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Abstract. In the broadcasting of ad hoc wireless networks, energy conservation is a critical issue. Three heuristic
algorithms were proposed in Wieselthier et al. (2000) for finding approximate minimum-energy broadcast routings:
MST(minimum spanning tree), SPT(shortest-path tree), and BIP(broadcasting incremental power). Wan et al.
(2001) characterized their performance in terms of approximation ratios. This paper points out some mistakes
in the result of Wan et al. (2001), and proves that the upper bound of sum of squares of lengths of the edges in
Euclidean MST in unit disk can be improved to 10.86, thus improves the approximation ratios of MST and BIP
algorithm.
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1. Introduction

Ad hoc wireless network has not any wired backbone infrastructure, and the nodes in it use
antennas to transmit and receive signals. The signals can be transmitted either in single-hop
or in multi-hop through intermediate relaying nodes, and transmission range of the sender is
decided by the power of the sender. However, the power supplied to the nodes in a wireless
network is from batteries only. Thus, we need to design efficient power assignment schemes
to make the lifetime of the network as long as possible while keeping the connectivity of
the network.

In the power-attenuation model (Rappaport, 1996), the signal power falls as the function
1
rk , where r is the distance between the sender and the receiver, and k is a constant between
2 and 4. In the general case, we assume that all the receivers have the same power threshold
for detecting signals which is normalized to one. Then the power consumption between
the sender and receiver with distance equal to r is r2 if we choose k = 2. Finding a route
to minimize the total power consumption is referred to as the Minimum − Enerygy
Routing Problem. We can use several models to design the routing scheme, for example
MST(minimum spanning tree), SPT (shortest-path tree) and BIP(broadcasting incremental
power) in Wieselthier et al. (2000). In this paper, we use the model of MST, and the problem
can be described as follows.
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Consider a unit disk with center O . Let P be a finite set of points in unit disk O . The
question is that what is the value of

c = sup
P

min
T

∑

e∈T

‖e‖2, (1)

where T is over all spanning trees on P ∪ {O} and e is over all edges of T .
This problem above comes from the study of multicast in wireless network. Analysis of

several routing algorithms is based on establishing upper bound for this max-min value. Wan
etc. gave the first upper bound of 14.51 in Wan et al. (2001), and later in the corresponding
erratum they corrected some mistake and gave the bound of 12.141 which is the best known
result. We follow their way and improve the bound to 10.86.

Our proof of the bound is in some sense an extension of the basic idea of Wan et al. (2001),
which made use of disjoint-diamonds covering on the unit disk. They obtained their result
by comparing the area of the unit disk with the total area of the deliberately constructing
diamonds. And we adjust their diamonds into some more complicated shape (actually they
are diamonds with changeable extra areas), thus compute the area more precisely.

The paper is organized as follows. We give some preliminaries and notations in Section 2,
and introduce the previous results on this problem in Section 3. In Section 4 we analyze
the upper bound of sum of squares of lengths of the edges in EMST and give the proof in
detail. In Section 5, we summarize the result and highlight some future research directions.

2. Preliminaries and notations

We first introduce some notations that will be used.

‖AB‖: the length of line segment AB.
�ABC : the triangle ABC .
�ABC : the area inside �ABC .
� ABC : the angle between the two rays B A and BC . Also referred to as the region inside

the angle.
D(A1 A2): the rhombus whose vertices are A1 and A2 with sides of length

√
3

3 ‖A1 A2‖(see
figure 1(a)). Also called the diamond determined by edge A1 A2.

B(A, r ): the set of points whose distances from A are less than r .

Figure 1. Illustration of (a) D(A1 A2) and (b) Eα,β (A1 A2).
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L(A1 A2): B(A1, ‖A1 A2‖) ∩ B(A2, ‖A1 A2‖).
Eα,β(A1 A2): Let A3 be the vertex of D(A1 A2) such that the points A1,A2,A3 are in anticlock-

wise order, line E1 A3 E2 is parallel to line A1 A2, with � E1 A1 A3 = α and � E2 A2 A3 = β.

Then �A1 A3 E1 ∪ �A2 A3 E2 is denoted by Eα,β(A1 A2) (see figure 1(b)).

Now let’s take a look at (1). Note that for any point set P , by Prim’s algorithm for
constructing minimum spanning tree, we could find that

∑
e∈T ‖e‖2 achieves its minimum

value if and only if T is an Euclidean minimum spanning tree(EMST) of P . Therefore, c
could also be written by

c = sup
P⊂B(O,1)

∑

e∈EMST(P∪{O})
‖e‖2.

In other words, what we want to know is the upper bound of sum of squares of lengths
of the edges in Euclidean MST in unit disk.

The EMSTs have many nice properties (Wan et al., 2001). For example:

• The length of every edge is no more than 1 (for EMSTs in the unit disk).
• Let A1 A2 be any edge in EMST(P), then L(A1 A2) doesn’t contain any other points in

P .
• Let A1 A2 and B1 B2 be any two edges in EMST(P), then B1 and B2 are either both outside

B(A1, ‖A1 A2‖) or both outside B(A2, ‖A1 A2‖).
• every edge in EMST(P) is an edge of P’s Delaunay triangulation.

And in Wan et al. (2001), we know an important property of EMSTs:

Theorem 1. In EMST, the two diamonds determined by any two edges are disjoint.

There is another lemma in Wan et al. (2001) which we will also use in this paper, stated
as follows.

Lemma 1. Let A1, A2 and B be any three points in the plane, ∃i ∈ {1, 2}, s.t. ‖Ai B‖ >

‖A1 A2‖. Let points A′
1(A′

2 respectively) be any point on the opposite side of A1 B(A2 B
respectively) from A2(A1 respectively) such that � A1 B A′

1( � A2 B A′
2 respectively) = π

6 (see
figure 2). Then D(A1 A2) ⊆ � A′

1 B A′
2.

3. Incorrectness in previous result

From Theorem 1, Wan et al. (2001) first analyzed the relationship between the total area
of the diamonds determined by edges in EMST and sum of squares of lengths of the
edges in EMST, and gave an estimation 14.51 of the upper bound of

∑
e∈EMST ‖e‖2. Then

by estimating the sticking-out area more precisely, they proved a better upper bound 12.
However, some parts of the derivation of this new bound is wrong.
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Figure 2. Illustration for Lemma 1.

The mistake is in their Lemma 11, stated as follows:
Let

S(α) = 1

2
sin α +

√
3

6
(1 − cos α) − α

2
.

Then for any α, β ∈ (0, π
3 ),

1. if α + β ≤ π
3 , S(α) + S(β) ≤ S(α + β);

2. if α + β ≥ π
3 , S(α) + S(β) ≤ S(α + β − π

3 ) + S(π
3 ).

Indeed, the second inequality does NOT hold! The mistake comes from the last expression
in their proof, which missed a negative sign. So the inequality just holds exactly on the
opposite direction.

Based on this lemma, they proved that if αi ∈ (0, π
3 ] and

∑k
i=1 αi ≤ 2π , then the

sticking-out area
∑k

i=1 S(αi ) ≤ 2
√

3 − π .
But actually this statement is false. For a counter example, we choose αi = π

4 , i =
1, . . . , 8, then

k∑

i=1

S(αi ) = 0.4625 > 2
√

3 − π = 0.3225.

Clearly, the upper bound of sum of squares of lengths of the edges in EMST in unit disk
couldn’t be proved to be 12 in this way.

Wan also discovered their mistake. They fixed the bug and presented a slightly larger
upper bound of 12.141. However, there are still enough rooms to improve the upper bound.
We will introduce another method in later sections, and get our new bound 10.86.
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Figure 3. Illustration for Lemma 2.

4. Upper bound of sum of squares of lengths of the edges in EMST

Lemma 2. Let O, A, C and B be collinear in the order, with ‖OC‖2 = ‖O A‖ · ‖O B‖
(see figure 3). Then for any point P on the plane, we have

‖P A‖
‖P B‖






<
‖C A‖
‖C B‖ if and only if ‖O P‖ < ‖OC‖,

= ‖C A‖
‖C B‖ if and only if ‖O P‖ = ‖OC‖,

>
‖C A‖
‖C B‖ if and only if ‖O P‖ > ‖OC‖.

Proof: It’s easy to verify the correctness of the conclusion if P is on straight line AB.
And if not, we consider the three cases respectively:

If ‖O P‖ = ‖OC‖, then

‖O P‖2 = ‖O A‖ · ‖O B‖

Therefore,

�O AP ∼ �O P B

We have

� B PC = � OC P − � O B P = � O PC − � O P A = � APC

which implies

‖P A‖
‖P B‖ = ‖C A‖

‖C B‖

If ‖O P‖ < ‖OC‖, let P ′ be on the ray AP such that ‖O P ′‖ = ‖OC‖ and B ′ be on the
ray AB such that P B is parallel to P ′ B ′, then ‖AP ′‖ > ‖AP‖ and � AC P ′ is acute (see
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Figure 4. The case that (a) ‖O P‖ < ‖OC‖ and (b) ‖O P‖ > ‖OC‖.

figure 4(a)). So we have

� P B B ′ > � P ′C B > � P ′C A > � P ′ B ′ A

That implies ‖P ′ B ′‖ > ‖P ′ B‖, so

‖P A‖
‖P B‖ = ‖P ′ A‖

‖P ′ B ′‖ <
‖P ′ A‖
‖P ′ B‖ = ‖C A‖

‖C B‖

If ‖O P‖ > ‖OC‖, let P ′ be on the ray AP such that ‖O P ′‖ = ‖OC‖ and let B ′ be
on the ray AB such that P B is parallel to P ′ B ′, then ‖AP ′‖ < ‖AP‖ and � AC P ′ is acute
(see figure 4(b)). So we have

� P B ′ B > � P ′C B > � P ′C A > � P ′ B A

That implies ‖P ′ B‖ > ‖P ′ B ′‖, so

‖P A‖
‖P B‖ = ‖P ′ A‖

‖P ′ B ′‖ >
‖P ′ A‖
‖P ′ B‖ = ‖C A‖

‖C B‖
The proof is complete.

Lemma 3. Let A1 A2 and B1 B2 be any two edges in EMST satisfying ‖A1 Bi‖ ≥ ‖A1 A2‖,
i = 1, 2 (see figure 5), then

D(B1 B2) ∩ B

(
A1,

√
3

3
‖A1 A2‖

)
= ∅

Proof: We will prove that any point on the boundary of D(B1 B2) is at least
√

3
3 ‖A1 A2‖

away from A1. Without loss of generality, assume that ‖A1 B1‖ ≥ ‖A1 B2‖. Then by the
properties of EMST (Wan et al., 2001), we know that ‖A1 B1‖ ≥ ‖B1 B2‖. Let B3 be any
vertex of D(B1 B2) other than B1 and B2. Let P be any point on either line segment B1 B3
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Figure 5. Illustration for Lemma 3.

or line segment B2 B3, and D be the point on line segment B2 P such that ‖B2 D‖
‖D P‖ = √

3. Let
O be the point on the extending line of B2 P such that ‖P O‖ = 1

2‖B2 P‖. Then it’s easy to
verify that

‖O D‖2 = ‖O P‖ · ‖O B2‖

Case 1: if P is on line segment B1 B3, let C be the point on the same side of line B1 B2 as
B3 such that �B1 B2C is equilateral (see figure 6(a)). Notice that

‖PC‖
‖B2C‖ ≥ ‖B3C‖

‖B2C‖ =
√

3

3
= ‖P D‖

‖B2 D‖ .

Figure 6. Two cases in Lemma 3.
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Then from Lemma 2, we have‖OC‖ ≥ ‖O D‖.
In addition, because � OC A1 ≥ � B1C A1 ≥ � B1 A1C ≥ � O A1C , we have

‖O A1‖ ≥ ‖OC‖ ≥ ‖O D‖.

Case 2: if P is on line segment B2 B3, let G be the point on line segment B1 B2 such that
‖B2G‖ = ‖OG‖ (see figure 6(b)). Then � B1G O = 2 � B1 B2 O = π

3 , so

� B1 OG = 2π

3
− � G B1 O ≥ π

3
= � B1G O.

In other words, ‖G B1‖ ≥ ‖O B1‖. Therefore,

‖O A1‖ ≥ ‖A1 B1‖ − ‖O B1‖ ≥ ‖B1 B2‖ − ‖O B1‖ ≥ ‖B1 B2‖ − ‖G B1‖

=
√

3

3
‖O B2‖ = ‖O D‖.

We can see that in both cases, ‖O A1‖ ≥ ‖O D‖. From Lemma 2, we know that

‖A1 P‖ ≥
√

3

3
‖A1 B2‖ ≥

√
3

3
‖A1 A2‖

In total, the distances from A1 to any boundary points of D(B1 B2) are no smaller than√
3

3 ‖A1 A2‖. Clearly, D(B1 B2) is outside B(A1,
√

3
3 ‖A1 A2‖).

Corollary 1. Let A1 A2 and B1 B2 be any two edges in EMST, then ∃i ∈ {1, 2}, s.t.

D(B1 B2) ∩ B

(
Ai ,

√
3

3
‖A1 A2‖

)
= ∅.

Proof: Only to notice that B1 and B2 are either both outside B(A1, ‖A1 A2‖) or both
outside B(A2, ‖A1 A2‖).

Lemma 4. Let A1 A2, B1 B2 and C1C2 be any three edges in EMST(P) (see figure 7), then
at least one of following three statements holds:

(1) ‖A1 Bi‖ ≥ ‖A1 A2‖, i = 1, 2
(2) ‖A2Ci‖ ≥ ‖A1 A2‖, i = 1, 2
(3) ‖Bi C j‖ ≥ ‖A1 A2‖, i, j = 1, 2

Proof: If none of these three statements holds, then ∃i, j, k, l ∈ {1, 2}, s.t. ‖A1 Bi‖ <

‖A1 A2‖, ‖A2C j‖ < ‖A1 A2‖, and ‖BkCl‖ < ‖A1 A2‖.
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Figure 7. Illustration for Lemma 4.

Let T be the Euclidean minimum spanning tree of point set P , then graph T \ {A1 A2}
has two connected components. Clearly, B1 and B2 are in the same connected component,
C1 and C2 are in the same connected component, but A1 and A2 are in different connected
components. So we have three cases to consider:

Case 1: One connected component contains A1, and the other contains A2, B1, B2, C1, C2.
Then (T \ {A1 A2}) ∪ {A1 Bi } contains |P| − 1 edges and no cycles, thus is a spanning
tree of P , and has a total length less than T . This causes a contradiction.

Case 2: One connected component contains A1, B1, B2, and the other contains A2, C1, C2.
Then (T \ {A1 A2}) ∪ {BkCl} is a spanning tree of P and has a total length less than T .
A contradiction.

Case 3: One connected component contains A1, B1, B2, C1, C2, and the other contains A2.
Then (T \ {A1 A2}) ∪ {A2C j } is a spanning tree of P and has a total length less than T .
A contradiction.

In total, every case causes a contradiction. This completes the proof.

Now we come to the main lemma in this paper.

Lemma 5. Let A1 A2, B1 B2 and C1C2 be any three edges in EMST. Let α0 = sup{x ∈
[0, π

6 ] : Ex,0(A1 A2)∩ D(B1 B2) = ∅} and β0 = sup{y ∈ [0, π
6 ] : E0,y(A1 A2)∩ D(C1C2) =

∅}. Then

α0 + β0 ≥ π

6
.

Proof: If α0 + β0 < π
6 , we will derive a contradiction.
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Figure 8. The area partition.

Choose α, β ∈ [0, π
6 ], s.t. α > α0, β > β0, and α + β = π

6 , then

Eα,0(A1 A2) ∩ D(B1 B2) �= ∅
and

E0,β(A1 A2) ∩ D(C1C2) �= ∅.

Let G be the point on the same side of A1 A2 as A3 such that � G A1 A2 = π
3 + α and

� G A2 A1 = π
3 + β. We partition the area where B1,B2,C1 or C2 can possibly be in three

regions: A,B and C, where A is the region on the left side of line A1G, B is the region inside
�A1 A2G, and C is the region on the right side of line A2G (see figure 8).

Let a denote ‖A1 A2‖. Now we consider every case according to which region each point
lies in(note that A and C share some area so we can treat a point in this area either in A or
in C), and prove that none of these cases would happen. Without loss of generality, assume
� B1 A1 A2 ≥ � B2 A1 A2 and � C1 A2 A1 ≤ � C2 A2 A1.

Case 1: B2 lies in region A. Then B1 also lies in A. Note that � E1 A1G = π
6 , by Lemma 1,

D(B1 B2) is on the left side of line A1 E1, which contradicts Eα,β(A1 A2)∩ D(B1 B2) �= ∅.
Similarly, there would also be a contradiction if C1 lies in region C.

Case 2: B2 lies in region B. There are two subcases.

Case 2.1: At least one of C1 and C2 lie in region B. Without loss of generality, assume C1

lies in B. Let point H1 and H2 respectively be the point on line segment G A1 and G A2,
such that ‖A2 H1‖ = ‖A1 H2‖ = a.



ON APPROXIMATION RATIOS OF MINIMUM-ENERGY MULTICAST ROUTING 253

Figure 9. Illustration for case 2.1.

Now if ‖B2 H2‖ ≥ a, let D be the point on line segment A1 B2 such that ‖B2 D‖ =
‖B2 H2‖. Let F be the vertex of D(B2 D) on the same side of B2 D as A2. Let P be any point
inside Eα,0(A1 A2) (see figure 9).

Since ‖DH2‖ ≤ a ≤ ‖DB2‖ = ‖H2 B2‖, we have � B2 DH2 ≥ π
3 , therefore

� A1 DH2 = π − � H2 DB2 ≤ π − π

3
= 2π

3
.

On the other hand, P must be in D(A1 H2) since

� P A1 H2 = � G A1 A2 − � G A1 P − � A2 A1 H2

<

(
α + π

3

)
− π

6
−

[
π − 2

(
β + π

3

)]
= β <

π

6
.

We have

� A1 P H2 >
2π

3
≥ � A1 DH2.

In other words, D is outside the circumcircle of �A1 P H2, which means � P DH2 <
� P A1 H2 < π

6 . Now,

� B2 D P ≥ � B2 DH2 − � P DH2 >
π

3
− π

6
= π

6
.

Note the arbitrariness of P , Eα,0(A1 A2) is outside � DF B2.
By Lemma 4, ‖B1 B2‖ ≤ ‖B2C1‖ ≤ ‖B2 H2‖ = ‖B2 D‖. Because � B1 B2 F ≥ � DB2 F ,

it’s easy to see that D(B1 B2) ⊂ � DF B2, which implies Eα,0(A1 A2) ∩ D(B1 B2) = ∅. This
is a contradiction. Therefore, ‖B2 H2‖ < a.
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Figure 10. Illustration for case 2.2.

By the same reason we have ‖C1 H1‖ < a.
Furthermore, from Lemma 3, ∃i, j , s.t. ‖A1 Bi‖ < a and ‖A2C j‖ < a. So by the

properties of EMST, B1 and B2 must be both outside B(A2, a), and C1 and C2 must be both
outside B(A1, a). Finally, B2 ∈ B∩ B(H2, a)\ B(A2, a) and C1 ∈ B∩ B(H1, a)\ B(A1, a).
Now, by simple analysis we can find that wherever B2 or C1 be, ‖B2C1‖ < a always hold.
That contradicts Lemma 4.

Case 2.2: Now C1 must be in region A and C2 must be in region C(because they can’t be
both in A or both in C).
Let K2 be the point on line segment A2G such that ‖A2 K2‖ = a (see figure 10).
Because A1,H1 and K2 are all on �A2, we have

� G H1 K2 =
� G A2 A1

2
≥ π

6
.

And by Lemma 5, C2 ∈ B(A2, a), so C2 is on the right side of line H1 K2. We have
� C1 H1C2 ≥ � G H1 K2. Furthermore, B2 is below line C1C2, for otherwise by the fact that
D(B1 B2) and D(C1C2) are disjoint, D(B1 B2) would be outside quadrilateral A1C1C2 A2,
thereby having no intersection with Eα,0(A1 A2), which makes a contradiction. So B2 is
inside �C1 H1C2, and

� C1 B2C2 ≥ � C1 H1C2 ≥ � G H1 K2 ≥ π

6
.

By Lemma 4, ‖B2C1‖ ≥ ‖C1C2‖ and ‖B2C2‖ ≥ ‖C1C2‖, so � C1 B2C2 is the smallest
angle in �B2C1C2. Now we have

� C1C2 H1 ≥ � C1C2 B2 ≥ � C1 B2C2 ≥ π

6
.



ON APPROXIMATION RATIOS OF MINIMUM-ENERGY MULTICAST ROUTING 255

Let P be any point inside E0,β(A1 A2). Let A3 be the vertex of D(A1 A2) on the upper
side of A1 A2 and Q be the intersection point of the extending line of A1 A3 and �A2. Then
� G H1 P ≥ � G H1 Q = π

3 . Therefore,

� G H1C2 ≤ C1 H1C2 ≤ C1 B2C2 ≤ π

3
≤ � G H1 P.

So P is below line H1C2, and we have � C1C2 P ≥ � C1C2 H1 ≥ π
6 . This implies

E0,β(A1 A2) ∩ D(C1C2) = ∅. A contradiction.

Case 3: B2 lies in region C, then B1 must lie in A or B.

Case 3.1: C1 lies in region B. This case is the same with case 2 by symmetry.
Case 3.2: C1 is in region A, then C2 must lie in B or C.

Now either of following two statements must hold, for otherwise line segment B1 B2 and
C1C2 would have intersection, which contradicts the properties of EMST.

(1) line segment B1 B2 is outside quadrilateral A1C1C2 A2, or
(2) line segment C1C2 is outside quadrilateral A1 B1 B2 A2.

Without loss of generality, assume that statement 1 holds. Then by the fact that D(B1 B2)
and D(C1C2) are disjoint, D(B1 B2) would be outside quadrilateral A1C1C2 A2, thereby
having no intersection with Eα,0(A1 A2). This is a contradiction.

In conclusion, α0 + β0 ≥ π
6 , and Eα0,β0 (A1 A2) ∩ D(B1 B2) = ∅, Eα0,β0 (A1 A2) ∩

D(C1C2) = ∅. This completes the proof.

Theorem 2. Let A1 A2 be an edge in EMST, then ∃α0, β0 ≥ 0, with α0 + β0 ≥ π
6 , such

that Eα0,β0 (A1 A2) is disjoint from every diamond determined by any edges in EMST.

Proof: Let

S = {(B1 B2) ∈ EMST : E π
6 ,0(A1 A2) ∩ D(B1 B2) �= ∅}

and

T = {(C1C2) ∈ EMST : E0, π
6
(A1 A2) ∩ D(C1C2) �= ∅}.

Then from Corollary 1, S ∩ T = ∅. Let

α0 = min
(B1 B2)∈S

{
sup

{
x ∈

[
0,

π

6

]
: Ex,0(A1 A2) ∩ D(B1 B2) = ∅

}}
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and

β0 = min
(C1C2)∈T

{
sup

{
y ∈

[
0,

π

6

]
: E0,y(A1 A2) ∩ D(C1C2) = ∅

}}
.

Then Eα0,β0 (A1 A2) is disjoint from every diamond determined by any edges in EMST. And
from Lemma 5,

α0 + β0 ≥ π

6
.

By Theorem 2, we can assign an α1, β1 and α2, β2 value for each edge A1 A2 in EMST
such that E(A1 A2) � Eα1,β1 (A1 A2) ∪ Eα2,β2 (A2 A1) is disjoint from diamonds determined
by any other edges in EMST(We call it the extra area of edge A1 A2). The following theorem
states that the extra area of all the edges in EMST would not overlap more than twice in
any place.

Theorem 3. Let A1 A2, B1 B2 and C1C2 be any three edges in EMST, then

E(A1 A2) ∩ E(B1 B2) ∩ E(C1C2) = ∅.

Proof: Assume ∃P ∈ E(A1 A2) ∩ E(B1 B2) ∩ E(C1C2), we will derive a contradiction.
Let Ai , Bi and Ci , i = 1, . . . , 4 respectively denote the four vertices of D(A1 A2),

D(B1 B2) and D(C1C2). It’s easy to see that there exists a side of each of D(A1 A2), D(B1 B2)
and D(C1C2), without loss of generality denoted by A1 A3, B1 B3 and C1C3, s.t. �A1 P A3,
�B1 P B3 and �C1 PC3 is respectively contained in E(A1 A2), E(B1 B2) and E(C1C2).

Because every extra area is disjoint from every diamond, we can prove that � A1 P A3,
� B1 P B3 and � C1 PC3 are all disjoint. In fact, if any two of them are not disjoint (assume
they are � A1 P A3 and � B1 P B3), then one of following two statements must hold.

(1) A1 or A3 are inside �B1 P B3, or
(2) B1 or B3 are inside �A1 P A3.

Without loss of generality, assume statement 1 holds. Then D(A1 A2) ∩ E(B1 B2) �= ∅,
which is a contradiction.

Therefore, � A1 P A3 + � B1 P B3 + � C1 PC3 is no more than 2π . But clearly they are all
greater than 2π

3 . This is a contradiction, which completes the proof.

Now we can describe how to estimate the upper bound of
∑

e∈EMST(P) ‖e‖2 using
Theorems 1–3.

Let P be any finite point set in unit disk. Construct diamonds and extra areas for every
edge in EMST(P) according to previous statements. Notice that for some edge e, D(e) or
E(e) may exceed the unit disk. We denote these out-of-disk areas of D(e) and E(e) by
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Ex(D(e)) and Ex(E(e)) respectively. Because all diamonds are disjoint, the total inside-
disk area of the diamonds equals

∑
e∈EMST(P) Area(D(e)) − Ex(D(e)). And according to

Theorem 3, all the extra areas cannot overlap more than twice at any location. So the total
inside-disk area of the extra areas is at least 1

2

∑
e∈EMST(P) Area(E(e)) − Ex(E(e)).

For an edge e ∈ EMST(P), let the sticking-out area of e be

T (e) = Ex(D(e)) + Ex(E(e))

2
, (2)

Because the area of the unit disk is π , it’s easy to see that

π ≥
∑

e∈EMST(P)

Area(D(e)) + 1

2

∑

e∈EMST(P)

Area(E(e)) −
∑

e∈EMST(P)

T (e).

For an edge e ∈ EMST(P), it’s easy to compute that Area(D(e)) =
√

3
6 ‖e‖2, and

Area(E(e)) ≥ 2Area(E π
6 ,0(e)) =

√
3

18 ‖e‖2. Therefore,

∑

e∈EMST(P)

√
3

6
‖e‖2 + 1

2

∑

e∈EMST(P)

√
3

18
‖e‖2 −

∑

e∈EMST(P)

T (e) ≤ π.

In other words,

∑

e∈EMST(P)

‖e‖2 ≤ π + ∑
e∈EMST(P) T (e)

7
√

3
36

. (3)

This is how we will estimate the upper bound of sum of squares of lengths of the edges in
EMST in unit disk. As what we mentioned when describing the mistakes in Wan et al. (2001),
how to effectively calculate

∑
e∈EMST(P) T (e) plays an important role in this estimation. So

we need one more lemma.

Lemma 6.

∑

e∈EMST(P)

T (e) ≤ 0.5166

Proof: Let A1 A2 be an edge in EMST which has positive sticking-out area. It’s easy to
see that the boundary of E(A1 A2) would have two intersection points with the boundary of
the unit disk(the unit circle). Assume they are A′

1 and A′
2 in clock-wise order on the unit

circle. Let θA1 A2 = � A′
1 O A′

2 where O is the center of the unit disk, then ‖A′
1 A′

2‖ = 2 sin θ
2 .

And it’s easy to see that θA1 A2 ≤ π
3 since ‖A1 A2‖ ≤ 1. Define function

S(x) = sin x

2
+

(√
3

4
− 1

12

)
(1 − cos x) − x

2
. (4)
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Figure 11. Illustration for Lemma 6.

Claim 1: T (A1 A2) ≤ S(θA1 A2 ).

Clearly only one side of D(A1 A2) ∪ E(A1 A2) from A1 A2 could possibly stick out the
unit disk. Without loss of generality, assume the sticking-out area is on the same side of
A1 A2 as A3. There are two cases to consider:

Case 1: A′
1 and A′

2 are respectively on line segment A1 E1(or A2 E2) and line segment E1 E2.
Without loss of generality, assume that A′

1 is on line segment A1 E1 and A′
2 is on line

segment E1 E2 (see figure 11(a)). Then

Ex(D(A1 A2)) ≤ Ex(D(A′
1 A′

2))

=
√

3

12
‖A′

1 A′
2‖2 + sin θA1 A2

2
− θA1 A2

2

=
√

3

6
(1 − cos θA1 A2 ) + sin θA1 A2

2
− θA1 A2

2
,

and because � A′
1 E1 A′

2 ≥ 2π
3 , we have

Ex(D(A1 A2) ∪ E(A1 A2)) = Area(�A′
1 E1 A′

2) + Area(�A′
1 A′

2 O)

− Area(Sector A′
1 A′

2 O)

≤ 1

4
tan

π

6
· ‖A′

1 A′
2‖2 + sin θA1 A2

2
− θA1 A2

2

=
√

3

6
(1 − cos θA1 A2 ) + sin θA1 A2

2
− θA1 A2

2
.
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Case 2: A′
1 and A′

2 are respectively on line segment A1 E1 and line segment A2 E2 (see
figure 11(b)). Then

Ex(D(A1 A2)) ≤ Ex(D(A′
1 A′

2)) =
√

3

6
(1 − cos θA1 A2 ) + sin θA1 A2

2
− θA1 A2

2
,

and

Ex(D(A1 A2) ∪ E(A1 A2)) = Area(Quad A′
1 E1 E2 A′

2) + Area(�A′
1 A′

2 O)

− Area(Sector A′
1 A′

2 O)

≤ 1

2
Area(D(A′

1 A′
2) ∪ E(A′

1 A′
2)) + sin θA1 A2

2
− θA1 A2

2

= 2
√

3 − 1

6
(1 − cos θA1 A2 ) + sin θA1 A2

2
− θA1 A2

2
.

Therefore, in both cases, we have

T (A1 A2) = Ex(D(A1 A2)) + Ex(E(A1 A2))

2

= 1

2
[Ex(D(A1 A2)) + Ex(D(A1 A2) ∪ E(A1 A2))]

≤ sin θA1 A2

2
+

(√
3

4
− 1

12

)
(1 − cos θA1 A2 ) − θA1 A2

2
.

Thus Claim 1 holds.
Claim 2: Suppose e1, . . . , ek are all edges in EMST whose diamonds or extra areas stick
out the unit disk, then

k∑

i=1

θei ≤ 2π.

Assume A1 A2 and B1 B2 are two edges in EMST which have positive sticking-out areas.
A′

1,A′
2(B ′

1,B ′
2 respectively) are the intersection points of the unit circle and the boundary

of E(A1 A2)(E(B1 B2) respectively). It’s easy to see that arc A′
1 A′

2(the part of unit circle
between A′

1 and A′
2)⊂ D(A1 A2) ∪ E(A1 A2) and B ′

1 B ′
2 ⊂ D(B1 B2) ∪ E(B1 B2).

Then we can prove that arc A′
1 A′

2 and arc B ′
1 B ′

2 are disjoint. In fact, if there exists point
P which is both on arc A′

1 A′
2 and arc B ′

1 B ′
2, then P ∈ E(A1 A2) ∩ E(B1 B2). By the similar

reason as in the proof of Theorem 3, � A1 P A2 and � B1 P B2 are disjoint. Because ∃i, j ∈
{1, 2}, s.t. � A1 P A2 ∪ � B1 P B2 ⊂ � Ai P B j , we have � A1 P A2 + � B1 P B2 ≤ � Ai P B j .

Since P is on the unit circle, and Ai and B j are on or inside the unit circle, � Ai P B j < π .
But on the other hand, clearly � A1 P A2 and � B1 P B2 are both ≥ π

2 , so

� A1 P A2 + � B1 P B2 ≥ π > � Ai P B j .

This is a contradiction. Thus Claim 2 holds.
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Now our task is equivalent to estimating the upper bound of following summation.

k∑

i=1

S(xi ),

s.t.
k∑

i=1

xi ≤ 2π,

where each xi ∈ (
0, π

3

]
.

To estimate this upper bound, we first analyze the convexity of function S(x). Differentiate
S(x) two times, we can find that its second derivative satisfies

S′′(x)

{
> 0, if 0 < x < c,

≤ 0, if c ≤ x ≤ π
3 ,

where c = arctan 3
√

3−1
6 ≈ 0.6103.

In other words, S(x) is convex if 0 < x < c and concave if c ≤ x ≤ π
3 . By the properties

of convex functions, we can prove following results:

1. for any x1, x2 ∈ (0, c),

S(x1) + S(x2) ≤
{

S(x1 + x2), if x1 + x2 < c,

S(c) + S(x1 + x2 − c), if x1 + x2 ≥ c.

2. for any x1, . . . , xm ∈ [c, π
3 ],

S(x1) + · · · + S(xm) ≤ mS

(
x1 + · · · + xm

m

)
.

It is easy to see that Result 2 holds. To prove Result 1, without loss of generality, we
assume 0 ≤ x1 ≤ x2 ≤ c. Then if x1 + x2 < c, we have

S(x1 + x2) − S(x2)

x1
≥ S′(x2) ≥ S′(x1) ≥ S(x1) − S(0)

x1
= S(x1)

x1
.

And if x1 + x2 ≥ c, we have

S(c) − S(x2)

c − x2
≥ S′(x2) ≥ S′(x1) ≥ S(x1) − S(x1 + x2 − c)

c − x2
.

Thus Result 1 holds.



ON APPROXIMATION RATIOS OF MINIMUM-ENERGY MULTICAST ROUTING 261

Now for xi ∈ (0, π
3 ], i = 1, . . . , k, s.t.

∑k
i=1 xi ≤ 2π . By repeatedly applying the two

inequalities in Result 1, the number of xi such that xi < c can be reduced to at most
1. So without loss of generality, we can assume x1 < c and x2, . . . , xn ≥ c. Then by
Result 2,

k∑

i=1

S(xi ) ≤ S(x1) + (k − 1)S

(
x2 + · · · + xk

k − 1

)
.

Let x0 = x2+···+xk
k−1 , we have

k∑

i=1

S(xi ) ≤ S(x1) + (x2 + · · · + xn)
S(x0)

x0
≤ S(x1) + (2π − x1)

S(x0)

x0
.

By solving the equation d
dx

S(x)
x = 0, we can find that

min
x∈[c,π/3]

S(x)

x
= S(0.914)

0.914
= 0.0822.

Therefore,

k∑

i=1

S(xi ) ≤ S(x1) + 0.0822(2π − x1)

≤ S(0) + 0.0822(2π − 0)

= 0.5166.

The second inequality holds because the right hand side of the first inequality is an
increasing function of x1 on the interval (0, c) (this can be verified by differentiating it).

Theorem 4.

6 ≤ c ≤ 10.86.

Proof: From (3) and Lemma 6, we have

∑

e∈EMST(P)

‖e‖2 ≤ π + 0.5166
7
√

3
36

= 10.86.

The lower bound 6 is achieved by letting P be the six vertices of the regular hexagon of
side length 1.
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5. Future works

In many parts of our proof, there are still rooms to improve the upper bound. But the proof
may become too intricate, and the improvement we shall get may be rather small. Finding
other approaches may be a better way.

So far, people still cannot construct any instances of P that has a
∑

e∈EMST(P) ‖e‖2 value
of more than 6. So, it is very likely that c = 6. Is it possible to prove this? There is a
max-min lemma included in the proof of Gilbert-Pollak conjecture, applicable to this max-
min problem (Du and Hwang, 1992). However, the help is quite limited due to the circle
constraint.

We can also consider that how to generalize the problem to higher dimensional spaces.
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