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Out-of-time-ordered correlators (OTOCs) are of crucial importance for studying a wide variety of fundamen-

tal phenomena in quantum physics, ranging from information scrambling to quantum chaos and many-body

localization. However, apart from a few special cases, they are notoriously difficult to compute even numeri-

cally due to the exponential complexity of generic quantum many-body systems. In this paper, we introduce a

machine learning approach to OTOCs based on the restricted-Boltzmann-machine architecture, which features

wide applicability and could work for arbitrary-dimensional systems with massive entanglement. We show,

through a concrete example involving a two-dimensional transverse field Ising model, that our method is capa-

ble of computing early-time OTOCs with respect to random pure quantum states or infinite-temperature thermal

ensembles. Our results showcase the great potential for machine learning techniques in computing OTOCs,

which open up numerous directions for future studies related to similar physical quantities.

Out-of-time-ordered correlators (OTOCs), first introduced

by Larkin and Ovchinnikov in the context of superconductiv-

ity [1], have attracted tremendous attention across different

communities, including quantum information, high-energy

physics, and condensed matter physics. Through analytical

and numerical studies, OTOCs of various many-body quan-

tum systems have been computed to characterize their prop-

erties in quantum information scrambling [2–12], quantum

chaos [2, 13–15] and equilibrium and dynamical quantum

phase transitions [16–18]. In addition, it has been shown that

OTOCs would shed new light on the study of quantum grav-

ity and black holes via AdS/CFT duality [19–27]. Recently,

OTOCs have also been experimentally measured in systems of

trapped ions [28], solid-state spins [29, 30], and 87Rb Bose-

Einstein condensate [31], etc. Here, we introduce machine

learning, an important tool borrowed from computer science

[32–34] , to the studies of OTOCs, with focus on numerical

computation of OTOCs by using restricted Boltzmann ma-

chines (RBMs) (see Fig.1 for a schematic illustration).

Apart from some analytically solvable examples (e.g. [35–

39]) , the numerical computation of OTOCs for generic quan-

tum many-body systems is notoriously challenging due to

the exponential scaling of the Hilbert space dimension with

the system size. In one-dimensional (1D) systems with

short-range interaction, OTOCs can be computed using ten-

sor network methods such as time evolving block decimation

(TEBD) [16] and matrix product operators (MPO) [40]. How-

ever, once long-range interactions are included, these methods

may no longer be efficient since the entanglement in the sys-

tem grows quickly and there is no apparent way to write down

local MPOs [41]. In higher dimensions, the tensor contraction

is a #P-complete problem [42], rendering most of the tradi-

tional tensor-network based methods unfeasible as well.

In this paper, we propose a machine-learning approach for

evaluating early-time OTOCs that would bypass these difficul-

ties and work for arbitrary-dimensional systems with massive

entanglement. We mention that within physics, applications

of machine-learning techniques have recently been boosted in

a number of different contexts [43–86], including material de-

sign [67], gravitational lenses [64] and wave analysis [65, 66],
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FIG. 1. A pictorial illustration for the computation of out-of-time-

ordered correlators (OTOCs) by using restricted Boltzmann ma-

chines (RBMs). Considering an arbitrary state |Ψ0〉, the OTOC

as defined in Eq. (1) can be regarded as the overlap between two

states |Ψ1〉 = U†V2UV1|Ψ0〉 and |Ψ2〉 = V1U
†V2U |Ψ0〉 (where

U = exp(−iHt) is the time-evolution operator), which can be effi-

ciently calculated in the RBM represtentaion.

black hole detection [63], glassy dynamics [68], quantum non-

locality detection [85], topological codes [71], quantum ma-

chine learning [44, 79], and topological phases and phase tran-

sitions [48–57], etc. Here, we focus on one of the simplest

stochastic neural networks for unsupervised learning—the re-

stricted Boltzmann machine [87–89] and introduce an RBM-

based approach to the numerical computation of OTOCs in

quantum many-body systems. Through a concrete example of

a 2D transverse field Ising model with system sizes as large

as ten-by-ten (which is far beyond the capacity of exact di-

agonalization), we demonstrate that the proposed RBM-based

approach is capable of computing the early-time OTOCs with

respect to random pure quantum states or infinite-temperature

thermal ensembles. Our method works for generic systems,

independent of dimensionality, the amount of entanglement

involved, or whether the calculation is performed for regions

far away from or near the quantum phase transition point. Our

http://arxiv.org/abs/1912.04303v1


2

results showcase the unparalleled power of machine learning

in the studies of OTOCs for quantum many-body systems,

which paves a novel way to study numerous physical phenom-

ena related to the properties of OTOCs.

The RBM approach.—To begin with, let us first briefly in-

troduce the definition of OTOC and the RBM representation

of quantum many-body states. An OTOC of a quantum sys-

tem with Hamiltonian H is defined as [90]

F (t) = 〈V †
2 (t)V

†
1 V2(t)V1〉, (1)

where V1 and V2 are two quantum operators and V2(t) =
exp(iHt)V2 exp(−iHt) is the time-evolved operator in the

Heisenberg picture. The expectation value in the above equa-

tion can be evaluated with respect to a certain quantum state

|ψ〉, such as the ground state of H or a state that can be eas-

ily prepared in the experiment (e.g. Ref. [16, 28]), or with

respect to an ensemble of states, such as a thermal ensemble

at temperature T (e.g. Ref. [2, 3]). From the definition in

Eq. (1), the evaluation of the OTOC involves the action of

operators on the quantum states, their time evolution, and the

overlap between different states. In general, the states and op-

erators of an N -qubit system are represented by vectors and

matrices of dimension 2N , whose storage and manipulation

require a formidably huge amount of computational resources

when N is large. This is the major challenge in the numeri-

cal evaluation of OTOCs and many other quantities of quan-

tum many-body systems. Fortunately, in practice the physical

states and operators we are interested in typically have certain

structures and only occupy a tiny corner of the entire Hilbert

space, hence possibly allowing much more efficient represen-

tations.

One of such efficient representations is the RBM repre-

sentation, which has attracted considerable attention recently

[43, 45, 46, 51, 85]. In an RBM representation, a system of

N spins can be represented by a set of network parameters

{a, b, W}. The (unnormalized) many-body wavefunction is

given by

Ψ(S) =
∑

{hi}

exp





∑

j

ajsj +
∑

i

bihi +
∑

ij

Wijhisj



 ,

(2)

where S = (s1, · · · , sN ) with sj = ±1 represents a spin

configuration in the σz basis; h = (h1, · · · , hM ) with hi =
±1 describes the state of M hidden spin variables; a and

b are N - and M - dimensional complex vectors, and W an

M × N complex matrix. After tracing out the hidden spin

variables explicitly, the wavefunction can also be written as

Ψ(S) = exp
(

∑

j ajsj

)

∏

i 2 cosh
(

bi +
∑

j Wijsj

)

. We

mention that any quantum state can be approximated to ar-

bitrary accuracy by the above RBM representation, as long as

the number of hidden neurons is large enough [91–93].

Now we introduce the general recipe for computing OTOCs

by using the RBM representaiton. The basic procedure is

illustrated schematically in Fig. 1. Suppose the expectation

value in Eq. (1) is with respect to a quantum state |Ψ0〉 rep-

resented by an RBM. First, we rewrite the OTOC as the over-

lap between two states |Ψ1〉 = V2(t)V1|Ψ0〉 and |Ψ2〉 =
V1V2(t)|Ψ0〉. Then, we plug in the expression for V2(t) and

get |Ψ1〉 = U †V2UV1|Ψ0〉 and |Ψ2〉 = V1U
†V2U |Ψ0〉 where

U = exp(−iHt) is the time-evolution operator for time t.
Physically it means that the state |Ψ1〉 comes from the initial

state |Ψ0〉, acted on by an operator V1, time-evolved for a time

interval of t, further acted on by an operator V2, and finally

time-evolved backwards for a time interval of t; and similar

interpretation can be given for the state |Ψ2〉. Therefore, in

order to compute the OTOC, it is of crucial importance that

we should be able to find efficient RBM representation of the

initial state, to describe the action of operators V1 and V2 on

an RBM state, to solve the time-evolution of an RBM state,

and finally to compute the overlap between two RBM states.

In the definition of OTOC, V1 and V2 can be arbitrary op-

erators. Here, we focus on local Pauli operators, which is

a natural choice for spin systems and has been widely used

in the studies of quantum chaos and information scrambling

[3, 8, 9, 12]. Let us consider how the operator σk
α (α = x, y, z

and k = 1, 2, · · · , N ) acts on an RBM state described by the

parameters {a, b, W}. The effect of σk
x is to flip the k-th

spin. In other words, we want to replace sk in Eq. (2) by −sk
while keeping the value of the wave function unchanged. This

can be achieved by updating the RBM parameters ak → −ak
and Wik → −Wik (i = 1, · · · , M ). Therefore, to get the

new state after the application of σk
x , we only need to up-

date (M + 1) parameters instead of dealing with the 2N -

dimensional state vectors. Next we consider σk
z . Its action

on an RBM state will not change the spin configuration in

the σz basis, but introduce a relative phase of π between the

sk = ±1 states. Therefore, we can efficiently describe the

resulted state after applying σk
z by updating ak → ak + iπ/2.

Note that in this way we get a global phase factor i in addi-

tion to the desired effect of applying σk
z operator. This addi-

tional phase factor must be carefully treated when computing

the overlap between general states. However, in our calcula-

tion of OTOCs, the same operator appears in both |Ψ1〉 and

|Ψ2〉 and therefore the phase factors cancel with each other in

the inner product. Based on this, we can further implement

the σk
y operator by consecutive actions of σk

x and σk
z , without

worrying about the global phase factor.

The time evolution of an RBM state can be performed in a

similar way as training the ground state [45]. At each step,

we try to maximize the fidelity between a new RBM state

|Ψ(t + δt)〉 and the time-evolved state (I − iHδt)|Ψ(t)〉.
For simplicity in notation here we assume that the states are

normalized. Actually, according to Ref. [45], this optimiza-

tion can be realized by simply using an imaginary learning

rate in the algorithm for the ground state. However, in this

way we may get an additional phase factor |Ψ(t + δt)〉 =
eiδφ(I − iHδt)|Ψ(t)〉. Such a global phase is irrelevant in

evaluating expectation values since the same phase and its

complex conjugate will cancel each other; but for OTOC, we

need to compute the overlap between two quantum states,



3

hence we must keep track of all the phase changes during

the evolution. Specifically, we compute the overlap between

the states before and after the evolution at each step and get

〈Ψ(t)|Ψ(t + δt)〉 = eiδφ(1 − iĒ(t)δt) where Ē(t) is the av-

erage energy at time t. In this way we can get the phase shift

at each step and then remove them from the final OTOC cal-

culation.

Finally, we consider the overlap between two RBM

states 〈Ψ2|Ψ1〉/
√

〈Ψ1|Ψ1〉〈Ψ2|Ψ2〉, which can be ob-

tained by Monte Carlo sampling of the spin configurations.

Specifically, we can sample the spin configuration S for

|Ψ1〉 with relative probability |〈S|Ψ1〉|2, or normalized

probability 〈Ψ1|S〉〈S|Ψ1〉/〈Ψ1|Ψ1〉. For each sam-

pled spin configuration, we compute 〈S|Ψ2〉/〈S|Ψ1〉.
By averaging over all the spin configurations, we get

v1 =
∑

S〈Ψ1|S〉〈S|Ψ2〉/〈Ψ1|Ψ1〉 = 〈Ψ1|Ψ2〉/〈Ψ1|Ψ1〉.
Similarly we can sample for |Ψ2〉 and compute

〈S|Ψ1〉/〈S|Ψ2〉. The average value we get is

v2 = 〈Ψ2|Ψ1〉/〈Ψ2|Ψ2〉. Combining the two results

together we get 〈Ψ2|Ψ1〉/
√

〈Ψ1|Ψ1〉〈Ψ2|Ψ2〉 =
√

v∗1v2.

We stress the difference between our RBM and the conven-

tional TEBD or MPO (or more general tensor-network based)

approaches to computing OTOCs. Generally speaking, the

TEBD approach relies vitally on the efficient matrix-product-

state representation of a quantum many-body state, hence is

limited to 1D systems with short-range interactions and small

entanglement [41]. The MPO approach exploits the fact that

the operators (in the Heisenberg picture) expand at most bal-

listically for local Hamiltonians with speed bounded by the

Lieb-Robinson speed [40], thus is applicable to a much wider

space time region than the TEBD approach. Yet, for systems

in higher dimensions (larger than one) or with long-range in-

teractions, the MPO approach suffers still since tensor con-

traction is inefficient in higher dimensions and there is no ap-

parent way to write down local MPOs for systems with long-

range interactions. In stark contrast, our RBM approach es-

capes these limitations owing to the particular neural network

structures. It works for higher dimensions and long-range in-

teractions. In addition, since entanglement is not a limiting

factor for the efficiency of the RBM representation [46], we

expect that it can be used to computing OTOCs for quantum

states with massive (e.g., volume-law) entanglement as well.

To show more precisely how this RBM approach works, we

give a concrete example involving computing OTOCs for a

2D transverse field Ising model, which is beyond the capacity

of the TEBD or MPO methods for large system sizes.

A 2D example.—We consider a 2D transverse field Ising

model on anN = L1×L2 square lattice with periodic bound-

ary conditions. The Hamiltonian of the system is given by:

H = −h
∑

i

σi
x − J

∑

〈i, j〉

σi
zσ

j
z, (3)

where 〈i, j〉 denotes all the nearest neighbor spin pairs. This

Hamiltonian is rotated by 90◦ from the commonly used con-

vention [94], with σx and σz exchanged for convenience. This
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FIG. 2. Comparison between restricted Boltzmann machine (RBM)

and exact diagonalization (ED) results for N = 3 × 4 (first row),

N = 4 × 5 (second row) and N = 10 × 10 (third row) spins in

a transverse field Ising model at h/J = 1. Here we choose V1 =
σx and V2 = σy on the nearest neighbor (first column) and second

nearest neighbor (second column) sites. As we can see, both the

real and imaginary parts of the RBM result agree well with ED in the

early time, and starts to deviate when the OTOC is significantly away

from the initial value of one. For the second nearest neighbor case,

we fit the early time behavior according to Eq. (4) and consistently

obtain λ ≈ 1.9, vf ≈ 2.0 and p ≈ 0.44 for different system sizes.

model is one of the simplest toy models for studying quan-

tum phase transitions, despite the fact that it has the same

complexity as a 3D classical Ising model whose exact solu-

tion still remains a major open question in statistical physics

[95]. At zero temperature, a quantum phase transition occurs

at h/J ≈ 3 according to previous studies [94].

Here, we compute the OTOCs for the above 2D Ising model

by using our introduced RBM approach. First we consider

random initial RBM states with {a, b, W} following a normal

distribution N(0, σ2) for their real and imaginary parts. For

small system sizes we use σ = 0.1 while later for a larger sys-

tem we reduce it to σ = 0.02 so as to get better performance

for the training of RBM [96]. In Fig. 2(a-d), we show the

OTOC results for two system sizes N = 3× 4 andN = 4× 5
at h/J = 1, which is away from the phase transition point

h/J ≈ 3. From this figure, it is clear that our RBM re-

sults match excellently with these from exact diagonalization

for small Jt and deviations become noticeable only after the
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OTOCs are significantly away from their initial value. This

validates the effectiveness of the RBM approach in comput-

ing early-time OTOCs. More strikingly, since the complexity

of the RBM approach only scales cubically with increasing

N , we can use it to compute OTOCs for much larger systems.

In Fig. 2(e, f), we show part of our OTOC results for a sys-

tem as large as ten by ten, which is far beyond the capacity of

exact diagonalization.

In Ref. [40], Xu and Swingle have conjectured a universal

form for the early-time dynamics of OTOCs:

Re[F (t)] ∼ 1− 1

2
exp

(

−λ(d− vf t)
1+p

tp

)

, (4)

where vf is the speed of the wavefront and d is the distance be-

tween V1 and V2; the index p characterizes the spreading of the

wavefront, with p = 0 corresponding to pure exponential de-

cay of Re[F (t)] (for holographic models, coupling Sachdev-

Ye-Kitaev clusters, etc.), p = 1/2 for non-interacting particle

models, and p = 1 for the local random circuit models. Here,

we test this conjecture with our RBM results. In Fig. 2, we fit

the early time (Re[F (t)] > 0.85) results for all the three sys-

tem sizes at the distance d = 2 and consistently get λ ≈ 1.9,

vf ≈ 2.0 and p ≈ 0.44. This corresponds to a sub-diffusively

spreading wavefront [40].

When using RBM-based reinforcement learning to com-

pute the ground state of a Hamiltonian, an observation is that

the relative error is usually larger near the critical point due

to the divergence of correlation length at the phase transition

point [45]. Similar results have also been observed in our cal-

culation of OTOCs. If we take |Ψ0〉 to be a random initial state

as in Fig. 2, the relative error of OTOCs computed near the

phase transition point is larger than that computed deep in the

ferromagnetic/paramagneticphases. However, if we take |Ψ0〉
to be the ground state of the Hamiltonian (e.g. Ref. [16]), we

can still observe excellent agreement between RBM and ED

methods even at the transition point, as shown in Fig. 3 for

N = 4× 5 spins at h/J = 3.05. In addition, we mention that

the accuracy of the OTOCs computed via our RBM method

can be systematically improved by increasing the number of

hidden neurons or iterations in the training process [45].

In all the above calculations, we compute OTOCs for pure

RBM states. In many theoretical works, the OTOC is evalu-

ated with respect to a thermal distribution at inverse tempera-

ture β. The β = 0 limit corresponds to a uniformly random

distribution over all possible spin configurations in our spin

model. Since the OTOC is the inner product of two states and

thus its absolute value bounded by one, we only need to gener-

ate s random spin configurations to upper-bound the accuracy

of the average OTOC to 1/
√
s. Actually in many cases we are

only interested in the real part of OTOC, which is related to

the squared out-of-time-ordered commutators [90]. From the

previous results we see that it always falls from one and the

early-time behavior seems not sensitive to the random choice

of initial states; thus we expect the convergence to be much

faster. In Fig. 4 we show the infinite temperature OTOC for
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FIG. 3. Comparison between restricted Boltzmann machine (RBM)

and exact diagonalization (ED) results for N = 4×5 spins at h/J =
3.05 near the phase transition point of the 2D transverse field Ising

model. Again we choose V1 = σx and V2 = σy on the (a) nearest

neighbor and (b) second nearest neighbor sites. The initial state |Ψ0〉
is an RBM state trained to the ground state of H .
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FIG. 4. Comparison between restricted Boltzmann machine (RBM)

and exact diagonalization (ED) results for N = 3×4 spins at h/J =
1 and inverse temperature β = 0. Again we consider V1 = σx

and V2 = σy on the (a) nearest neighbor and (b) second nearest

neighbor sites. The RBM results are averaged over s = 10 randomly

generated spin configurations in the σx basis. The error bars are

estimated from the standard deviation of the average values.

N = 3 × 4 and h/J = 1 by averaging over s = 10 ran-

dom spin configurations in the σx basis, which we generate

by training the ground state of Hamiltonian H =
∑

i ±σi
x.

The error bars are estimated from the standard deviation of

the average values. As we can see, the small number of ran-

dom realizations s = 10 already leads to good convergence;

and the discrepancy between the RBM method and the exact

results is mainly caused by the representability of RBM states

at large time, similar to the previous examples. Note that in

practice the performance of the RBM method is weakened if

the initial state is exactly a product state. Thus we choose

to train the initial states close to the desired states with small

randomness, rather than write down an exact solution.

Discussion and conclusion.—Although we only focus our

discussion on RBMs in this paper, one may also use other

type of neural networks (e.g., deep Boltzmann machine [72]

or feedforward neural networks [76], etc.) with different

learning algorithms to compute OTOCs for different quan-

tum many-body systems. In particular, it has been proved

that deep Boltzmann machine can efficiently represent most

physical states, including the ground states of many-body

Hamiltonians and states generated by quantum dynamics [72].
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Therefore, it would be interesting and important to develop

a method based on deep Boltzmann machine to compute

OTOCs. A complete study on computing OTOCs with dif-

ferent neural networks would not only bring new powerful

tools for solving intricate problems in the quantum many-

body physics, but also provide valuable insight in understand-

ing the internal structures of the networks themselves. More-

over, with these new machine learning tools, it would also be

interesting and crucial to study certain new physics related to

OTOCs, such as information scrambling and dynamical quan-

tum phase transitions in higher dimensions. We leave these

interesting topics for future investigation.

To summarize, in this work we describe a general method

of computing OTOC in spin systems using RBM ansatz and

then present applications in a 2D transverse field Ising model

where numerical calculation was challenging with the exist-

ing methods. From our numerical examples, it can be seen

that the RBM method is suitable for the early-time properties

of OTOC such as the Lyapunov exponent [21] and butterfly

velocity [3, 23]. The RBM method is not subjected to the lim-

itation of entanglement and geometry, like the conventional

method based on local tensor networks, and there is no clear

sign problem like the quantum Monte Carlo method. There-

fore the RBM method may demonstrate advantages in many

models where the other methods are not applicable. On the

other hand, what is the limiting factor in the performance of

the RBM method is still not clear and can be the topic of future

studies.
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