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Abstract. The research of personalized recommendation techniques today has
mostly parted into two mainstream directions, namely, the factorization-based
approaches and topic models. Practically, they aim to benefit from the numerical
ratings and textual reviews, correspondingly, which compose two major infor-
mation sources in various real-world systems, including Amazon, Yelp, eBay,
Netflix, and many others.
However, although the two approaches are supposed to be correlated for their
same goal of accurate recommendation, there still lacks a clear theoretical un-
derstanding of how their objective functions can be mathematically bridged to
leverage the numerical ratings and textual reviews collectively, and why such a
bridge is intuitively reasonable to match up their learning procedures for the rat-
ing prediction and top-N recommendation tasks, respectively.
In this work, we exposit with mathematical analysis that, the vector-level ran-
domization functions to harmonize the optimization objectives of factorizational
and topic models unfortunately do not exist at all, although they are usually pre-
assumed and intuitively designed in the literature.
Fortunately, we also point out that one can simply avoid the seeking of such a
randomization function by optimizing a Joint Factorizational Topic (JFT) model
directly. We further apply our JFT model to the cross-city Point of Interest (POI)
recommendation tasks for performance validation, which is an extremely difficult
task for its inherent cold-start nature. Experimental results on real-world datasets
verified the appealing performance of our approach against previous methods
with pre-assumed randomization functions in terms of both rating prediction and
top-N recommendation tasks.

Keywords: Topic Model, Recommendation, Factorizational Model

1 Introduction

The vast amount of items in various web-based applications has made it an essential
task to construct reliable Personalized Recommender Systems (PRS) [25]. With the a-
bility to leverage the wisdom of crowds, the Collaborative Filtering (CF)-based [29,16]
approaches have achieved significant success and wide application, especially for those
Latent Factor Models (LFM) [12] based on Matrix Factorization (MF) [30] techniques,
which attempt to model the preferences of users and items collectively through multi-
variate hidden factors, so as to make recommendations based on numerical star rating
predictions.
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Recently, researchers have been putting attention on another important information
source in many online systems, namely, the textual user reviews. Usually, the ratings
and reviews come in pairs in many typical applications, e.g., Amazon and Yelp. While
the ratings act as integrated indicators of user attitudes towards products, the reviews
serve as more detailed explanations of what aspects users care about and why the cor-
responding rating is made [34,33].

As such, the application of Topic Models [4] has gained attention to leverage the
textual reviews for personalized recommendation, especially the frequently used Latent
Dirichlet Allocation (LDA) [5] technique and its variants, for their ability to extract
latent topics/aspects from reviews, which represent the inherently actual factors that
users care about when making numerical ratings [21,20]. This further leads to the recent
research direction to bridge the LFM and LDA models, which makes use of the ratings
and reviews collectively for personalized recommendation [21,20,2,32,23].

However, without a clear mathematical understanding of how the objective func-
tions of LFM and LDA interact with each other when bridged for unified model learn-
ing, current approaches have to base themselves on unvalidated and pre-assumed des-
ignations to bridge the inherently heterogenous objective functions. For example, M-
cAuley et al [21] transform the latent factors in LFM to topic distributions in LDA
through a manually designed randomization function based on logistic normalization,
while Ling et al [20] let the factors and topics be the same by assuming them to be
sampled from mixture Gaussian distributions.

In this work, we investigate the mathematical relations between the probability of
recommending an item to a user and the estimated user-item correlations by LFM or
LDA models. Based on this, we prove that a multiplicatively monotonic randomization
function that transforms latent factors in LFM to topic distributions in LDA actually
does not exist at all. As a result, although some normalization-based transformations
seem to be intuitional in previous work [21], they actually make the objective functions
of LFM and LDA conflict with each other during optimization procedure, where a high-
er value of log-likelihood in the LDA component may force a lower rating prediction in
the LFM component, which is not favoured when bridging the two models.

Fortunately, we further find that instead of transforming a latent factor to a topic
distribution separately, we can simply transform the product of latent factors in LFM
to the corresponding product of topic distributions in LDA as a whole, so as to avoid
the seeking of a theoretically nonexistent randomization function. This is because what
we really care about in practice is the final product of the user/item latent factors (in
LFM) or topic distributions (in LDA), where the former accounts for the predicted user-
item ratings, and the latter affects the log-likelihood of the observed reviews. Based on
these findings, we propose the Joint Factorizational Topic (JFT) model to bridge LFM
and LDA, so as to adopt the numerical ratings and textual reviews collectively, and
at the same time guarantee the inner-model consistency between the LFM and LDA
components.

2 Related Work

With the continuous growth of various online items across a vast range of the Web,
Personalized Recommender Systems (PRS) [25] have set their missions to save users
from information overload [14], and they have been widely integrated into various on-
line applications in the forms of, for example, product recommendation in e-commerce
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[19], friend recommendation in social networks [3], news article recommendation in
web portals [7], and video recommendation in video sharing websites [8], etc.

Early systems of personalized recommendations rely on content-based approaches
[22], which construct the user/item content profiles and make recommendation by par-
ing users with the contently similar items. Content-based approaches usually gain good
accuracy but functionally lack the ability of providing recommendations with novelty,
serendipity, and flexibility. Besides, they usually require a large amount of expensive
human annotations [25]. This further leads to the prospering of Collaborative Filtering
(CF)-based recommendation algorithms [16,29] that leverage the wisdom of the crowd-
s. Typically, they construct the partially observed user-item rating matrix and conduct
missing rating prediction based on the historical records of a user, as well as those of
the others.

With widely recognized performance in rating prediction, scalability, and computa-
tional efficiency, the Latent Factor Models (LFM) [12] based on Matrix Factorization
(MF) [30] techniques for CF have been extensively investigated by the research commu-
nity, and widely applied in practical systems. Perhaps the most early and representative
formalization of LFM for recommendation dates back to Koren et al [15], and oth-
er variants for personalization include Non-negative Matrix Factorization (NMF) [17],
Probabilistic Matrix Factorization (PMF) [27,26], and Maximum Margin Matrix Fac-
torization (MMMF) [28], etc. Despite the important success in rating prediction, the CF
approaches based solely on the numerical ratings suffer from the problems of explain-
ability [34], cold-start [18], and the difficulty to provide more specific recommendations
that meet targeted item aspects [13]. Besides, related research results show that the per-
formance on numerical rating prediction does not necessarily relate to the performance
on practical top-N recommendations [6], and that the numerical star ratings may not
always be a reliable indicator of users’ attitudes towards items [35].

To alleviate these problems, researchers have been investigating the incorporation
of textual reviews for recommendation, which is another important information source
beyond the star ratings in many systems [31]. Early approaches rely on manually ex-
tracted item aspects from reviews for more informed recommendation [1,13] and rating
prediction [11,9], which improved the performance but also required extensive human
participations. As a results, researchers recently have begun to investigate the possibil-
ity of integrating the automatic topic modeling techniques on textual reviews and the
latent factor modeling approach on numerical ratings for boosted recommendation, and
have achieved appealing results [21,2,32].

However, without a clear mathematical exposition of the relationships between la-
tent factor models and topic modeling, current approaches have to base themselves on
manually designed randomization functions or probabilistic distributions. In this work,
however, we attempt to make an exposition on the relationships between the two types
of objective functions, and further bridge the inherently heterogenous models in a har-
monious way for recommendation with the power of both numerical ratings and textual
reviews.

3 Preliminaries and Definitions
3.1 Latent Factor Models (LFM)
Latent Factor Models (LFM) [16] attempt to encode user and item preferences in a
latent factor space so as to estimate the user-item relations for rating prediction, which
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account for many of the frequently used Matrix Factorization (MF) [30] techniques.
Among those, a ‘standard’ and representative formalization [15] predicts the user-item
ratings ru,i with user/item biases and latent factors by,

rate(u, i) = α+ βu + βi + γu · γi (1)

where α is the global offset, βu and βi are user and item biases, γu and γi are the
K-dimensional latent factors of user u and item i, respectively, and “·” denotes vector
multiplication. Intuitively, γu can be interpreted as the preference of user u to some
latent factors, while γi is the property embedding of item i on those latent factors.
Based on a set of observed training records R, the model is typically targeted with the
goal of providing accurate rating predictions, where we determine the parameter set
Θ = {α, βu, βi, γu, γi} with the following minimization problem,

Θ = argmin
Θ

∑
ru,i∈R

(
rate(u, i)− ru,i

)2
+ λΩ(Θ) (2)

and Ω(Θ) is a regularization term. A variety of methods exist to minimize Eq.(2),
for example, Stochastic Gradient Descent (SGD) or Alternating Least Squares (ALS)
[15]. However, this model merely takes into account the numerical ratings and leaves
out the textual reviews, which is information-rich and may well help to provide better
recommendations.

3.2 Latent Dirichlet Allocation (LDA)

Different from LFM, the LDA model attempts to learn a number of K latent topics
from documents (textual reviews in this work), where each word w is assigned to a
topic zw, and each topic z is associated with a word distribution φz . Based on this, each
document d ∈ D is represented with a K-dimensional topic distribution θd, where the
j-th word wd,j in document d discusses its corresponding topic zd,j with probability
θd,zd,j . It is usually convenient to also define the word distribution φz,w, which is the
probability that word w is used for topic z in the whole corpus D. The final model
conducts parameter learning by maximizing the likelihood of observing the whole D:

P (D|θ, φ, z) =
∏
d∈D

Ld∏
j=1

θd,zd,jφzd,j ,wd,j (3)

where Ld is the length (number of words) of document d. Intuitionally, we are multi-
plying the probability of seeing a particular topic in θd with the likelihood of seeing a
particular word given the topic to estimate the likelihood of seeing the whole corpus.

3.3 Randomization Function

Let γ ∈ RK be an arbitrary vector and θ ∈ [0, 1]K be a stochastic vector, where
their dimensions are the same K as the latent factors γu, γi and latent topics θd in the
previous subsections. According to the definition, we have 0 ≤ θk ≤ 1 and ‖θ‖1 =∑K
k=1 θk = 1. The target of a randomization function f : RK → RK is to convert

an arbitrary vector γ to a probabilistic distribution θ = f(γ). The inherent nature of a
randomization function is the key component to bridge the gap between LFM and LDA
models, which links the latent factors γ in LFM to the topic distributions θ in LDA,
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and thus makes it possible to model the numerical ratings and textual reviews in a joint
manner.

In the background of personalized recommendation, a desired randomization func-
tion is expected to be monotonic in the sense that it preserves the orderings, so that the
largest value of γ should also correspond to the largest value in θ, thus the dimensions
of the LFM model and the LDA model are inherently aligned during the model learning
process to express the user-item relations in a shared feature space. As a result, the basic
properties of a randomization function f(·) can be summarized as follows:{

0 ≤ f(γ)i ≤ 1, ‖f(γ)‖1 = 1

γi < γj → f(γ)i < f(γ)j
,∀γ ∈ RK , 1 ≤ i, j ≤ K (4)

For example, in [21] the authors designed a randomization function as:

θk = f(γ)k =
exp (κγk)∑
k′ exp (κγk′)

(5)

which conducts logistic normalization on a latent factor. In the following, we inves-
tigate the relationship between the objective functions of LFM and LDA, and further
point out the properties required on a randomization function to harmonize the models
when bridging the two different functions.

4 Bridging Factors and Topics

4.1 Probability of Item Recommendation

In the Latent Factor Model (LFM), a recommendation list is constructed in descending
order of the predicted ratings rate(u, i) for a given user, which means that an item
i with a higher rating prediction on user u also gains a higher probability of being
recommended P (i|u). As a result,

PLFM(i|u) ∝ rate(u, i) ∝ γu · γi (6)

where ∝ denotes a positive correlation, and we leave out the parameters α, βu and βi
because they are constants given a user and an item in the model learning process [15].

In Latent Dirichlet Allocation (LDA) for personalized recommendation, each user
or item is represented by its corresponding set of textual reviews du or di, and the under-
lying intuition models the topical correlation between them by estimating the potential
review du,i that a user may write on an item, based on the topical distributions θdu and
θdi . To simplify the notations, we use u, i, and k to denote the user or item document
representations du, di and the k-th latent topic zk interchangeably, and we thus have:

P (k|u) = θu,k and P (k|i) = θi,k (7)

The LDA model conducts likelihood maximization on each observed review du,i given
the corresponding user u and item i, and the embedded topical distribution represents
the probability of observing each topic k, which is:

P (k|u, i) = θd,k (8)
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LDA applies an indirect causal effect from users to items via latent topics [5], which
means that user u and item i are conditionally independent given topic k, i.e.,P (u|i, k) =
P (u|k), and this further gives us the following:

P (u, i, k) =
P (u, k)P (i, k)

P (k)
(9)

By applying Eq.(9) to Eq.(8), we decompose the topical distribution of a review into
the topical representations of the corresponding user and item:

θd,k = P (k|u, i) = P (k|u)P (k|i) P (u)P (i)

P (k)P (u, i)
∝ P (k|u)P (k|i) = θu,kθi,k (10)

where P (u), P (i) and P (u, i) are constants in the LDA procedure, and the latent top-
ics zk are identically independent from each other, giving us constant and equal valued
P (k)’s over the K topics. As a result, we have the following conditional recommenda-
tion probability for LDA models:

PLDA(i|u) =
K∑
k=1

P (k|u)P (i|k) =
K∑
k=1

P (k|u)P (k|i) P (i)

P (k)

∝
K∑
k=1

P (k|u)P (k|i) =
K∑
k=1

θu,kθi,k = θu · θi

(11)

and this result conforms with Eq.(10) in that, the probability of recommending an item
given a user is positively correlated to the sum of topic probabilities that a user may
textually review on an item.

4.2 Bridging the Objective Functions

According to the conditional item recommendation probabilities given a target user
specified in Eq.(6) and Eq.(11) for LFM and LDA models, respectively, a favoured
approach to bridge the two models to leverage the power of both ratings and reviews
should harmonize their objective functions, so that a higher value of γu · γi also corre-
sponds to a higher value in θu · θi. More precisely, except for the monotonic property
defined in Eq.(4) on a vector itself, the randomization function f(·) from γ to θ is also
required to be monotonic for vector multiplications:

γ1 · γ2 < γ3 · γ4 → f(γ1) · f(γ2) < f(γ3) · f(γ4), ∀γ1, γ2, γ3, γ4 (12)

In this way, the LFM and LDA components in a bridged objective function would not
conflict with each other during the model learning process, because both of them in-
crease/decease the recommendation probability P (i|u) at the same time for each single
iteration.

Previous work intuitionally assumes that a randomization function satisfying the
vector-level monotonic property in Eq.(4) will also be monotonic on product-level as E-
q.(12). Frequently used examples are the normalization-based randomization functions,
which normalize the elements of γ to construct θ so that they sum to one [21,20,2,32].
In [21] for example, a logistic normalization randomization function as in Eq.(5) is ap-
plied so as to minimize the following joint objective function to bridge the LFM and
LDA models:

O =
∑

ru,i∈R

(
rate(u, i)− ru,i

)2︸ ︷︷ ︸
LFM component

−λL
(
D|θ, φ, z

)︸ ︷︷ ︸
LDA component

(13)
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where the LFM component still minimizes the error in predicted ratings, while the
LDA component is the log-likelihood of the probability for the review corpus in Eq.(3).

Previous designations do seem intuitional and reasonable, and they indeed improve
the performance of personalized recommendation in many cases. However, we would
like to point out in this work that the vector-level monotonic property does not nec-
essarily guarantee the monotonic property on a product-level. Actually, we prove that
such a randomization function that satisfies both vector- and product-level monotonic
properties does not exist at all, and the proof is omitted due to the page limit (details
can be found in the supplementary file).

For this reason, forcing a vector-level randomization function on the latent factors
to bridge the LFM and LDA models will result in a conflict between the two compo-
nents during the procedure of objective optimization, i.e., while the LFM component
gains a higher probability of item recommendation with a larger value of γu · γi, the
LDA component may reversely force a lower recommendation probability with θu · θi
just because of the mathematical property of the randomization function, which is not
favoured in model learning process. This further explains the observation that the pre-
diction accuracy of Eq.(13) tends to fluctuate drastically during optimization, although
the overall performance generally tends to increase along with the iterations.

4.3 Direct Product-Level Randomization

Despite that a randomization function with product-level monotonic property does not
exist, we shall notice a simple fact that the de facto components that we need to consider
so as to preserve the orderings of PLFM(i|u) and PLDA(i|u), are the final product of the
latent factors or latent topics as a whole, i.e., γu · γi and θu · θi, rather than each latent
factor γ to a latent topic distribution θ separately.

More precisely, what we really need in the LDA model of Eq.(3) is the topic distri-
bution of each document θd, where we have θd,k ∝ θu,kθi,k by Eq.(10). As a result, we
can apply a randomization function f(·) to the product of latent factors γu,kγi,k direct-
ly, so as to obtain the product of latent topic distributions θu,kθi,k as a whole, which is
further positively correlated to θd,k that will finally be adopted by the LDA component
for model learning.

A lot of normalization-based randomization functions guarantee the product-level
monotonic property when applied to the product of latent factors directly. In this work,
we adopt the logistic-normalization function to enforce θu,kθi,k (and thus θd,k) to be
positive and sum to one:

θd,k ∝ θu,kθi,k = f(γu,kγi,k)
.
=

exp(γu,kγi,k)∑
k′ exp(γu,k′γi,k′)

(14)

which preserves the orderings of the dimensions from γu ·γi to θu ·θi, and thus guaran-
tees the positive correlation between PLFM(i|u) and PLDA(i|u) according to Eq.(6) and
Eq.(11). Based on this direct product-level randomization, we are fortunately able to
bridge the LFM and LDA models to leverage the power of ratings and reviews collec-
tively, and meanwhile make the two components harmonize with each other for model
learning, which improves both the performance and stability of personalized recom-
mendation.

In the following, we describe our Joint Factorizational Topic (JFT) model, as well
as its application in the practical scenario of (cross-city) restaurant recommendation.
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5 The Model

5.1 Joint Factorizational Topic Model (JFT)

The basic Joint Factorizational Topic (JFT) model bridges the LFM component as E-
q.(1) and the LDA component in Eq.(3) according to the product-level randomization.
Specifically, let θd,k =

exp(γu,kγi,k)∑
k′ exp(γu,k′γi,k′ )

in Eq.(3), the JFT model attempts to optimize
the following objective function:

F (Θ, φ, z) =
∑

ru,i∈R

(
rate(u, i)− ru,i

)2 − λlL(D|θ, φ, z) + λpΩ(Θ) (15)

whereΘ = (α, βu, βi, γu, γi) is the parameter set of the LFM component,L(D|θ, φ, z)
is the log-likelihood of the whole corpus whose document distributions θ come from the
latent factors γ, andΩ(Θ) =

∑
u,i(β

2
u+β

2
i +‖γu‖22+‖γi‖22) is the `2-norm regularizer

for the latent parameters.
Intuitionally, the LDA componentL(·) serves as another regularization term besides

the traditional `2-norm regularizer Ω(·) for numerical rating prediction, and we trade
off between them two with λl and λp, respectively. In this way, the JFT model attempts
to minimize the error in rating prediction, and meanwhile maximizes the likelihood of
observing the corresponding textual reviews.

Most importantly, the LFM and LDA components are designed to be consistent with
each other by product-level randomization in model learning, in that a smaller predic-
tion error in the LFM component functionally invokes a larger likelihood of observing
the corresponding textual review, which makes the two components collaborate rather
than violate with each other when optimizing the objective function.

5.2 Incorporate City Factors and Novelty-Seeking

The problem of cross-city recommendation finds its fundamental importance in many
Location-Based Services (LBS) like Foursquare and Yelp, where it is usual for users
to expect personalized recommendations from the application when he is travelling
outside the hometown in a new city.

However, previous approaches for point-of-interest recommendation (especially for
LFM and its variants) encounter serious cold-start problems [18] in the application s-
cenario of cross-city recommendation, where we may have only a few or even none
historical rating records of a user who is traveling in a new city, although he/she may
have made quite a number of ratings in his/her home city.

Our basic JFT model helps to alleviate the cross-city cold-start problem by bridging
the textual reviews with numerical ratings, because the topic embeddings that we learn
from the reviews of a new restaurant, may be similar to the embeddings that we can
learn for the restaurants that a user previously liked in his/her hometown, which may
help to provide personalized cross-city recommendations.

Nevertheless, the assumption of recommending similar items may not always be
true in different scenarios, although it is one of the most basic assumptions that inherent-
ly drives the intuition of most personalization models. This is because the preferences
of a user travailing in a new city may well diverge from his/her historical preferences
in hometown. For example, some users may prefer to try new flavours of local features
when in a new city, while others may still like to keep to their previous favourites.
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As a result, we further introduce the city factors into the basic JFT model so as to
learn the variant of user preferences for cross-city recommendation. To do so, we first
model the user-item rating as:

rate′(u, i) = α+ βu + βi + (1− τu)(γu · γi) + τu(γi · γc) (16)

where γu ·γi estimates the similarity between a user and a targeted item as with Eq.(1),
while γi · γc models the similarity between the targeted item and its corresponding city,
and the novel-seeking parameter 0 ≤ τu ≤ 1 indicates the degree that a user prefers to
try local flavours.

The intuition here (which will later be verified in the experiments) lies in that, a user
u with a high preference of novelty-seeking τu would put more interest on those restau-
rants whose factor representations γi are similar to that of the whole city γc (i.e., local
flavour), while a user who prefers flavours she previously liked would be attracted more
by those restaurants with similar factors of herself γu. We leave out the consideration
of γu · γc because the factors γu and γc would be fixed parameters in model learning
and when making recommendation given a user u and a targeted city c, as a result, this
component would not make a difference in learning and recommendation procedures.

Correspondingly, we re-parameterize the topic distribution θd of each review doc-
ument d from user u to item i by product-level randomization of the item-city factors
γi,kγc,k:

θ′d,k =
exp(γi,kγc,k)∑
k′ exp(γi,k′γc,k′)

(17)

where each city c is similarly represented as the set of reviews dc corresponding to
the restaurants located therein. In this way, we reformulate the likelihood of the review
corpus with weighted geometric mean of the user-item randomization θd in Eq.(14) and
item-city randomization θ′d in Eq.(17):

P ′(D|θ, θ′, φ, z) =
∏
d∈D

Ld∏
j=1

(
θd,zd,j

)1−τu(θ′d,zd,j )τuφzd,j ,wd,j (18)

Based on this, our JFT model for cross-city recommendation attempts to minimize
the following objective function:

F ′(Θ′, φ, z) =
∑

ru,i∈R

(
rate′(u, i)− ru,i

)2 − λlL′(D|θ, θ′, φ, z) + λpΩ(Θ′) (19)

Similar to the basic JFT model, Θ′ = (α, βu, βi, γu, γi, γc, τu) is the parameter set of
the LFM component, andL′(D|θ, θ′, φ, z) is the log-likelihood of the corpus probability
in Eq.(18).

5.3 Fitting the Model

We introduce the algorithm for model fitting in this subsection. For notational simplicity
and also without loss of generality, we use F (Θ,φ, z) to denote the objective function
of both the basic and the cross-city JFT model, where the parameter set for the LFM
component are Θ = (α, βu, βi, γu, γi) and Θ = (α, βu, βi, γu, γi, γc, τu), respectively.
The learning procedure for them are similar.

Typically, the LFM component (with `2-regularizer) can be easily fit with gradien-
t descent, while the log-likelihood LDA component is usually optimized with Gibbs
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sampling. As our model jointly includes the two inherently heterogenous components,
we construct a learning procedure that optimizes the two components alternatively:

Step1 : {Θt, φt} ← argmin
Θ,φ

F (Θ,φ, zt−1) by gradient descent

Step2 : Logistic normalization on each topic vector φtk

Step3 : Sample ztd,j with probability P (ztd,j = k) = θtd,kφ
t
k,wd,j

In the first step, we fix the topic z of each word in each document, and further compute
the gradient of each parameter in {Θ,φ} while fixing the others. Based on these gra-
dients, the parameters in {Θ,φ} are updated one by one, where the step size for each
parameter is determined by linear search.

Specifically, we should note that the parameter τu in the cross-city JFT model rep-
resents the probability that user u attempts to try new flavours different from his/her
historical preferences. As a result, we only adopt those review records in D that user u
visited a restaurant outside of his/her home city to construct document du and to update
parameter τu (τu is kept stable if du = ∅), while the other parameters are updated with
all their corresponding reviews.

However, the gradient descent procedure would not guarantee the word distribution
φ of latent topics to be stochastic vectors. As a result, we conduct logistic normalization
for each topic φk (1 ≤ k ≤ K) in the second step, where each dimension of φk is
normalized as φk,w =

exp(φk,w)∑
w′ exp(φk,w′ )

.
In the last step, we preserve the results from the previous steps, and update the

topic assignment for each word in each document. Similar to LDA, which assigns each
word to the k-th topic according to the likelihood of the word discussing topic k, we
set zd,j = k with probability proportional to θd,kφk,wd,j

, where the indices pair {d, j}
denotes the j-th word of document d, θd is the the topic distribution of document d, and
φk is the word distribution of topic k.

The major difference between LDA and the last step of our JFT model is that, the
topic distributions θd are determined base on the product-level randomization from la-
tent factors γu, γi and γc in our model, instead of sampling from a Dirichlet distribution
in LDA. As a result, we only need to sample the topic assignments z in each iteration
of our JFT model. The probabilistic interpretation of our approach and its inherent re-
lationship with the LFM component have been exposited in the previous sections.

Finally, these steps are repeated iteratively until convergence, i.e., the `2-difference
in Θ is sufficiently small between two consecutive iterations, or that an overfitting is
observed in the validation set.

5.4 Top-N Recommendation

In this subsection, we further adapt our basic and cross-city JFT model to provide more
practical personalized top-N recommendation lists beyond numerical rating predictions.

It is known that a good performance on rating prediction does not necessarily guar-
antee a satisfactory performance of top-N recommendation by ranking the items in
descending order of the predicted ratings [6]. This is partly because of the contradiction
between the goal of recommending items that users would potentially visit and the data
(ratings) that we use for model training, i.e., users actually indeed visited the items in
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Algorithm 1 TOP-N RECOMMENDATION
Input:R,D, N Recommendation list of length N
1: R+ ←R with all ratings reset to be 1
2: Initialize model parameters α, β, γ, φ, z randomly
3: Initialize τu ← 0.5 for all users, t← 0 while Not Convergence or t < T
4: t← t+ 1,R− ← ∅ for (u, i) ∈ R+

5: Sample item j from the same city of item i randomly, where (u, j) /∈ R+

6: R− ←R− ∪ (u, j) with rating 0
7: Update model by Step1 ∼ 3 with {R+ ∪R−,D}
8: Rank items in descending order of rating prediction
9: Top-N Recommended items for each user

the dataset, no matter what numerical ratings they eventually made on them. Intuition-
ally, a relatively low predicted rating does not necessarily mean that the user would not
be attracted by the item at all, because of the many items with low ratings yet visited by
the users.

As a result, we train our JFT model (and also the baseline approaches) for top-N
recommendation in a different way from the task of rating prediction. Specifically, we
feed the learning procedure with binary inputs, where the observed records in R are
all treated as positive cases (rating=1), and the negative cases (rating=0) are sampled
from the unobserved user-item pairs in a 1 : 1 negative sampling manner. For clarity,
we exposit the sampling, learning, and recommendation produce in Algorithm 5.3.

6 Experiments

6.1 Experimental Setup

We collected user reviews from a major restaurant review website Dianping.com in
China, including 253,749 reviews from 32,529 users towards 8,026 restaurants located
in 194 cities, where each user made 20 or more reviews, including intro- and cross-city
cases. We set the home city of a user according to the registration information in his/her
profile.

Of the 253,749 reviews in the whole corpus, 233,802 records fall into intro-city
reviews, and the remaining 19,947 records are cross-city reviews, where the ratio be-
tween intro-city and cross-city records is 11.72. Each review in the corpus consists of
an integer rating ranging from 1 to 5 stars and a piece of textual comment, where the
user expresses his/her opinions on the corresponding restaurant. The average length of
textual comments is 41.5 words. To feed the LDA component with high quality textual
inputs, we conduct part-of-speech tagging and stop word removing for each review with
the widely used Stanford NLP toolkit3.

We initialize τu = 0.5 for the cross-city JFT model, and the eventual value of τu
for each user is automatically determined by the model learning process. After careful
tuning with grid search, we set the hyper-parameters λl = 0.01 and λp = 0.001, and
five-fold cross-validation was conducted in performance evaluation for all methods.

3 http://nlp.stanford.edu/software/lex-parser.shtml
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6.2 Performance on Rating Prediction

In this section, we investigate the performance on rating prediction of our basic and
cross-city JFT model, which are denoted as JFT and JFTC in the following. We also
adopt the following baseline methods for performance comparison.

LFM: The basic LFM approach denoted in Eq.(2), which takes no advantage of the
textual reviews.

EFM: The Explicit Factor Model presented in [34], which is the state-of-the-art
recommendation approach based on textual reviews by phrase-level sentiment analysis.

HFT: The Hidden Factors and Topics model in [21], which also takes advantages
of both LFM and LDA, but applies a vector-level randomization (Eq.(5)) on the latent
factors.

We adopt Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for
evaluation, and the results with the number of topics/factorsK = 10 are shown in Table
1. The standard deviations in five-fold cross-validation for each method and metric are
≤ 0.002.

Table 1. RMSE and MAE when K = 10. Standard deviations for each method are ≤ 0.002.

Method LFM EFM HFT JFT JFTC
RMSE 0.6688 0.6529 0.6532 0.6456 0.6386
MAE 0.5309 0.5283 0.5280 0.5213 0.5128

We find that all the other approaches gain better performance against LFM, which
means that taking advantage of the textual reviews helps to make better rating predic-
tions. Besides, our basic JFT model achieves better performance than both the EFM and
HFT models. On considering that a major difference between our basic JFT model and
HFT is the product- and vector-level randomization, this experimental result verifies
our theoretical analysis to bridge the LFM and LDA components in Section 4. Finally,
by incorporating user preferences in novelty-seeking in a cross-city scenario, our JFTC
approach achieves the best performance.

To exhibit a clearer view of the performance on cross-city scenarios, we further take
out the cross-city rating cases from the test set in each of the 5 folds, and conduct per-
formance evaluation under different choices of the number of latent factors and topics
K from 10 through 100. Results for RMSE and MAE are shown in Figure 1. We see
that our cross-city JFT approach outperforms all other baselines on all choices of topic
numbers, which validates the superior performance when we consider the local features
of a city and the user preference of novelty-seeking in cross-city scenarios, where it
would be easy for other approaches to encounter the problem of cold-start.

6.3 Top-N Recommendation

In this subsection, we explore the performance of our approach in more practical top-N
recommendation tasks. We adopt our JFTC for top-N recommendation algorithm with
binary inputs and negative sampling described Section 5.4, and make comparison with
the following baseline methods:

WRMF: Weighted Regularized Matrix Factorization described in [10], which is
similar to LFM but applies weighted negative sampling to benefit top-N recommenda-
tions.
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BPRMF: Bayesian Personalized Ranking (BPR) for MF presented in [24], which
is the state-of-the-art algorithm for top-N recommendation based only on numerical
ratings.

HFT: The original HFT method achieves poor top-N performance in our settings.
As a result, we optimize the HFT method with the same binary inputs and negative
sampling approach as in our model for fair comparison.

To evaluate, we randomly hold out 5 records for each user, and provide top-5 recom-
mendation list for each user, as with most practical applications. We adopt the measures
of Precision@5 and NDCG@5, where the latter takes the positions of recommended
items into consideration, and the results are shown in Table 2.

Table 2. Prec@5 and NDCG@5 with K = 10. Standard deviations for each method are ≤
0.0006.

Method WRMF BPRMF HFT JFTC
Precision@5 0.0060 0.0057 0.0065 0.0079
NDCG@5 0.1616 0.1632 0.1653 0.1790

We see that both our JFTC approach and the HFT method (which make use of
textual reviews) gain better performance than WRMF and BPRMF (which only make
use of ratings). Further more, our JFTC method gains a 22% improvement against HFT
in terms of precision, and 8.3% on NDCG, which is a superior achievement for practical
applications.

Similar to the task of rating prediction, we also evaluate the top-N performance in
cross-city settings. To do so, we select those user-city pairs that a user has at least 5
records in a city beyond his/her home city, and this results into 4,021 pairs correspond-
ing to 1,739 users. We thus randomly hold out 5 records for a user in a corresponding
city, and construct the recommendation list using the restaurants from that city, which
gives us 4,021 lists in total for evaluation. We also conduct 5-fold cross-validation, and
the standard deviations for both Precision and NDCG are ≤ 0.005. Figure 2 shows the
results against the number of latent factors/topics K.

We see that the performance of our JFTC model is better than the baselines on nearly
all choices of K, except that the NDCG of HFT is slightly better when K = 50, which
means that our model sometimes may not rank the right items to the top, though with
a much better precision. However, our approach still beats the baselines for nearly all
the cases. Interestingly, we find that the overall cross-city performance is a magnitude
better than that on the whole dataset. This means that user behaviours can be more
predictable in cross-city settings, where users do visit local attractions beyond their
historical preferences. This further validates the underlying intuition of our novelty-
seeking component in the JFTC model for cross-city recommendations.

7 Conclusions

In this paper, we propose the Joint Factorizational Topic model that leverages the ratings
and reviews in a collective manner for cross-city recommendation. For the first time, we
examine the mathematical relationship between the LFM and LDA approaches for per-
sonalized recommendation, and we prove that vector-level randomization functions that
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Fig. 1. RMSE and MAE vs the number of topics or latent factors K in cross-city settings.
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Fig. 2. Precision@5 and NDCG@5 vs the number of topics or latent factors K in cross-city
settings.

are multiplicatively monotonic actually do not exist at all, although they are frequently
used to bridge the LFM and LDA components in previous work. Fortunately, we also
find that a direct product-level randomization approach can be used to bridge the two
components and harmonize their behavior for model learning. Extensive experimen-
tal results on case studies, rating prediction, top-N recommendation, and inner-model
analysis verified both the intuitional reasonability, theoretical basis, and the quantitative
performance of our approach.
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