On Approximation Ratios of Minimum-Energy Multicast Routing in Wireless Networks

HONGXU CAI
hxcai00@mails.tsinghua.edu.cn
YINGCHAO ZHAO yczhao@mails.tsinghua.edu.cn
State Key Lab of Intelligent Technology \& System, Department of Computer Science and Technology, Tsinghua University, China. Supported by Natural Science Foundation of China (60223004, 603210022)

Received July 10, 2004; Revised March 14, 2005; Accepted March 14, 2005

Abstract

In the broadcasting of ad hoc wireless networks, energy conservation is a critical issue. Three heuristic algorithms were proposed in Wieselthier et al. (2000) for finding approximate minimum-energy broadcast routings: MST(minimum spanning tree), SPT(shortest-path tree), and BIP(broadcasting incremental power). Wan et al. (2001) characterized their performance in terms of approximation ratios. This paper points out some mistakes in the result of Wan et al. (2001), and proves that the upper bound of sum of squares of lengths of the edges in Euclidean MST in unit disk can be improved to 10.86, thus improves the approximation ratios of MST and BIP algorithm.

Keywords: ad hoc wireless networks, broadcasting, MST

1. Introduction

Ad hoc wireless network has not any wired backbone infrastructure, and the nodes in it use antennas to transmit and receive signals. The signals can be transmitted either in single-hop or in multi-hop through intermediate relaying nodes, and transmission range of the sender is decided by the power of the sender. However, the power supplied to the nodes in a wireless network is from batteries only. Thus, we need to design efficient power assignment schemes to make the lifetime of the network as long as possible while keeping the connectivity of the network.

In the power-attenuation model (Rappaport, 1996), the signal power falls as the function $\frac{1}{r^{k}}$, where r is the distance between the sender and the receiver, and k is a constant between 2 and 4. In the general case, we assume that all the receivers have the same power threshold for detecting signals which is normalized to one. Then the power consumption between the sender and receiver with distance equal to r is r^{2} if we choose $k=2$. Finding a route to minimize the total power consumption is referred to as the Minimum - Enerygy Routing Problem. We can use several models to design the routing scheme, for example MST(minimum spanning tree), SPT (shortest-path tree) and BIP(broadcasting incremental power) in Wieselthier et al. (2000). In this paper, we use the model of MST, and the problem can be described as follows.

Consider a unit disk with center O. Let P be a finite set of points in unit disk O. The question is that what is the value of

$$
\begin{equation*}
c=\sup _{P} \min _{T} \sum_{e \in T}\|e\|^{2}, \tag{1}
\end{equation*}
$$

where T is over all spanning trees on $P \cup\{O\}$ and e is over all edges of T.
This problem above comes from the study of multicast in wireless network. Analysis of several routing algorithms is based on establishing upper bound for this max-min value. Wan etc. gave the first upper bound of 14.51 in Wan et al. (2001), and later in the corresponding erratum they corrected some mistake and gave the bound of 12.141 which is the best known result. We follow their way and improve the bound to 10.86 .

Our proof of the bound is in some sense an extension of the basic idea of Wan et al. (2001), which made use of disjoint-diamonds covering on the unit disk. They obtained their result by comparing the area of the unit disk with the total area of the deliberately constructing diamonds. And we adjust their diamonds into some more complicated shape (actually they are diamonds with changeable extra areas), thus compute the area more precisely.
The paper is organized as follows. We give some preliminaries and notations in Section 2, and introduce the previous results on this problem in Section 3. In Section 4 we analyze the upper bound of sum of squares of lengths of the edges in EMST and give the proof in detail. In Section 5, we summarize the result and highlight some future research directions.

2. Preliminaries and notations

We first introduce some notations that will be used.
$\|A B\|$: the length of line segment $A B$.
$\triangle A B C$: the triangle $A B C$.
$\triangle A B C$: the area inside $\triangle A B C$.
$\angle A B C$: the angle between the two rays $B A$ and $B C$. Also referred to as the region inside the angle.
$D\left(A_{1} A_{2}\right)$: the rhombus whose vertices are A_{1} and A_{2} with sides of length $\frac{\sqrt{3}}{3}\left\|A_{1} A_{2}\right\|$ (see figure 1(a)). Also called the diamond determined by edge $A_{1} A_{2}$.
$B(A, r)$: the set of points whose distances from A are less than r.

Figure 1. Illustration of (a) $D\left(A_{1} A_{2}\right)$ and (b) $E_{\alpha, \beta}\left(A_{1} A_{2}\right)$.
$L\left(A_{1} A_{2}\right): B\left(A_{1},\left\|A_{1} A_{2}\right\|\right) \cap B\left(A_{2},\left\|A_{1} A_{2}\right\|\right)$.
$E_{\alpha, \beta}\left(A_{1} A_{2}\right)$: Let A_{3} be the vertex of $D\left(A_{1} A_{2}\right)$ such that the points A_{1}, A_{2}, A_{3} are in anticlockwise order, line $E_{1} A_{3} E_{2}$ is parallel to line $A_{1} A_{2}$, with $\angle E_{1} A_{1} A_{3}=\alpha$ and $\angle E_{2} A_{2} A_{3}=\beta$.

Then $\triangle A_{1} A_{3} E_{1} \cup \Delta A_{2} A_{3} E_{2}$ is denoted by $E_{\alpha, \beta}\left(A_{1} A_{2}\right)$ (see figure $1(\mathrm{~b})$).
Now let's take a look at (1). Note that for any point set P, by Prim's algorithm for constructing minimum spanning tree, we could find that $\sum_{e \in T}\|e\|^{2}$ achieves its minimum value if and only if T is an Euclidean minimum spanning tree(EMST) of P. Therefore, c could also be written by

$$
c=\sup _{P \subset B(O, 1)} \sum_{e \in \operatorname{EMST}(P \cup\{O\})}\|e\|^{2} .
$$

In other words, what we want to know is the upper bound of sum of squares of lengths of the edges in Euclidean MST in unit disk.
The EMSTs have many nice properties (Wan et al., 2001). For example:

- The length of every edge is no more than 1 (for EMSTs in the unit disk).
- Let $A_{1} A_{2}$ be any edge in $\operatorname{EMST}(P)$, then $L\left(A_{1} A_{2}\right)$ doesn't contain any other points in P.
- Let $A_{1} A_{2}$ and $B_{1} B_{2}$ be any two edges in $\operatorname{EMST}(P)$, then B_{1} and B_{2} are either both outside $B\left(A_{1},\left\|A_{1} A_{2}\right\|\right)$ or both outside $B\left(A_{2},\left\|A_{1} A_{2}\right\|\right)$.
- every edge in EMST (P) is an edge of P 's Delaunay triangulation.

And in Wan et al. (2001), we know an important property of EMSTs:
Theorem 1. In EMST, the two diamonds determined by any two edges are disjoint.
There is another lemma in Wan et al. (2001) which we will also use in this paper, stated as follows.

Lemma 1. Let A_{1}, A_{2} and B be any three points in the plane, $\exists i \in\{1,2\}$, s.t. $\left\|A_{i} B\right\|>$ $\left\|A_{1} A_{2}\right\|$. Let points $A_{1}^{\prime}\left(A_{2}^{\prime}\right.$ respectively) be any point on the opposite side of $A_{1} B\left(A_{2} B\right.$ respectively) from $A_{2}\left(A_{1}\right.$ respectively) such that $\angle A_{1} B A_{1}^{\prime}\left(\angle A_{2} B A_{2}^{\prime}\right.$ respectively) $=\frac{\pi}{6}$ (see figure 2). Then $D\left(A_{1} A_{2}\right) \subseteq \angle A_{1}^{\prime} B A_{2}^{\prime}$.

3. Incorrectness in previous result

From Theorem 1, Wan et al. (2001) first analyzed the relationship between the total area of the diamonds determined by edges in EMST and sum of squares of lengths of the edges in EMST, and gave an estimation 14.51 of the upper bound of $\sum_{e \in E M S T}\|e\|^{2}$. Then by estimating the sticking-out area more precisely, they proved a better upper bound 12 . However, some parts of the derivation of this new bound is wrong.

Figure 2. Illustration for Lemma 1.

The mistake is in their Lemma 11, stated as follows:
Let

$$
S(\alpha)=\frac{1}{2} \sin \alpha+\frac{\sqrt{3}}{6}(1-\cos \alpha)-\frac{\alpha}{2}
$$

Then for any $\alpha, \beta \in\left(0, \frac{\pi}{3}\right)$,

1. if $\alpha+\beta \leq \frac{\pi}{3}, S(\alpha)+S(\beta) \leq S(\alpha+\beta)$;
2. if $\alpha+\beta \geq \frac{\pi}{3}, S(\alpha)+S(\beta) \leq S\left(\alpha+\beta-\frac{\pi}{3}\right)+S\left(\frac{\pi}{3}\right)$.

Indeed, the second inequality does NOT hold! The mistake comes from the last expression in their proof, which missed a negative sign. So the inequality just holds exactly on the opposite direction.

Based on this lemma, they proved that if $\alpha_{i} \in\left(0, \frac{\pi}{3}\right]$ and $\sum_{i=1}^{k} \alpha_{i} \leq 2 \pi$, then the sticking-out area $\sum_{i=1}^{k} S\left(\alpha_{i}\right) \leq 2 \sqrt{3}-\pi$.

But actually this statement is false. For a counter example, we choose $\alpha_{i}=\frac{\pi}{4}, i=$ $1, \ldots, 8$, then

$$
\sum_{i=1}^{k} S\left(\alpha_{i}\right)=0.4625>2 \sqrt{3}-\pi=0.3225
$$

Clearly, the upper bound of sum of squares of lengths of the edges in EMST in unit disk couldn't be proved to be 12 in this way.

Wan also discovered their mistake. They fixed the bug and presented a slightly larger upper bound of 12.141 . However, there are still enough rooms to improve the upper bound. We will introduce another method in later sections, and get our new bound 10.86.

Figure 3. Illustration for Lemma 2.
4. Upper bound of sum of squares of lengths of the edges in EMST

Lemma 2. Let O, A, C and B be collinear in the order, with $\|O C\|^{2}=\|O A\| \cdot\|O B\|$ (see figure 3). Then for any point P on the plane, we have

$$
\frac{\|P A\|}{\|P B\|}\left\{\begin{array}{l}
<\frac{\|C A\|}{\|C B\|} \quad \text { if and only if }\|O P\|<\|O C\| \\
=\frac{\|C A\|}{\|C B\|} \quad \text { if and only if }\|O P\|=\|O C\| \\
>\frac{\|C A\|}{\|C B\|} \quad \text { if and only if }\|O P\|>\|O C\|
\end{array}\right.
$$

Proof: It's easy to verify the correctness of the conclusion if P is on straight line $A B$. And if not, we consider the three cases respectively:

If $\|O P\|=\|O C\|$, then

$$
\|O P\|^{2}=\|O A\| \cdot\|O B\|
$$

Therefore,

$$
\triangle O A P \sim \triangle O P B
$$

We have

$$
\angle B P C=\angle O C P-\angle O B P=\angle O P C-\angle O P A=\angle A P C
$$

which implies

$$
\frac{\|P A\|}{\|P B\|}=\frac{\|C A\|}{\|C B\|}
$$

If $\|O P\|<\|O C\|$, let P^{\prime} be on the ray $A P$ such that $\left\|O P^{\prime}\right\|=\|O C\|$ and B^{\prime} be on the ray $A B$ such that $P B$ is parallel to $P^{\prime} B^{\prime}$, then $\left\|A P^{\prime}\right\|>\|A P\|$ and $\angle A C P^{\prime}$ is acute (see

(a)

(b)

Figure 4. The case that (a) $\|O P\|<\|O C\|$ and (b) $\|O P\|>\|O C\|$.
figure 4(a)). So we have

$$
\angle P B B^{\prime}>\angle P^{\prime} C B>\angle P^{\prime} C A>\angle P^{\prime} B^{\prime} A
$$

That implies $\left\|P^{\prime} B^{\prime}\right\|>\left\|P^{\prime} B\right\|$, so

$$
\frac{\|P A\|}{\|P B\|}=\frac{\left\|P^{\prime} A\right\|}{\left\|P^{\prime} B^{\prime}\right\|}<\frac{\left\|P^{\prime} A\right\|}{\left\|P^{\prime} B\right\|}=\frac{\|C A\|}{\|C B\|}
$$

If $\|O P\|>\|O C\|$, let P^{\prime} be on the ray $A P$ such that $\left\|O P^{\prime}\right\|=\|O C\|$ and let B^{\prime} be on the ray $A B$ such that $P B$ is parallel to $P^{\prime} B^{\prime}$, then $\left\|A P^{\prime}\right\|<\|A P\|$ and $\angle A C P^{\prime}$ is acute (see figure 4(b)). So we have

$$
\angle P B^{\prime} B>\angle P^{\prime} C B>\angle P^{\prime} C A>\angle P^{\prime} B A
$$

That implies $\left\|P^{\prime} B\right\|>\left\|P^{\prime} B^{\prime}\right\|$, so

$$
\frac{\|P A\|}{\|P B\|}=\frac{\left\|P^{\prime} A\right\|}{\left\|P^{\prime} B^{\prime}\right\|}>\frac{\left\|P^{\prime} A\right\|}{\left\|P^{\prime} B\right\|}=\frac{\|C A\|}{\|C B\|}
$$

The proof is complete.
Lemma 3. Let $A_{1} A_{2}$ and $B_{1} B_{2}$ be any two edges in EMST satisfying $\left\|A_{1} B_{i}\right\| \geq\left\|A_{1} A_{2}\right\|$, $i=1,2$ (see figure 5), then

$$
D\left(B_{1} B_{2}\right) \cap B\left(A_{1}, \frac{\sqrt{3}}{3}\left\|A_{1} A_{2}\right\|\right)=\emptyset
$$

Proof: We will prove that any point on the boundary of $D\left(B_{1} B_{2}\right)$ is at least $\frac{\sqrt{3}}{3}\left\|A_{1} A_{2}\right\|$ away from A_{1}. Without loss of generality, assume that $\left\|A_{1} B_{1}\right\| \geq\left\|A_{1} B_{2}\right\|$. Then by the properties of EMST (Wan et al., 2001), we know that $\left\|A_{1} B_{1}\right\| \geq\left\|B_{1} B_{2}\right\|$. Let B_{3} be any vertex of $D\left(B_{1} B_{2}\right)$ other than B_{1} and B_{2}. Let P be any point on either line segment $B_{1} B_{3}$

Figure 5. Illustration for Lemma 3.
or line segment $B_{2} B_{3}$, and D be the point on line segment $B_{2} P$ such that $\frac{\left\|B_{2} D\right\|}{\|D P\|}=\sqrt{3}$. Let O be the point on the extending line of $B_{2} P$ such that $\|P O\|=\frac{1}{2}\left\|B_{2} P\right\|$. Then it's easy to verify that

$$
\|O D\|^{2}=\|O P\| \cdot\left\|O B_{2}\right\|
$$

Case 1: if P is on line segment $B_{1} B_{3}$, let C be the point on the same side of line $B_{1} B_{2}$ as B_{3} such that $\triangle B_{1} B_{2} C$ is equilateral (see figure 6(a)). Notice that

$$
\frac{\|P C\|}{\left\|B_{2} C\right\|} \geq \frac{\left\|B_{3} C\right\|}{\left\|B_{2} C\right\|}=\frac{\sqrt{3}}{3}=\frac{\|P D\|}{\left\|B_{2} D\right\|}
$$

(a) case 1

(b) case 2

Figure 6. Two cases in Lemma 3.

Then from Lemma 2, we have $\|O C\| \geq\|O D\|$.
In addition, because $\angle O C A_{1} \geq \angle B_{1} C A_{1} \geq \angle B_{1} A_{1} C \geq \angle O A_{1} C$, we have

$$
\left\|O A_{1}\right\| \geq\|O C\| \geq\|O D\| .
$$

Case 2: if P is on line segment $B_{2} B_{3}$, let G be the point on line segment $B_{1} B_{2}$ such that $\left\|B_{2} G\right\|=\|O G\|$ (see figure 6(b)). Then $\angle B_{1} G O=2 \angle B_{1} B_{2} O=\frac{\pi}{3}$, so

$$
\angle B_{1} O G=\frac{2 \pi}{3}-\angle G B_{1} O \geq \frac{\pi}{3}=\angle B_{1} G O
$$

In other words, $\left\|G B_{1}\right\| \geq\left\|O B_{1}\right\|$. Therefore,

$$
\begin{aligned}
&\left\|O A_{1}\right\| \geq\left\|A_{1} B_{1}\right\|-\left\|O B_{1}\right\| \geq\left\|B_{1} B_{2}\right\|-\left\|O B_{1}\right\| \geq\left\|B_{1} B_{2}\right\|-\left\|G B_{1}\right\| \\
&=\frac{\sqrt{3}}{3}\left\|O B_{2}\right\|=\|O D\|
\end{aligned}
$$

We can see that in both cases, $\left\|O A_{1}\right\| \geq\|O D\|$. From Lemma 2, we know that

$$
\left\|A_{1} P\right\| \geq \frac{\sqrt{3}}{3}\left\|A_{1} B_{2}\right\| \geq \frac{\sqrt{3}}{3}\left\|A_{1} A_{2}\right\|
$$

In total, the distances from A_{1} to any boundary points of $D\left(B_{1} B_{2}\right)$ are no smaller than $\frac{\sqrt{3}}{3}\left\|A_{1} A_{2}\right\|$. Clearly, $D\left(B_{1} B_{2}\right)$ is outside $B\left(A_{1}, \frac{\sqrt{3}}{3}\left\|A_{1} A_{2}\right\|\right)$.

Corollary 1. Let $A_{1} A_{2}$ and $B_{1} B_{2}$ be any two edges in EMST, then $\exists i \in\{1,2\}$, s.t.

$$
D\left(B_{1} B_{2}\right) \cap B\left(A_{i}, \frac{\sqrt{3}}{3}\left\|A_{1} A_{2}\right\|\right)=\emptyset
$$

Proof: Only to notice that B_{1} and B_{2} are either both outside $B\left(A_{1},\left\|A_{1} A_{2}\right\|\right)$ or both outside $B\left(A_{2},\left\|A_{1} A_{2}\right\|\right)$.

Lemma 4. Let $A_{1} A_{2}, B_{1} B_{2}$ and $C_{1} C_{2}$ be any three edges in $\operatorname{EMST}(P)$ (see figure 7), then at least one of following three statements holds:
(1) $\left\|A_{1} B_{i}\right\| \geq\left\|A_{1} A_{2}\right\|, i=1,2$
(2) $\left\|A_{2} C_{i}\right\| \geq\left\|A_{1} A_{2}\right\|, i=1,2$
(3) $\left\|B_{i} C_{j}\right\| \geq\left\|A_{1} A_{2}\right\|, i, j=1,2$

Proof: If none of these three statements holds, then $\exists i, j, k, l \in\{1,2\}$, s.t. $\left\|A_{1} B_{i}\right\|<$ $\left\|A_{1} A_{2}\right\|,\left\|A_{2} C_{j}\right\|<\left\|A_{1} A_{2}\right\|$, and $\left\|B_{k} C_{l}\right\|<\left\|A_{1} A_{2}\right\|$.

Figure 7. Illustration for Lemma 4.

Let T be the Euclidean minimum spanning tree of point set P, then graph $T \backslash\left\{A_{1} A_{2}\right\}$ has two connected components. Clearly, B_{1} and B_{2} are in the same connected component, C_{1} and C_{2} are in the same connected component, but A_{1} and A_{2} are in different connected components. So we have three cases to consider:

Case 1: One connected component contains A_{1}, and the other contains $A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$. Then $\left(T \backslash\left\{A_{1} A_{2}\right\}\right) \cup\left\{A_{1} B_{i}\right\}$ contains $|P|-1$ edges and no cycles, thus is a spanning tree of P, and has a total length less than T. This causes a contradiction.
Case 2: One connected component contains A_{1}, B_{1}, B_{2}, and the other contains A_{2}, C_{1}, C_{2}. Then $\left(T \backslash\left\{A_{1} A_{2}\right\}\right) \cup\left\{B_{k} C_{l}\right\}$ is a spanning tree of P and has a total length less than T. A contradiction.
Case 3: One connected component contains $A_{1}, B_{1}, B_{2}, C_{1}, C_{2}$, and the other contains A_{2}. Then $\left(T \backslash\left\{A_{1} A_{2}\right\}\right) \cup\left\{A_{2} C_{j}\right\}$ is a spanning tree of P and has a total length less than T. A contradiction.

In total, every case causes a contradiction. This completes the proof.
Now we come to the main lemma in this paper.

Lemma 5. Let $A_{1} A_{2}, B_{1} B_{2}$ and $C_{1} C_{2}$ be any three edges in EMST. Let $\alpha_{0}=\sup \{x \in$ $\left.\left[0, \frac{\pi}{6}\right]: E_{x, 0}\left(A_{1} A_{2}\right) \cap D\left(B_{1} B_{2}\right)=\emptyset\right\}$ and $\beta_{0}=\sup \left\{y \in\left[0, \frac{\pi}{6}\right]: E_{0, y}\left(A_{1} A_{2}\right) \cap D\left(C_{1} C_{2}\right)=\right.$ Ø\}. Then

$$
\alpha_{0}+\beta_{0} \geq \frac{\pi}{6}
$$

Proof: If $\alpha_{0}+\beta_{0}<\frac{\pi}{6}$, we will derive a contradiction.

Figure 8. The area partition.
Choose $\alpha, \beta \in\left[0, \frac{\pi}{6}\right]$, s.t. $\alpha>\alpha_{0}, \beta>\beta_{0}$, and $\alpha+\beta=\frac{\pi}{6}$, then

$$
E_{\alpha, 0}\left(A_{1} A_{2}\right) \cap D\left(B_{1} B_{2}\right) \neq \emptyset
$$

and

$$
E_{0, \beta}\left(A_{1} A_{2}\right) \cap D\left(C_{1} C_{2}\right) \neq \emptyset .
$$

Let G be the point on the same side of $A_{1} A_{2}$ as A_{3} such that $\angle G A_{1} A_{2}=\frac{\pi}{3}+\alpha$ and $\angle G A_{2} A_{1}=\frac{\pi}{3}+\beta$. We partition the area where B_{1}, B_{2}, C_{1} or C_{2} can possibly be in three regions: \mathcal{A}, \mathcal{B} and \mathcal{C}, where \mathcal{A} is the region on the left side of line $A_{1} G, \mathcal{B}$ is the region inside $\triangle A_{1} A_{2} G$, and \mathcal{C} is the region on the right side of line $A_{2} G$ (see figure 8).

Let a denote $\left\|A_{1} A_{2}\right\|$. Now we consider every case according to which region each point lies in(note that \mathcal{A} and \mathcal{C} share some area so we can treat a point in this area either in \mathcal{A} or in \mathcal{C}), and prove that none of these cases would happen. Without loss of generality, assume $\angle B_{1} A_{1} A_{2} \geq \angle B_{2} A_{1} A_{2}$ and $\angle C_{1} A_{2} A_{1} \leq \angle C_{2} A_{2} A_{1}$.

Case 1: B_{2} lies in region \mathcal{A}. Then B_{1} also lies in \mathcal{A}. Note that $\angle E_{1} A_{1} G=\frac{\pi}{6}$, by Lemma 1, $D\left(B_{1} B_{2}\right)$ is on the left side of line $A_{1} E_{1}$, which contradicts $E_{\alpha, \beta}\left(A_{1} A_{2}\right) \cap D\left(B_{1} B_{2}\right) \neq \emptyset$. Similarly, there would also be a contradiction if C_{1} lies in region \mathcal{C}.
Case 2: B_{2} lies in region \mathcal{B}. There are two subcases.

Case 2.1: At least one of C_{1} and C_{2} lie in region \mathcal{B}. Without loss of generality, assume C_{1} lies in \mathcal{B}. Let point H_{1} and H_{2} respectively be the point on line segment $G A_{1}$ and $G A_{2}$, such that $\left\|A_{2} H_{1}\right\|=\left\|A_{1} H_{2}\right\|=a$.

Figure 9. Illustration for case 2.1.

Now if $\left\|B_{2} H_{2}\right\| \geq a$, let D be the point on line segment $A_{1} B_{2}$ such that $\left\|B_{2} D\right\|=$ $\left\|B_{2} H_{2}\right\|$. Let F be the vertex of $D\left(B_{2} D\right)$ on the same side of $B_{2} D$ as A_{2}. Let P be any point inside $E_{\alpha, 0}\left(A_{1} A_{2}\right)$ (see figure 9).

Since $\left\|D H_{2}\right\| \leq a \leq\left\|D B_{2}\right\|=\left\|H_{2} B_{2}\right\|$, we have $\angle B_{2} D H_{2} \geq \frac{\pi}{3}$, therefore

$$
\angle A_{1} D H_{2}=\pi-\angle H_{2} D B_{2} \leq \pi-\frac{\pi}{3}=\frac{2 \pi}{3}
$$

On the other hand, P must be in $D\left(A_{1} H_{2}\right)$ since

$$
\begin{aligned}
\angle P A_{1} H_{2} & =\angle G A_{1} A_{2}-\angle G A_{1} P-\angle A_{2} A_{1} H_{2} \\
& <\left(\alpha+\frac{\pi}{3}\right)-\frac{\pi}{6}-\left[\pi-2\left(\beta+\frac{\pi}{3}\right)\right]=\beta<\frac{\pi}{6} .
\end{aligned}
$$

We have

$$
\angle A_{1} P H_{2}>\frac{2 \pi}{3} \geq \angle A_{1} D H_{2}
$$

In other words, D is outside the circumcircle of $\triangle A_{1} P H_{2}$, which means $\angle P D H_{2}<$ $\angle P A_{1} H_{2}<\frac{\pi}{6}$. Now,

$$
\angle B_{2} D P \geq \angle B_{2} D H_{2}-\angle P D H_{2}>\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}
$$

Note the arbitrariness of $P, E_{\alpha, 0}\left(A_{1} A_{2}\right)$ is outside $\angle D F B_{2}$.
By Lemma 4, $\left\|B_{1} B_{2}\right\| \leq\left\|B_{2} C_{1}\right\| \leq\left\|B_{2} H_{2}\right\|=\left\|B_{2} D\right\|$. Because $\angle B_{1} B_{2} F \geq \angle D B_{2} F$, it's easy to see that $D\left(B_{1} B_{2}\right) \subset \angle D F B_{2}$, which implies $E_{\alpha, 0}\left(A_{1} A_{2}\right) \cap D\left(B_{1} B_{2}\right)=\emptyset$. This is a contradiction. Therefore, $\left\|B_{2} H_{2}\right\|<a$.

Figure 10. Illustration for case 2.2.

By the same reason we have $\left\|C_{1} H_{1}\right\|<a$.
Furthermore, from Lemma $3, \exists i$, j, s.t. $\left\|A_{1} B_{i}\right\|<a$ and $\left\|A_{2} C_{j}\right\|<a$. So by the properties of EMST, B_{1} and B_{2} must be both outside $B\left(A_{2}, a\right)$, and C_{1} and C_{2} must be both outside $B\left(A_{1}, a\right)$. Finally, $B_{2} \in \mathcal{B} \cap B\left(H_{2}, a\right) \backslash B\left(A_{2}, a\right)$ and $C_{1} \in \mathcal{B} \cap B\left(H_{1}, a\right) \backslash B\left(A_{1}, a\right)$. Now, by simple analysis we can find that wherever B_{2} or C_{1} be, $\left\|B_{2} C_{1}\right\|<a$ always hold. That contradicts Lemma 4.

Case 2.2: Now C_{1} must be in region \mathcal{A} and C_{2} must be in region \mathcal{C} (because they can't be both in \mathcal{A} or both in \mathcal{C}).
Let K_{2} be the point on line segment $A_{2} G$ such that $\left\|A_{2} K_{2}\right\|=a$ (see figure 10).
Because A_{1}, H_{1} and K_{2} are all on $\odot A_{2}$, we have

$$
\angle G H_{1} K_{2}=\frac{\angle G A_{2} A_{1}}{2} \geq \frac{\pi}{6} .
$$

And by Lemma $5, C_{2} \in B\left(A_{2}, a\right)$, so C_{2} is on the right side of line $H_{1} K_{2}$. We have $\angle C_{1} H_{1} C_{2} \geq \angle G H_{1} K_{2}$. Furthermore, B_{2} is below line $C_{1} C_{2}$, for otherwise by the fact that $D\left(B_{1} B_{2}\right)$ and $D\left(C_{1} C_{2}\right)$ are disjoint, $D\left(B_{1} B_{2}\right)$ would be outside quadrilateral $A_{1} C_{1} C_{2} A_{2}$, thereby having no intersection with $E_{\alpha, 0}\left(A_{1} A_{2}\right)$, which makes a contradiction. So B_{2} is inside $\triangle C_{1} H_{1} C_{2}$, and

$$
\angle C_{1} B_{2} C_{2} \geq \angle C_{1} H_{1} C_{2} \geq \angle G H_{1} K_{2} \geq \frac{\pi}{6}
$$

By Lemma $4,\left\|B_{2} C_{1}\right\| \geq\left\|C_{1} C_{2}\right\|$ and $\left\|B_{2} C_{2}\right\| \geq\left\|C_{1} C_{2}\right\|$, so $\angle C_{1} B_{2} C_{2}$ is the smallest angle in $\triangle B_{2} C_{1} C_{2}$. Now we have

$$
\angle C_{1} C_{2} H_{1} \geq \angle C_{1} C_{2} B_{2} \geq \angle C_{1} B_{2} C_{2} \geq \frac{\pi}{6}
$$

Let P be any point inside $E_{0, \beta}\left(A_{1} A_{2}\right)$. Let A_{3} be the vertex of $D\left(A_{1} A_{2}\right)$ on the upper side of $A_{1} A_{2}$ and Q be the intersection point of the extending line of $A_{1} A_{3}$ and $\odot A_{2}$. Then $\angle G H_{1} P \geq \angle G H_{1} Q=\frac{\pi}{3}$. Therefore,

$$
\angle G H_{1} C_{2} \leq C_{1} H_{1} C_{2} \leq C_{1} B_{2} C_{2} \leq \frac{\pi}{3} \leq \angle G H_{1} P
$$

So P is below line $H_{1} C_{2}$, and we have $\angle C_{1} C_{2} P \geq \angle C_{1} C_{2} H_{1} \geq \frac{\pi}{6}$. This implies $E_{0, \beta}\left(A_{1} A_{2}\right) \cap D\left(C_{1} C_{2}\right)=\emptyset$. A contradiction.

Case 3: B_{2} lies in region \mathcal{C}, then B_{1} must lie in \mathcal{A} or \mathcal{B}.
Case 3.1: C_{1} lies in region \mathcal{B}. This case is the same with case 2 by symmetry.
Case 3.2: C_{1} is in region \mathcal{A}, then C_{2} must lie in \mathcal{B} or \mathcal{C}.

Now either of following two statements must hold, for otherwise line segment $B_{1} B_{2}$ and $C_{1} C_{2}$ would have intersection, which contradicts the properties of EMST.
(1) line segment $B_{1} B_{2}$ is outside quadrilateral $A_{1} C_{1} C_{2} A_{2}$, or
(2) line segment $C_{1} C_{2}$ is outside quadrilateral $A_{1} B_{1} B_{2} A_{2}$.

Without loss of generality, assume that statement 1 holds. Then by the fact that $D\left(B_{1} B_{2}\right)$ and $D\left(C_{1} C_{2}\right)$ are disjoint, $D\left(B_{1} B_{2}\right)$ would be outside quadrilateral $A_{1} C_{1} C_{2} A_{2}$, thereby having no intersection with $E_{\alpha, 0}\left(A_{1} A_{2}\right)$. This is a contradiction.

In conclusion, $\alpha_{0}+\beta_{0} \geq \frac{\pi}{6}$, and $E_{\alpha_{0}, \beta_{0}}\left(A_{1} A_{2}\right) \cap D\left(B_{1} B_{2}\right)=\emptyset, E_{\alpha_{0}, \beta_{0}}\left(A_{1} A_{2}\right) \cap$ $D\left(C_{1} C_{2}\right)=\emptyset$. This completes the proof.

Theorem 2. Let $A_{1} A_{2}$ be an edge in EMST, then $\exists \alpha_{0}, \beta_{0} \geq 0$, with $\alpha_{0}+\beta_{0} \geq \frac{\pi}{6}$, such that $E_{\alpha_{0}, \beta_{0}}\left(A_{1} A_{2}\right)$ is disjoint from every diamond determined by any edges in EMST.

Proof: Let

$$
\mathcal{S}=\left\{\left(B_{1} B_{2}\right) \in \mathrm{EMST}: E_{\frac{\pi}{6}, 0}\left(A_{1} A_{2}\right) \cap D\left(B_{1} B_{2}\right) \neq \emptyset\right\}
$$

and

$$
\mathcal{T}=\left\{\left(C_{1} C_{2}\right) \in \mathrm{EMST}: E_{0, \frac{\pi}{6}}\left(A_{1} A_{2}\right) \cap D\left(C_{1} C_{2}\right) \neq \emptyset\right\}
$$

Then from Corollary $1, \mathcal{S} \cap \mathcal{T}=\emptyset$. Let

$$
\alpha_{0}=\min _{\left(B_{1} B_{2}\right) \in \mathcal{S}}\left\{\sup \left\{x \in\left[0, \frac{\pi}{6}\right]: E_{x, 0}\left(A_{1} A_{2}\right) \cap D\left(B_{1} B_{2}\right)=\emptyset\right\}\right\}
$$

and

$$
\beta_{0}=\min _{\left(C_{1} C_{2}\right) \in \mathcal{T}}\left\{\sup \left\{y \in\left[0, \frac{\pi}{6}\right]: E_{0, y}\left(A_{1} A_{2}\right) \cap D\left(C_{1} C_{2}\right)=\emptyset\right\}\right\} .
$$

Then $E_{\alpha_{0}, \beta_{0}}\left(A_{1} A_{2}\right)$ is disjoint from every diamond determined by any edges in EMST. And from Lemma 5,

$$
\alpha_{0}+\beta_{0} \geq \frac{\pi}{6}
$$

By Theorem 2, we can assign an α_{1}, β_{1} and α_{2}, β_{2} value for each edge $A_{1} A_{2}$ in EMST such that $E\left(A_{1} A_{2}\right) \triangleq E_{\alpha_{1}, \beta_{1}}\left(A_{1} A_{2}\right) \cup E_{\alpha_{2}, \beta_{2}}\left(A_{2} A_{1}\right)$ is disjoint from diamonds determined by any other edges in EMST(We call it the extra area of edge $A_{1} A_{2}$). The following theorem states that the extra area of all the edges in EMST would not overlap more than twice in any place.

Theorem 3. Let $A_{1} A_{2}, B_{1} B_{2}$ and $C_{1} C_{2}$ be any three edges in EMST, then

$$
E\left(A_{1} A_{2}\right) \cap E\left(B_{1} B_{2}\right) \cap E\left(C_{1} C_{2}\right)=\emptyset .
$$

Proof: Assume $\exists P \in E\left(A_{1} A_{2}\right) \cap E\left(B_{1} B_{2}\right) \cap E\left(C_{1} C_{2}\right)$, we will derive a contradiction.
Let A_{i}, B_{i} and $C_{i}, i=1, \ldots, 4$ respectively denote the four vertices of $D\left(A_{1} A_{2}\right)$, $D\left(B_{1} B_{2}\right)$ and $D\left(C_{1} C_{2}\right)$. It's easy to see that there exists a side of each of $D\left(A_{1} A_{2}\right), D\left(B_{1} B_{2}\right)$ and $D\left(C_{1} C_{2}\right)$, without loss of generality denoted by $A_{1} A_{3}, B_{1} B_{3}$ and $C_{1} C_{3}$, s.t. $\triangle A_{1} P A_{3}$, $\triangle B_{1} P B_{3}$ and $\triangle C_{1} P C_{3}$ is respectively contained in $E\left(A_{1} A_{2}\right), E\left(B_{1} B_{2}\right)$ and $E\left(C_{1} C_{2}\right)$.

Because every extra area is disjoint from every diamond, we can prove that $\angle A_{1} P A_{3}$, $\angle B_{1} P B_{3}$ and $\angle C_{1} P C_{3}$ are all disjoint. In fact, if any two of them are not disjoint (assume they are $\angle A_{1} P A_{3}$ and $\angle B_{1} P B_{3}$), then one of following two statements must hold.
(1) A_{1} or A_{3} are inside $\triangle B_{1} P B_{3}$, or
(2) B_{1} or B_{3} are inside $\triangle A_{1} P A_{3}$.

Without loss of generality, assume statement 1 holds. Then $D\left(A_{1} A_{2}\right) \cap E\left(B_{1} B_{2}\right) \neq \emptyset$, which is a contradiction.
Therefore, $\angle A_{1} P A_{3}+\angle B_{1} P B_{3}+\angle C_{1} P C_{3}$ is no more than 2π. But clearly they are all greater than $\frac{2 \pi}{3}$. This is a contradiction, which completes the proof.

Now we can describe how to estimate the upper bound of $\sum_{e \in \operatorname{EMST}(P)}\|e\|^{2}$ using Theorems 1-3.
Let P be any finite point set in unit disk. Construct diamonds and extra areas for every edge in $\operatorname{EMST}(P)$ according to previous statements. Notice that for some edge $e, D(e)$ or $E(e)$ may exceed the unit disk. We denote these out-of-disk areas of $D(e)$ and $E(e)$ by
$E x(D(e))$ and $E x(E(e))$ respectively. Because all diamonds are disjoint, the total insidedisk area of the diamonds equals $\sum_{e \in \operatorname{EMST}(P)} \operatorname{Area}(D(e))-E x(D(e))$. And according to Theorem 3, all the extra areas cannot overlap more than twice at any location. So the total inside-disk area of the extra areas is at least $\frac{1}{2} \sum_{e \in \operatorname{EMST}(P)} \operatorname{Area}(E(e))-E x(E(e))$.

For an edge $e \in \operatorname{EMST}(P)$, let the sticking-out area of e be

$$
\begin{equation*}
T(e)=E x(D(e))+\frac{E x(E(e))}{2}, \tag{2}
\end{equation*}
$$

Because the area of the unit disk is π, it's easy to see that

$$
\pi \geq \sum_{e \in \operatorname{EMST}(P)} \operatorname{Area}(D(e))+\frac{1}{2} \sum_{e \in \operatorname{EMST}(P)} \operatorname{Area}(E(e))-\sum_{e \in \operatorname{EMST}(P)} T(e) .
$$

For an edge $e \in \operatorname{EMST}(P)$, it's easy to compute that $\operatorname{Area}(D(e))=\frac{\sqrt{3}}{6}\|e\|^{2}$, and $\operatorname{Area}(E(e)) \geq 2 \operatorname{Area}\left(E_{\frac{\pi}{6}, 0}(e)\right)=\frac{\sqrt{3}}{18}\|e\|^{2}$. Therefore,

$$
\sum_{e \in \operatorname{EMST}(P)} \frac{\sqrt{3}}{6}\|e\|^{2}+\frac{1}{2} \sum_{e \in \operatorname{EMST}(P)} \frac{\sqrt{3}}{18}\|e\|^{2}-\sum_{e \in \operatorname{EMST}(P)} T(e) \leq \pi .
$$

In other words,

$$
\begin{equation*}
\sum_{e \in \operatorname{EMST}(P)}\|e\|^{2} \leq \frac{\pi+\sum_{e \in \operatorname{EMST}(P)} T(e)}{\frac{7 \sqrt{3}}{36}} \tag{3}
\end{equation*}
$$

This is how we will estimate the upper bound of sum of squares of lengths of the edges in EMST in unit disk. As what we mentioned when describing the mistakes in Wan et al. (2001), how to effectively calculate $\sum_{e \in \operatorname{EMST}(P)} T(e)$ plays an important role in this estimation. So we need one more lemma.

Lemma 6.

$$
\sum_{e \in \operatorname{EMST}(P)} T(e) \leq 0.5166
$$

Proof: Let $A_{1} A_{2}$ be an edge in EMST which has positive sticking-out area. It's easy to see that the boundary of $E\left(A_{1} A_{2}\right)$ would have two intersection points with the boundary of the unit $\operatorname{disk}\left(\right.$ the unit circle). Assume they are A_{1}^{\prime} and A_{2}^{\prime} in clock-wise order on the unit circle. Let $\theta_{A_{1} A_{2}}=\angle A_{1}^{\prime} O A_{2}^{\prime}$ where O is the center of the unit disk, then $\left\|A_{1}^{\prime} A_{2}^{\prime}\right\|=2 \sin \frac{\theta}{2}$. And it's easy to see that $\theta_{A_{1} A_{2}} \leq \frac{\pi}{3}$ since $\left\|A_{1} A_{2}\right\| \leq 1$. Define function

$$
\begin{equation*}
S(x)=\frac{\sin x}{2}+\left(\frac{\sqrt{3}}{4}-\frac{1}{12}\right)(1-\cos x)-\frac{x}{2} . \tag{4}
\end{equation*}
$$

Figure 11. Illustration for Lemma 6.

Claim 1: $T\left(A_{1} A_{2}\right) \leq S\left(\theta_{A_{1} A_{2}}\right)$.
Clearly only one side of $D\left(A_{1} A_{2}\right) \cup E\left(A_{1} A_{2}\right)$ from $A_{1} A_{2}$ could possibly stick out the unit disk. Without loss of generality, assume the sticking-out area is on the same side of $A_{1} A_{2}$ as A_{3}. There are two cases to consider:

Case 1: A_{1}^{\prime} and A_{2}^{\prime} are respectively on line segment $A_{1} E_{1}$ (or $A_{2} E_{2}$) and line segment $E_{1} E_{2}$.
Without loss of generality, assume that A_{1}^{\prime} is on line segment $A_{1} E_{1}$ and A_{2}^{\prime} is on line segment $E_{1} E_{2}$ (see figure $11(\mathrm{a})$). Then

$$
\begin{aligned}
\operatorname{Ex}\left(D\left(A_{1} A_{2}\right)\right) & \leq \operatorname{Ex}\left(D\left(A_{1}^{\prime} A_{2}^{\prime}\right)\right) \\
& =\frac{\sqrt{3}}{12}\left\|A_{1}^{\prime} A_{2}^{\prime}\right\|^{2}+\frac{\sin \theta_{A_{1} A_{2}}}{2}-\frac{\theta_{A_{1} A_{2}}}{2} \\
& =\frac{\sqrt{3}}{6}\left(1-\cos \theta_{A_{1} A_{2}}\right)+\frac{\sin \theta_{A_{1} A_{2}}}{2}-\frac{\theta_{A_{1} A_{2}}}{2},
\end{aligned}
$$

and because $\angle A_{1}^{\prime} E_{1} A_{2}^{\prime} \geq \frac{2 \pi}{3}$, we have

$$
\begin{aligned}
\operatorname{Ex}\left(D\left(A_{1} A_{2}\right) \cup E\left(A_{1} A_{2}\right)\right)= & \operatorname{Area}\left(\triangle A_{1}^{\prime} E_{1} A_{2}^{\prime}\right)+\operatorname{Area}\left(\triangle A_{1}^{\prime} A_{2}^{\prime} O\right) \\
& -\operatorname{Area}\left(\operatorname{Sector} A_{1}^{\prime} A_{2}^{\prime} O\right) \\
\leq & \frac{1}{4} \tan \frac{\pi}{6} \cdot\left\|A_{1}^{\prime} A_{2}^{\prime}\right\|^{2}+\frac{\sin \theta_{A_{1} A_{2}}}{2}-\frac{\theta_{A_{1} A_{2}}}{2} \\
= & \frac{\sqrt{3}}{6}\left(1-\cos \theta_{A_{1} A_{2}}\right)+\frac{\sin \theta_{A_{1} A_{2}}}{2}-\frac{\theta_{A_{1} A_{2}}}{2} .
\end{aligned}
$$

Case 2: A_{1}^{\prime} and A_{2}^{\prime} are respectively on line segment $A_{1} E_{1}$ and line segment $A_{2} E_{2}$ (see figure 11(b)). Then

$$
E x\left(D\left(A_{1} A_{2}\right)\right) \leq E x\left(D\left(A_{1}^{\prime} A_{2}^{\prime}\right)\right)=\frac{\sqrt{3}}{6}\left(1-\cos \theta_{A_{1} A_{2}}\right)+\frac{\sin \theta_{A_{1} A_{2}}}{2}-\frac{\theta_{A_{1} A_{2}}}{2}
$$

and

$$
\begin{aligned}
\operatorname{Ex}\left(D\left(A_{1} A_{2}\right) \cup E\left(A_{1} A_{2}\right)\right)= & \operatorname{Area}\left(\operatorname{Quad} A_{1}^{\prime} E_{1} E_{2} A_{2}^{\prime}\right)+\operatorname{Area}\left(\triangle A_{1}^{\prime} A_{2}^{\prime} O\right) \\
& -\operatorname{Area}\left(\operatorname{Sector} A_{1}^{\prime} A_{2}^{\prime} O\right) \\
\leq & \frac{1}{2} \operatorname{Area}\left(D\left(A_{1}^{\prime} A_{2}^{\prime}\right) \cup E\left(A_{1}^{\prime} A_{2}^{\prime}\right)\right)+\frac{\sin \theta_{A_{1} A_{2}}}{2}-\frac{\theta_{A_{1} A_{2}}}{2} \\
= & \frac{2 \sqrt{3}-1}{6}\left(1-\cos \theta_{A_{1} A_{2}}\right)+\frac{\sin \theta_{A_{1} A_{2}}}{2}-\frac{\theta_{A_{1} A_{2}}}{2} .
\end{aligned}
$$

Therefore, in both cases, we have

$$
\begin{aligned}
T\left(A_{1} A_{2}\right) & =E x\left(D\left(A_{1} A_{2}\right)\right)+\frac{E x\left(E\left(A_{1} A_{2}\right)\right)}{2} \\
& =\frac{1}{2}\left[E x\left(D\left(A_{1} A_{2}\right)\right)+E x\left(D\left(A_{1} A_{2}\right) \cup E\left(A_{1} A_{2}\right)\right)\right] \\
& \leq \frac{\sin \theta_{A_{1} A_{2}}}{2}+\left(\frac{\sqrt{3}}{4}-\frac{1}{12}\right)\left(1-\cos \theta_{A_{1} A_{2}}\right)-\frac{\theta_{A_{1} A_{2}}}{2}
\end{aligned}
$$

Thus Claim 1 holds.
Claim 2: Suppose e_{1}, \ldots, e_{k} are all edges in EMST whose diamonds or extra areas stick out the unit disk, then

$$
\sum_{i=1}^{k} \theta_{e_{i}} \leq 2 \pi
$$

Assume $A_{1} A_{2}$ and $B_{1} B_{2}$ are two edges in EMST which have positive sticking-out areas. $A_{1}^{\prime}, A_{2}^{\prime}\left(B_{1}^{\prime}, B_{2}^{\prime}\right.$ respectively) are the intersection points of the unit circle and the boundary of $E\left(A_{1} A_{2}\right)\left(E\left(B_{1} B_{2}\right)\right.$ respectively $)$. It's easy to see that arc $A_{1}^{\prime} A_{2}^{\prime}$ (the part of unit circle between A_{1}^{\prime} and $\left.A_{2}^{\prime}\right) \subset D\left(A_{1} A_{2}\right) \cup E\left(A_{1} A_{2}\right)$ and $B_{1}^{\prime} B_{2}^{\prime} \subset D\left(B_{1} B_{2}\right) \cup E\left(B_{1} B_{2}\right)$.

Then we can prove that $\operatorname{arc} A_{1}^{\prime} A_{2}^{\prime}$ and arc $B_{1}^{\prime} B_{2}^{\prime}$ are disjoint. In fact, if there exists point P which is both on arc $A_{1}^{\prime} A_{2}^{\prime}$ and arc $B_{1}^{\prime} B_{2}^{\prime}$, then $P \in E\left(A_{1} A_{2}\right) \cap E\left(B_{1} B_{2}\right)$. By the similar reason as in the proof of Theorem 3, $\angle A_{1} P A_{2}$ and $\angle B_{1} P B_{2}$ are disjoint. Because $\exists i, j \in$ $\{1,2\}$, s.t. $\angle A_{1} P A_{2} \cup \angle B_{1} P B_{2} \subset \angle A_{i} P B_{j}$, we have $\angle A_{1} P A_{2}+\angle B_{1} P B_{2} \leq \angle A_{i} P B_{j}$.

Since P is on the unit circle, and A_{i} and B_{j} are on or inside the unit circle, $\angle A_{i} P B_{j}<\pi$. But on the other hand, clearly $\angle A_{1} P A_{2}$ and $\angle B_{1} P B_{2}$ are both $\geq \frac{\pi}{2}$, so

$$
\angle A_{1} P A_{2}+\angle B_{1} P B_{2} \geq \pi>\angle A_{i} P B_{j} .
$$

This is a contradiction. Thus Claim 2 holds.

Now our task is equivalent to estimating the upper bound of following summation.

$$
\begin{aligned}
& \sum_{i=1}^{k} S\left(x_{i}\right) \\
& \text { s.t. } \sum_{i=1}^{k} x_{i} \leq 2 \pi
\end{aligned}
$$

where each $x_{i} \in\left(0, \frac{\pi}{3}\right]$.
To estimate this upper bound, we first analyze the convexity of function $S(x)$. Differentiate $S(x)$ two times, we can find that its second derivative satisfies

$$
S^{\prime \prime}(x) \begin{cases}>0, & \text { if } 0<x<c, \\ \leq 0, & \text { if } c \leq x \leq \frac{\pi}{3},\end{cases}
$$

where $c=\arctan \frac{3 \sqrt{3}-1}{6} \approx 0.6103$.
In other words, $S(x)$ is convex if $0<x<c$ and concave if $c \leq x \leq \frac{\pi}{3}$. By the properties of convex functions, we can prove following results:

1. for any $x_{1}, x_{2} \in(0, c)$,

$$
S\left(x_{1}\right)+S\left(x_{2}\right) \leq \begin{cases}S\left(x_{1}+x_{2}\right), & \text { if } x_{1}+x_{2}<c \\ S(c)+S\left(x_{1}+x_{2}-c\right), & \text { if } x_{1}+x_{2} \geq c\end{cases}
$$

2. for any $x_{1}, \ldots, x_{m} \in\left[c, \frac{\pi}{3}\right]$,

$$
S\left(x_{1}\right)+\cdots+S\left(x_{m}\right) \leq m S\left(\frac{x_{1}+\cdots+x_{m}}{m}\right) .
$$

It is easy to see that Result 2 holds. To prove Result 1, without loss of generality, we assume $0 \leq x_{1} \leq x_{2} \leq c$. Then if $x_{1}+x_{2}<c$, we have

$$
\frac{S\left(x_{1}+x_{2}\right)-S\left(x_{2}\right)}{x_{1}} \geq S^{\prime}\left(x_{2}\right) \geq S^{\prime}\left(x_{1}\right) \geq \frac{S\left(x_{1}\right)-S(0)}{x_{1}}=\frac{S\left(x_{1}\right)}{x_{1}} .
$$

And if $x_{1}+x_{2} \geq c$, we have

$$
\frac{S(c)-S\left(x_{2}\right)}{c-x_{2}} \geq S^{\prime}\left(x_{2}\right) \geq S^{\prime}\left(x_{1}\right) \geq \frac{S\left(x_{1}\right)-S\left(x_{1}+x_{2}-c\right)}{c-x_{2}}
$$

Thus Result 1 holds.

Now for $x_{i} \in\left(0, \frac{\pi}{3}\right], i=1, \ldots, k$, s.t. $\sum_{i=1}^{k} x_{i} \leq 2 \pi$. By repeatedly applying the two inequalities in Result 1, the number of x_{i} such that $x_{i}<c$ can be reduced to at most 1. So without loss of generality, we can assume $x_{1}<c$ and $x_{2}, \ldots, x_{n} \geq c$. Then by Result 2,

$$
\sum_{i=1}^{k} S\left(x_{i}\right) \leq S\left(x_{1}\right)+(k-1) S\left(\frac{x_{2}+\cdots+x_{k}}{k-1}\right)
$$

Let $x_{0}=\frac{x_{2}+\cdots+x_{k}}{k-1}$, we have

$$
\sum_{i=1}^{k} S\left(x_{i}\right) \leq S\left(x_{1}\right)+\left(x_{2}+\cdots+x_{n}\right) \frac{S\left(x_{0}\right)}{x_{0}} \leq S\left(x_{1}\right)+\left(2 \pi-x_{1}\right) \frac{S\left(x_{0}\right)}{x_{0}}
$$

By solving the equation $\frac{d}{d x} \frac{S(x)}{x}=0$, we can find that

$$
\min _{x \in[c, \pi / 3]} \frac{S(x)}{x}=\frac{S(0.914)}{0.914}=0.0822
$$

Therefore,

$$
\begin{aligned}
\sum_{i=1}^{k} S\left(x_{i}\right) & \leq S\left(x_{1}\right)+0.0822\left(2 \pi-x_{1}\right) \\
& \leq S(0)+0.0822(2 \pi-0) \\
& =0.5166
\end{aligned}
$$

The second inequality holds because the right hand side of the first inequality is an increasing function of x_{1} on the interval ($0, c$) (this can be verified by differentiating it).

Theorem 4.

$$
6 \leq c \leq 10.86
$$

Proof: From (3) and Lemma 6, we have

$$
\sum_{e \in \operatorname{EMST}(P)}\|e\|^{2} \leq \frac{\pi+0.5166}{\frac{7 \sqrt{3}}{36}}=10.86
$$

The lower bound 6 is achieved by letting P be the six vertices of the regular hexagon of side length 1 .

5. Future works

In many parts of our proof, there are still rooms to improve the upper bound. But the proof may become too intricate, and the improvement we shall get may be rather small. Finding other approaches may be a better way.

So far, people still cannot construct any instances of P that has a $\sum_{e \in \operatorname{EMST}(P)}\|e\|^{2}$ value of more than 6 . So, it is very likely that $c=6$. Is it possible to prove this? There is a max-min lemma included in the proof of Gilbert-Pollak conjecture, applicable to this maxmin problem (Du and Hwang, 1992). However, the help is quite limited due to the circle constraint.

We can also consider that how to generalize the problem to higher dimensional spaces.

References

D.-Z. Du and F.K. Hwang, "The state of art on Steiner ratio problems," in Computing in Euclidean Geometry, D.-Z. Du and F.K. Hwang (eds.), World Scientific, 1992.
F.P. Preparata and M.I. Shamos, Computational Geometry: an Introduction, Springer-Verlag, 1985.
T.S. Rappaport, Wireless Communications Principles and Practices, Prentice Hall, 1996.
P.J. Wan, G. Calinescu, X.Y. Li, and O. Frieder, "Minimum-energy broadcast routing in static ad hoc wireless networks," in IEEE INFOCOM '2001, 2001.
J.E. Wieselthier, G.D. Nguyen, and A. Ephremides, "On the construction of energy-efficient broadcast and multicast trees in wireless networks," in IEEE INFOCOM '2000, 2000.

