demonstrate that our setup enters one of the four
following phases: trivial, gapless or gapful, or topological,
gapless or gapful, thus covering all the possibilities. While for
a region of the parameter space we found gaps at both E = 0
and E = B (see Fig. 3), only the modes at the former are
emerging for the circular driving utilized here. However, such
a conclusion should not hold for more general drivings of the
magnetic texture.

Detection and physical implementations. The dynamically
generated MBS described above could be detected in transport
measurements by a nearby voltage-biased scanning tunneling
microscopy (STM) tip [40]. Alternatively, one could utilize
a recent scheme that relies on the pumped charge by the
precessing texture into the STM tip at different positions in the
chain in the absence of any applied voltage [34,41]. In order to
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FIG. 3. The quasispectrum (normalized by the driving B) for
an open Shiba chain, in the regime of small coherence length as a
function of the driving frequency B. The horizontal red line stands for
the zero quasienergy Majorana end mode, while W defines the bulk
winding number (see main text). A region with two gaps, at E = 0
and E = B, exists, but the latter is trivial as we find no Majoranas
emerging. We set kF = 159, kh = π/4, vF = 0.2, �s = 1, a = 1,
θ = π/3, α = 0.9999.

generate the dynamics, we envision several implementations,
depending on the way the magnetic texture emerges in the
first place. In the case of a preformed helix, either due to
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
mediated by electrons in the superconductor [12], or due
to the spin-orbit interaction (SOI) in the substrate [42], the
precession of the helix corresponds simply to global rotations.
The traditional way to excite such a mode is by driving the
helix with microwaves that excite the ferromagnetic resonance
associated with such a rotation mode. However, in recent
years there has been tremendous progress in exciting magnetic
devices in transport setups by means of the spin Hall effect
[43]. Such a setup would allow for an all-electrical imple-
mentation of a dynamical magnetic texture–superconductor
hybrid, with a controllable frequency (see Ref. [35] for details
on the implementation). Both these methods can give rise to
rotations of the helix, but do not result in changes of the pitch.
However, when the impurities form a planar ferromagnet
(with the exchange interaction keeping the spins in a plane),

it becomes possible to control the pitch kh, the frequency ω,
and the cone angle θ by means of spin biases, as showed
recently in several works [44]. This goes by the name of spin
superfluidity, as there is a direct mapping between a superfluid
flow (such as in He4) and the magnetization flow in such
a planar spin configuration. As detailed in Ref. [35], such
manipulations are possible simply by changing the spin biases
induced by the spin Hall effect applied over the planar spin
configuration, with a pitch in one-to-one correspondence with
the spin supercurrent flowing through the magnetic system, and
an adjustable frequency depending on the relative biases [44].

Discussions and perspectives. The setup proposed in this
Rapid Communication can be generalized to a chain of
precessing magnetic impurities deposited on top of a three-
dimensional (3D) superconductor. Despite a modification in
the Shiba wave-function coherence length, we expect no qual-
itative difference in our main argument concerning a controlled
topological phase transition. Moreover, a 3D superconductor is
expected to reflect the short coherence length regime, whereas
a 2D one can reflect the long coherence length regime. As
a future extension of this work we propose to consider more
complicated networks of driven magnetic impurities, e.g., a 2D
array. Also, generalizations to more complicated textures and
precessions is in order, as our perfect rotation wave description
would break down, and a fully Floquet approach would be
required. The same arguments should apply when the substrate
(superconductor) possesses a spin-orbit interaction.

In conclusion, here we proposed a way to engineer a
controllable topological phase transition by means of mag-
netization texture dynamics. We have shown that a chain
of precessing classical spins deposited on top of an s-wave
superconductor gives rise to a topologically nontrivial Shiba
band, and we have demonstrated that topological phase
transitions in such a band can be controlled by changing the
driving frequency, a tunable parameter in the spin transport
experiments.
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