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Geometric phases are noise-resilient, and thus provide a robust way towards high-fidelity quantum manipu-
lation. Here we experimentally demonstrate arbitrary non-adiabatic holonomic single-qubit quantum gates for
both a superconducting transmon qubit and a microwave cavity in a single-loop way. In both cases, an auxiliary
state is utilized, and two resonant microwave drives are simultaneously applied with well-controlled but vary-
ing amplitudes and phases for the arbitrariness of the gate. The resulting gates on the transmon qubit achieve
a fidelity of 0.996 characterized by randomized benchmarking and the ones on the cavity show an averaged
fidelity of 0.978 based on a full quantum process tomography. In principle, a nontrivial two-qubit holonomic
gate between the qubit and the cavity can also be realized based on our presented experimental scheme. Our ex-
periment thus paves the way towards practical non-adiabatic holonomic quantum manipulation with both qubits
and cavities in a superconducting circuit.

High-fidelity quantum manipulation is essential for large
scale quantum computation. However, as quantum systems
are fragile under noises from either the surrounding envi-
ronment or the control fields, error-resilient manipulations of
quantum states are preferable. Geometric phases [1, 2] depend
only on the global properties of the evolution trajectories, and
thus have built-in noise-resilient features against certain local
noises [3–7]. Therefore, they can naturally be used to achieve
high-fidelity quantum gates. Consequently, considerable in-
terests have been paid to various applications of geometric
phases in quantum computation [8].

Due to the non-commutativity, non-Abelian geometric
phases are natural for the so-called holonomic quantum com-
putation [9]. Schemes based on the adiabatic evolution of the
non-Abelian geometric phases have been proposed on a vari-
ety of systems for quantum computation [10–15]. However,
these schemes are rather difficult for experimental realization
as they rely on complicated control over multilevel systems.
Meanwhile, the gates are based on the rather slow adiabatic
quantum dynamics and thus decoherence can induce consid-
erable errors. Therefore, it is desirable to implement quantum
gates with non-adiabatic evolutions [16]. Recently, much at-
tention has been paid to the non-adiabatic holonomic quantum
computation with three-level systems [17, 18]. Compared to
the adiabatic ones, this type of new schemes is fast and easy
to realize, and has been experimentally demonstrated in super-
conducting circuits [19, 20], NMR [21], and nitrogen-vacancy
centers in diamond [22–24].

More importantly, arbitrary single-qubit holonomic gates
can be achieved in a single-loop evolution, i.e., a single closed
loop evolution in parameter space [25–27]. This will simplify
gate sequences in practical quantum information processing
compared with the original proposal [17], where two sequen-
tial gates are required for an arbitrary single-qubit gate. In
the last year, the single-loop scheme has been experimentally
demonstrated in NMR [28] and nitrogen-vacancy centers in
diamond with off-resonance drives [29], which are basically
incompatible with pulse shaping and experimentally difficult.

Therefore, single-loop schemes with resonant drives are gen-
erally required to use shaped pulses to reduce errors.

Here, with a circuit quantum electrodynamics architec-
ture [30–34] we experimentally demonstrate arbitrary non-
adiabatic holonomic single-qubit gates for both a supercon-
ducting transmon qubit and a microwave photonic qubit in a
single-loop way. This is realized by varying the amplitudes
and phases of a two-tone resonant microwave drive [27]. Be-
sides transmon qubits, photonic qubits in a microwave cav-
ity are also desirable for quantum information processing be-
cause of their long coherence times [35, 36] and ease of re-
alizing quantum error correction [37, 38]. In our realization,
the gates on the transmon qubit achieve a fidelity of 0.996
characterized by randomized benchmarking (RB), also con-
sistent with the results from a full quantum process tomogra-
phy (QPT); the gates on the cavity show an averaged fidelity
of 0.978 based on a full QPT. Besides local noises, the demon-
strated holonomic gates on the qubit are also robust against
control amplitude errors and qubit frequency shifts induced
by crosstalk [39], which become prominent as qubit coher-
ence properties are improved and the size of quantum system
increases. The holonomic gates on the cavity provide an al-
ternative way of arbitrary control over Fock states, which also
could be robust against experimental noises as the ones on the
qubit.

We first address the implementation of arbitrary single-
qubit holonomic gates on a superconducting transmon qubit
in the {|g〉 , | f 〉} subspace, as shown in Fig. 1a. Here, |g〉, |e〉,
and | f 〉 denote the three lowest energy levels of the transmon
qubit; |e〉 is an auxiliary state and remains unoccupied before
and after the gate operation. Our scheme consists of two mi-
crowave fields resonantly coupled to the sequential transitions
|g〉↔ |e〉 and |e〉↔ | f 〉 of the transmon qubit, as described by

H1 = Ωge(t)eiφ0 |g〉〈e|+Ωef(t)eiφ1 | f 〉〈e|+H.c.

= Ω(t)ei(φ1−π)
(

sin
θ
2

eiφ |g〉− cos
θ
2
| f 〉
)
〈e|+H.c.,(1)

where Ωge(t) and Ωef(t) are the time-dependent amplitudes
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FIG. 1: Single-loop single-qubit holonomic gates. (a) Two mi-
crowave fields are resonantly coupled to the |g〉 ↔ |e〉 and |e〉 ↔ | f 〉
transitions of a transmon qubit to generate arbitrary single-qubit
holonomic gates in the {|g〉 , | f 〉} subspace. The first excited state
|e〉 is an auxiliary level. (b) Bloch sphere representation of the holo-
nomic gate: a combination of two microwave fields, with two differ-
ent sets of phases for the first and the second half of the gate opera-
tion, equivalently drives the bright state |b〉 to the auxiliary state |e〉
and then back with an additional phase, while the dark state |d〉 re-
mains unchanged. (c) Simplified experimental setup. Two transmon
qubits in two microwave trenches are coupled to two microwave cav-
ities, one for readout and the other one for storage. The qubit holo-
nomic gates are demonstrated with Q1, while the cavity holonomic
gates are realized with the Fock states {|0〉, |1〉} in the storage cavity
facilitated by both qubits (Fig. 4). (d) QPT is used to characterize
the performance of the arbitrary holonomic gates. Arbitrary initial
states are prepared with sequential pulses on |g〉 ↔ |e〉 and |e〉 ↔ | f 〉
transitions. Nine sequential pre-rotation pulses on the qubit are per-
formed before the final measurement to obtain the transmon’s full
state tomography with three levels.

of the two microwave drives with the corresponding initial

phases φ0 and φ1; φ = φ0−φ1 +π , Ω(t) =
√

Ω2
ge(t)+Ω2

ef(t),
and tan(θ/2) = Ωge(t)/Ωef(t). As seen in Eq. 1, the quan-
tum dynamics is captured by the resonant coupling between
the bright state |b〉 = sin(θ/2)eiφ |g〉 − cos(θ/2)| f 〉 and the
auxiliary state |e〉, while the dark state |d〉 = cos(θ/2)|g〉+
sin(θ/2)e−iφ | f 〉 is decoupled. Under the cyclic evolution
condition,

´ T
0 Ω(t)dt = π , one can obtain a quantum gate de-

pending on θ and/or φ . Meanwhile, since there is no transi-
tion between |d〉 and |b〉 states when θ is time-independent
and also no dynamical phases due to the on-resonance drives,
the obtained gates are thus holonomic [17].

To achieve a universal set of single-qubit holonomic gates
in a single-loop way [27], we divide the evolution time T into
two equal halves and choose φ0 = φ , φ1 = π for t ∈ [0,T/2]
and φ ′0 = φ + γ − π , φ ′1 = γ for t ∈ [T/2,T ], such that the
Hamiltonians during these two halves are HA =Ω(t)(|b〉〈e|+
|e〉〈b|) and HB =−Ω(t)(eiγ |b〉〈e|+ e−iγ |e〉〈b|), respectively.
Geometrically, the two evolutions coincide at two poles in the
Bloch sphere, and the cyclic geometric phase is illustrated as

the red slice contour in Fig. 1b. Therefore, in the qubit sub-
space {|g〉, | f 〉}, the obtained holonomic single-qubit gate is

U1(θ ,γ,φ) =

(
cos γ

2 − isin γ
2 cosθ −isin γ

2 sinθeiφ

−isin γ
2 sinθe−iφ cos γ

2 + isin γ
2 cosθ

)

= exp
(
−i

γ
2

n ·σ
)
, (2)

which describes a rotation operation around the axis n =
(sinθ cosφ ,sinθ sinφ ,cosθ) by an angle γ , up to a global
phase factor exp(iγ/2).

In our experiment, two superconducting transmon qubits
are dispersively coupled to two three-dimensional cavi-
ties [40–43], as shown in Fig. 1c. The |g〉 ↔ |e〉 and |e〉 ↔
| f 〉 transition frequencies of the two qubits Q1 and Q2 are
ωge1/2π = 5.036 GHz and ωef1/2π = 4.782 GHz, ωge2/2π =
5.605 GHz and ωef2/2π = 5.367 GHz, respectively. One of
the cavities with a transition frequency of ωr/2π = 8.540 GHz
is connected to a Josephson parametric amplifier (JPA) for a
fast and high-fidelity joint readout of the two-qubit states [44–
47]. The other cavity with a transition frequency of ωs/2π =
7.614 GHz is utilized for storage and manipulation of the pho-
tonic states and for implementing the holonomic gates be-
tween Fock states |0〉 and |1〉 as will be discussed below. In
the following, we ignore the readout cavity and the “cavity”
refers to the storage cavity. More details about the device pa-
rameters can be found in Ref. [39].

We now demonstrate the realization of the arbitrary holo-
nomic gates in a single-loop way with transmon qubit Q1
based on the procedure discussed above. The envelopes
of the two drives are truncated Gaussian pulses with a to-
tal width of 4σ = 120 ns. We characterize the holonomic
single-qubit gates by a full QPT including all three levels,
|g〉, |e〉, and | f 〉 [39, 48, 49]. The experimental pulse se-
quence is shown in Fig. 1d. To evaluate the QPT, we have
used both attenuated and unattenuated χ matrix fidelities,
which are respectively defined as Fatt =

∣∣∣Tr
(

χexpχ†
th

)∣∣∣ and

Funatt =
∣∣∣Tr
(

χexpχ†
th

)∣∣∣/
√
Tr
(

χexpχ†
exp

)
Tr
(

χthχ†
th

)
[21, 50,

51], where χexp is the experimental process matrix and χth is
the corresponding ideal process matrix. The latter fidelity can
ignore the errors due to signal loss, e.g., the errors in state
preparations and measurements. Figure 2a shows Funatt of the
gates as a function of both θ and γ with φ = 0, and the av-
eraged fidelity F̄unatt = 0.994. Energy relaxation and dephas-
ing of both excited states and non-perfect microwave drives
can cause a population leakage outside the computation sub-
space {|g〉 , | f 〉} to the auxiliary |e〉 state. This leakage can be
characterized by the trace of the reduced process matrix χr,
which describes the process only involving |g〉 and | f 〉 and
ignores any operators acting on the auxiliary state |e〉 [39].
Figure 2b shows the traces of χr originated from the measured
χexp whose fidelities are shown in Fig. 2a. The high value
(0.992) of the averaged trace indicates that there is nearly no
leakage outside the computation subspace for the holonomic
gates on the transmon qubit. χr of four example gates are
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FIG. 2: QPT of the single-qubit holonomic gates. (a) Unatten-
uated χ matrix fidelity Funatt of the single-qubit holonomic gates
U1(θ ,γ,φ) with different θ and γ while φ = 0. The averaged fidelity
F̄unatt = 0.994 while the averaged attenuated fidelity F̄att = 0.975.
(b) The traces of the reduced process matrix χr as a function of
both θ and γ with φ = 0. The averaged trace is 0.992, indicating
small leakage outside the computation subspace {|g〉, | f 〉}. (c) Bar
charts of the real and imaginary parts of χr of four specific gates:
Xπ =U1(π/2,π,0), Xπ/2 =U1(π/2,π/2,0), H =U1(π/4,π,0), and
Zπ =U1(0,π,0), where Rϕ denotes a rotation of the qubit by an an-
gle ϕ along the axis R and H represents the Hadamard gate. The
numbers in the x and y axes correspond to the operators in the ba-
sis set {I, X , −iY , Z} of the {|g〉, | f 〉} subspace. The solid black
outlines are for the ideal gates.

shown in Fig. 2c with Funatt = 0.997, 0.996, 0.996, and 0.996
respectively (the corresponding Fatt = 0.976, 0.980, 0.963,
and 0.988).

Another regular way to extract gate fidelity only without
relying on perfect state preparations and measurements is
RB [52–56]. An agreement between Funatt and the fidelity
from RB should provide more confidence on the gate perfor-
mance. We utilize the Clifford-based RB and the experimental
sequences are shown in Fig. 3a, where we perform both a ref-
erence RB experiment and an interleaved RB experiment. The
results of the four holonomic gates presented in Fig. 2c are
shown in Fig. 3b. Each Clifford gate is realized by choosing
specific parameters θ , γ , and φ . The reference RB experiment
gives an average gate fidelity of the single-qubit holonomic
gates in the Clifford group Favg = 0.996. The measured gate
fidelities of the four specific holonomic gates Xπ , Xπ/2, H, and
Zπ are 0.998, 0.996, 0.997, and 0.995, respectively. These fi-
delities are consistent with the measured Funatt, thus validat-
ing Funatt as a good measure of gate performance. The loss
of fidelity is mainly from the decoherence of both |e〉 and | f 〉
of the transmon qubit, as confirmed by numerical simulations
based on QuTiP in Python [57, 58].

In addition to the implementation of holonomic gates on
the transmon qubit, we also realize holonomic operations on
the cavity Fock states following a similar scheme. As shown
in Fig. 4a, the holonomic gates are implemented by using a
selective two-photon transition drive Ω1eiωdt on qubit Q1 con-
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FIG. 3: RB of the single-qubit holonomic gates. (a) Sequences of
both a reference RB experiment and an interleaved RB experiment.
(b) The sequence fidelity decay as a function of the gate length m.
The fidelity for each sequence length m is measured for k = 100 dif-
ferent random sequences with the standard deviation from the mean
plotted as the error bars. Both curves are fitted with F = Apm +B
with different sequence decays p = pref and pgate. The average gate
fidelity per Clifford gate is Favg = 1− (1− pref)/2 = 0.996. The dif-
ference between the reference and the interleaved RB experiments
gives the specific gate fidelity Fgate = 1− (1− pgate/pref)/2. The
red dashed line indicates the threshold for exceeding gate fidelity of
0.990.

ditional on only zero photon in the cavity and a cavity-assisted
Raman transition drive Ω2eiωpt between |1g〉 and |0 f 〉 [59,
60]. Here the drive frequencies ωd =

(
ωge1 +ωef1

)
/2, ωp =

ωge1 +ωef1−ωs, and Ω1 and Ω2 are the corresponding drive
strengths. In the joint state notation, the numbers represent
the Fock states in the cavity and the letters correspond to the
states of qubit Q1.

Similarly, the above two drives together generate the fol-
lowing effective Hamiltonian [27, 59]:

H2 = g̃1 |0g〉〈0 f |+ g̃2 |1g〉〈0 f |+H.c.

= g̃
(

sin
θ
2

eiφ |0g〉− cos
θ
2
|1g〉

)
〈0 f |+H.c., (3)

where, g̃1 and g̃2 are the effective coupling strengthes of the

two drives, and g̃ =
√

g̃2
1 + g̃2

2, g̃1/g̃2 = tan(θ/2)eiφ . To val-
idate the above Hamiltonian, g̃1 of the two-photon transition
drive should be much smaller than the dispersive shifts be-
tween qubit Q1 and the cavity. In the experiment, both the
two-photon transition drive and the Raman transition drive
are set to have the same pulse envelope (a wide square pulse
with sine squared ramp-up and ramp-down edges) to keep
the two drives synchronized and the ratio of two amplitudes
fixed. Both g̃1 and g̃2 are carefully calibrated with square
pulses with different amplitudes [39]. We have also carefully
taken into account the AC-Stark shifts under the strong ex-
ternal drives to eliminate the possible dynamical phases [39].
Similarly to the transmon qubit holonomic gates, by adjust-
ing the ratios of g̃1 and g̃2, which lead to different θ and φ ,
we can realize arbitrary holonomic gates U1(θ ,γ,φ) on the
basis {|0g〉, |1g〉}, i.e., the Fock state basis {|0〉, |1〉}. As a
demonstration, here we fix γ = π and realize the holonomic
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FIG. 4: Holonomic gates for cavity Fock state subspace {|0〉, |1〉}.
(a) Illustration of the holonomic gates for Fock states, as well as the
encoding and decoding processes. The holonomic gates are imple-
mented by using a selective two-photon transition drive Ω1eiωdt on
qubit Q1 and a cavity-assisted Raman transition drive Ω2eiωpt be-
tween |1g〉 and |0 f 〉. The encoding and decoding processes are re-
alized with a swap operation between qubit Q2 and the cavity mode
through a Raman transition drive similar to that for the gate. (b)
Experimental sequence to perform QPT of the holonomic gates in
the Fock {|0〉,|1〉} subspace. (c) Bar charts of the real and imagi-
nary parts of the process χ matrices for the whole process, includ-
ing both the encoding and decoding processes, with the following
gates: Xπ = U2(π/2,0), Yπ = U2(π/2,π/2), H1 = U2(π/4,0), and
H2 =U2(π/4,π/2). The attenuated and unattenuated process fideli-
ties for these gates are: 0.880, 0.881, 0.877, 0.879 and 0.990, 0.990,
0.970, 0.962, respectively. The numbers in the x and y axes corre-
spond to the operators in the basis set {I, X , −iY , Z}. The solid
black outlines are for the ideal gates.

gate U2(θ ,φ) =
(

cosθ sinθeiφ

sinθe−iφ −cosθ

)
.

We characterize U2(θ ,φ) with full QPT as well, and the
results are shown in Fig. 4b. To make the preparation and
characterization of the cavity state easier, we instead use qubit
Q2 to facilitate an encoding and decoding process of the cav-
ity state. The encoding and decoding processes are realized
with a similar Raman transition drive between qubit Q2 and
the cavity as illustrated in Fig. 4a. We choose four different
gates Xπ , Yπ , H1, and H2, and perform QPT of these gates.
The experimental process matrices χexp are shown in Fig. 4c.
The averaged experimental attenuated and unattenuated pro-
cess fidelities of these holonomic gates are F̄att = 0.879 and
F̄unatt = 0.978, respectively. The infidelities of the holonomic
gates for Fock states are mainly limited by the encoding and
decoding errors (including the initial state preparation and fi-
nal measurement errors), decoherence process during the gate,
and imperfections of the control pulses. As a reference, the

process fidelity of the encoding and decoding processes only
without any gate is 0.95 (an error of 5%). The dissipation and
dephasing of the two excited states |e〉 and | f 〉 during the gate
process can induce an additional infidelity of 5-6% due to the
long gate duration time. These two dominant error budgets are
consistent with the measured attenuated fidelities. A higher fi-
delity gate can be achieved with a shorter gate operation time
under a larger dispersive shift.

To achieve a universal quantum computation, two-qubit
gates are necessary. A nontrivial two-qubit holonomic gate
between the qubit and the cavity can in principle be realized in
a similar way to the single-qubit gates, i.e., by using two res-
onant selective pulses on |g〉 ↔ |e〉 and |e〉 ↔ | f 〉 transitions
respectively, conditional on only zero photon in the cavity.
Then the effective Hamiltonian is H3 =Ωge (t)eiφ0 |0g〉〈0e|+
Ωefeiφ1 (t) |0 f 〉〈0e|+H.c.. A nontrivial two-qubit holonomic
gate in the subspace {|0g〉 , |0 f 〉 , |1g〉 , |1 f 〉} can then be real-

ized with the form of U3 (θ ,γ,φ) =
(

U1 (θ ,γ,φ) 0
0 I

)
.

In conclusion, in a circuit quantum electrodynamics archi-
tecture we have experimentally demonstrated high-fidelity ar-
bitrary non-adiabatic holonomic single-qubit gates for both a
superconducting transmon qubit and a microwave cavity in a
single-loop way. Moreover, our method can be generalized
to achieve holonomic gates between the nearest Fock states
|n〉 and |n+1〉, if the resonant drives are on |n,g〉 ↔ |n, f 〉
and |n+1,g〉 ↔ |n, f 〉 transitions. Combining these gates,
we can realize full holonomic control of both the transmon
qubit and the cavity mode [61–65], which has important ap-
plications in cavity-assisted quantum information processing
and high-precision measurements [66]. Our experiment thus
opens the door to implement holonomic manipulations of both
qubits and cavities in a superconducting circuit. In addition,
the {|g〉, | f 〉} encoding is critical for the recently realized dis-
tributed quantum information processing [60, 67] and fault-
tolerant measurement of a quantum error syndrome [68], our
holonomic gates therefore can be important and readily used
in these two directions.
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Note added. – Recently, we became aware of a similar
implementation in a different system [69], but with a lower
average gate fidelity due to the short coherence times of the
auxiliary excited state.
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I. EXPERIMENTAL DEVICE

Our experimental device contains two superconducting
transmon qubits in two trenches strongly coupled to two three-
dimensional (3D) waveguide cavities, as shown in Fig. S1.
The qubits, each of which consists of a Josephson junction
connected to two antenna pads with different lengths, are fab-
ricated on two separate c-plane sapphire chips with a double-
angle evaporation of aluminum after a single electron-beam
lithography step. The two qubits are separated by 10 mm to
suppress their direct crosstalk. The two cavities are machined
from a block of high purity (5N5) aluminum and are chemi-
cally etched for a better coherence quality [1, 2]. One cavity
is for a fast and high-fidelity joint readout of the two qubits,
while the other one is for storage and manipulation of the pho-
tonic states. The input and output couplings of the cavities can
be adjusted by tuning the lengths of the input and output cou-
pler pins.

10 mm

100 𝜇m

500 nm

(a) (b)

(c)

FIG. S1: The experimental device. (a) Optical image of the two 3D
Al microwave cavities, housing two chips (depicted in red boxes).
Each chip contains a superconducting transmon qubit. (b) Optical
image of the qubit with a Josephson junction (depicted in a blue box)
connected to two antenna pads. The thin line across the junction is
used to protect the qubit during fabrication and is cut open before in-
stalling into the cavities. (c) Scanning electron microscope image of
the Al/AlOx/Al Josephson junction fabricated with a double-angle
evaporation.

∗Electronic address: zyxue83@163.com
†Electronic address: yinzhangqi@tsinghua.edu.cn
‡Electronic address: luyansun@tsinghua.edu.cn

II. EXPERIMENTAL SETUP

The experimental device is installed inside a magnetic
shield and cooled down to T ≈ 10 mK in a cryogen-free dilu-
tion refrigerator. The full wiring diagram is shown in Fig. S2.
The qubit control pulses are generated directly from Tektronix
arbitrary waveform generator (AWG) 70002A benefiting from
its large bandwidth and sampling rate [3]. The pulses for
the initial state preparations and the pre-rotations before mea-
surement have a truncated Gaussian envelope with a width of
4σ = 40 ns. The technique of “derivative removal by adia-
batic gate” (DRAG) is applied to both |e〉↔ | f 〉 and |g〉↔ |e〉
transition drives in order to remove the leakage to the unde-
sired energy levels [4, 5]. The storage cavity drives are gen-
erated by IQ modulations with two analog channels of a Tek-
tronix AWG 5014C for arbitrary cavity controls. Another two
analog channels of the AWG 5014C are used to modulate the
readout pulse. The readout signal is amplified by a Josephson
parameter amplifier (JPA) at base temperature, a high electron
mobility transistor (HEMT) at 4K stage, and a standard com-
mercial amplifier at room temperature. Finally, the readout
signal is mixed down to 50 MHz with a local oscillator (LO)
before being digitized and recorded by the analog-to-digital
converters (ADC).

III. SYSTEM HAMILTONIAN

In our device, two transmon qubits are dispersively coupled
to two 3D cavity modes. Each transmon has a large anhar-
monicity and is considered as a three-level artificial atom. The
whole system can be described by the following Hamiltonian

H /h̄ = ωr
(
a†

r ar +1/2
)
+ωs

(
a†

s as +1/2
)

+ ωge1 |e1〉〈e1|+
(
ωge1 +ωef1

)
| f1〉〈 f1|
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(
ωge2 +ωef2

)
| f2〉〈 f2|

− χge
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where ωr,s are the readout and the storage cavity frequency,
respectively; ar,s are the corresponding ladder operators; ωgei
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FIG. S2: Schematic of the full wiring of the experimental setup.

and ωefi are the transition frequencies among the lowest three
levels {|gi〉, |ei〉, | fi〉} of the i-th qubit; χ’s are the correspond-
ing dispersive interactions between the two qubits and the two
cavities; and Kr,s are the self-Kerr of the readout and the stor-
age cavity, respectively. All the relevant parameters in the
Hamiltonian are listed in Table I. In our joint readout of the
two qubits, since we only need to distinguish the |gg〉 state
(both qubits in the ground state) from all others, χef

rq1, χef
rq2,

and Kr are irrelevant and thus not measured directly.

The coherence properties of the two qubits and the two cav-
ities are also experimentally measured and listed in Table II.
The relaxation times of each transmon are obtained by mea-
suring the free evolutions of the populations of the three levels
Pg, Pe, and Pf with an initial | f 〉 state, following the technique
described in Ref. [6]. Pe and Pf are measured by mapping them
onto the population of |g〉 through a π pulse and two sequen-
tial π pulses, respectively. The experimental results are shown
in Figs. S3a and S3b. The decay curves are globally fitted with
the rate equation d~p/dt = Γ ·~p, where ~p =

(
Pg,Pe,Pf

)T , and

TABLE I: Hamiltonian parameters. χef
rq1, χef

rq2, and Kr are irrelevant
for the joint readout and thus not measured directly. The numbers 1
and 2 in the subscript correspond to qubits Q1 and Q2 respectively.

Terms (/2π) Measured Terms (/2π) Measured
ωr 8.540 GHz ωs 7.614 GHz

ωge1 5.036 GHz ωge2 5.605 GHz
ωef1 4.782 GHz ωef2 5.367 GHz
χge

rq1 2.230 MHz χge
sq1 0.942 MHz

χef
rq1 - χef

sq1 0.843 MHz

χge
rq2 3.00 MHz χge

sq2 1.436 MHz

χef
rq2 - χef

sq2 1.193 MHz

Kr - Ks 3.7 kHz

the decay rate matrix Γ is

Γ =




0 Γeg Γfg
0 −Γeg Γfe
0 0 −

(
Γfe +Γfg

)


 , (2)
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where we ignore the negligible upward transition rates and
only include the downward transition rates Γeg, Γfe, and Γfg.
Since the non-sequential decay rate Γfg is much slower than
the sequential decay rates Γeg and Γfe, the corresponding co-
herence times 1/Γeg and 1/Γfe of both qubits are listed as T1
in Table II.

The dephasing rates between |g〉 and |e〉 and between |e〉
and | f 〉 of each qubit are measured with Ramsey interfer-
ence experiments and the results are shown in Figs. S3c-
f. The Ramsey fringes are fitted with an exponen-
tially damped double sinusoidal function [6] y = y0 +
e−t/T ∗2 [A1 cos(2π f1t +ϕ1)+A2 cos(2π f2t +ϕ2)] and the ex-
tracted T ∗2 are also listed in Table II. The coherence times T1
and T ∗2 of the storage cavity are measured through the relax-
ation of Fock state |1〉 and the dephasing of (|0〉+ |1〉)/

√
2,

respectively [2]. Both initial states are generated with selec-
tive number-dependent arbitrary phase gates [7].

IV. QUANTUM PROCESS TOMOGRAPHY

The holonomic quantum gates are characterized by a full
quantum process tomography of the three-level system. We
first initialize the three-level transmon qubit with the follow-
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FIG. S3: Coherence properties of the three-level transmon qubit. (a)
and (b) Population decay curves with the transmon qubit initial in | f 〉
state for qubits Q1 and Q2, respectively. The solid lines are global
fittings based on the rate equation. (c) and (d) Ramsey oscillation
experiments between |g〉 and |e〉 for qubits Q1 and Q2, respectively.
(e) and (f) Ramsey oscillation experiments between |e〉 and | f 〉 for
qubits Q1 and Q2, respectively. Here, a smooth background has been
subtracted from the Ramsey fringes to discard the energy decay to
|g〉. All the Ramsey oscillation fringes are fitted with the exponen-
tially damped double sinusoidal function (red solid lines) to obtain
T ∗2 between |g〉 and |e〉 and between |e〉 and | f 〉.

TABLE II: Coherence properties of the system.
Modes T1 T ∗2

readout cavity 84 ns -
storage cavity 135 µs 193 µs
Q1 |g〉 ↔ |e〉 45.6 µs 24.4 µs
Q1 |e〉 ↔ | f 〉 20.3 µs 8.3 µs
Q2 |g〉 ↔ |e〉 42.2 µs 44.0 µs
Q2 |e〉 ↔ | f 〉 24.9 µs 13.6 µs

ing nine states {|g〉, |e〉, | f 〉, (|g〉+ |e〉)/
√

2, (|e〉+ | f 〉)/
√

2,
(|g〉+ | f 〉)/

√
2, (|g〉− i |e〉)/

√
2, (|e〉− i | f 〉)/

√
2,

(|g〉− i | f 〉)/
√

2}, then apply the holonomic gates, and
finally perform state tomography measurements of the
final states. The state tomography measurement requires
nine pre-rotations to reconstruct the density matrix of the
three-level qubit: {I, Xge

π/2, Y ge
π/2, Xge

π , Xge
π/2Xef

π , Y ge
π/2Xef

π ,

Xge
π Xef

π/2, Xge
π Y ef

π/2, Xge
π Xef

π } [8], where the rotation operators
are read from the right to left. The measurements give the
result 〈Mk〉 = Tr

(
ρU†

k MIUk

)
for each pre-rotation Uk with

k = 0,1,2...8, where MI = |g〉〈g| = βaλ0 + βbλ3 + βcλ8 is
the measurement operator [9], λi with i = 0,1,2, ...8 are the
GellMann operators for a three-level qubit [10], and (βa, βb,
βc) are the measurement coefficients which can be calibrated
by preparing the qubit in |g〉, |e〉, and | f 〉, respectively [9].
The density matrix of the three-level qubit state can then
be reconstructed by the maximum likelihood estimation
method [11]. With the nine initial states ρi, the experimental
process matrix χexp can be extracted from the nine corre-
sponding final states ρ f through ρ f = ∑m,n χmnEmρiE†

n [12],
where the full set of nine orthogonal basis operators is chosen
as {Igf, σ x

gf, −iσ y
gf, σ z

gf, σ x
ge, −iσ y

ge, σ x
ef, −iσ y

ef, Ie} [13], where
σmn are the Pauli operators acting on the m and n energy
levels, Igf = |g〉〈g|+ | f 〉〈 f |, and Ie = |e〉〈e|. The full process
matrices χexp of the holonomic gates Xπ/2 =U1(π/2,π/2,0)
and H = U1(π/4,π,0) on the three-level transmon qubit are
shown in Fig. S4.

For the holonomic gates on the transmon qubit, the state |e〉
serves as an auxiliary state. Therefore, we have calculated the
reduced process matrix χr which describes the process only
involving |g〉 and | f 〉 and ignores any operators acting on the
auxiliary state. In order to compare with the process acting on
a two-level system, the reduced process matrix χr is obtained
by a normalization factor of 3/2. And the basis operators of
the reduced process matrix are {Igf, σ x

gf,−iσ y
gf, σ z

gf}, or simply
{I, X , −iY , Z} as in the main text.

For the holonomic gates on the cavity Fock states, only
four initial states {|g〉, | f 〉, (|g〉+ | f 〉)/

√
2, (|g〉− i | f 〉)/

√
2}

are prepared with qubit Q2, and then they are mapped onto
Fock states {|0〉, |1〉, (|0〉+ |1〉)/

√
2, (|0〉− i |1〉)/

√
2} in the

cavity with the encoding process. After performing the holo-
nomic gates on these Fock states, the cavity states are mapped
back to qubit Q2 with the decoding process and finally the
state tomography of qubit Q2 is performed.
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FIG. S4: Experimental full process matrices χexp. (a) and (b) Bar
charts of the real and imaginary parts of the holonomic gates Xπ/2 =

U1(π/2,π/2,0) and H =U1(π/4,π,0) respectively. The numbers in
the x and y axes correspond to the operators in the basis set {Igf, σ x

gf,
−iσ y

gf, σ z
gf, σ x

ge, −iσ y
ge, σ x

ef, −iσ y
ef, Ie}. Solid black outlines are the

corresponding ideal process matrices χth.

V. CALIBRATION OF THE TWO-PHOTON TRANSITION
AND CAVITY-ASSISTED RAMAN TRANSITION DRIVES

To implement the holonomic gates on the cavity Fock
states, the effective coupling strengths and the Stark-shifts of
the two-photon transition and the cavity-assisted Raman tran-
sition drives are critical and thus fully calibrated.

The cavity-assisted Raman transition drives for both qubits
Q1 and Q2 are calibrated separately as follows, since they are
used for the implementation of the holonomic gates and the
encoding/decoding processes, respectively. One of the qubits
is initialized in | f 〉 state by two sequential π pulses while the
other one remains in |g〉 state during the calibration. A mi-
crowave pulse at frequency ω0 with a square envelope at a
fixed digital-to-analog converter (DAC) level is then applied.
The coherent oscillations between the corresponding |0 f 〉 and
|1g〉 as a function of the square pulse width and the drive fre-
quency ω0 produce a chevron pattern as shown in Fig. S5a
for Q2. From a sinusoidal fit of the coherent oscillations, we
obtain the Rabi frequency ΩR as a function of the drive fre-
quency as shown in Fig. S5b. The solid red line is fitted with

the function ΩR =

√
∆2 +

(
2g̃′2
)2, where ∆ = ωp−ω0, giving

the resonant frequency ωp and the effective coupling strength
g̃′2 for Q2. Note that we choose g̃2 (g̃′2) for Q1 (Q2) to be con-
sistent with the notation in the main text. Repeats of the same
experiment at different amplitudes (DAC level) of the drive
pulse give a calibration of the resonant frequency ωp and the
effective coupling strength g̃2 (g̃′2) as a function of the DAC
level. The results for both qubits are shown in Figs. S5c and
S5d, respectively.

The cavity-assisted Raman transition for qubit Q2 is used
for the encoding and decoding processes, and we choose
DAC level = 3000 for the drive pulse which corresponds to an
effective coupling strength g̃′2/2π = 0.845 MHz. Therefore,
a 294 ns square pulse with gradual ramp-up and ramp-down
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FIG. S5: Calibration of the cavity-assisted Raman transition drives.
(a) Rabi oscillations of |0 f 〉 and |1g〉 at DAC level = 3000 but with
different drive durations and different drive frequencies produce a
chevron pattern. Here the joint state notation denotes |cavity,Q2〉.
(b) Rabi frequency ΩR of the oscillation between |0 f 〉 and |1g〉 ob-
tained from (a) as a function of the drive frequency. Solid red line is
a fit of the data, giving both the resonant frequency ωp and the effec-
tive coupling strength g̃′2 for Q2. (c) Effective coupling strengths g̃2
and g̃′2 for both qubits Q1 and Q2 as a function of the drive pulse am-
plitude (DAC level). The relationship between g̃2 (g̃′2) and the drive
amplitude slightly deviates from a line at large drive strengths due to
the saturation of the room temperature amplifier. (d) The resonant
frequency ωp of the cavity-assisted Raman transition as a function
of the drive pulse amplitude (DAC level) for both qubits Q1 and Q2.
Solid lines are a quadratic fit of the corresponding data.

edges (10 ns for each) can provide a fast encoding/decoding
process. Because the encoding and decoding drives cause
an additional phase due to the Stark shift, we have to cali-
brate this phase. This is achieved by preparing qubit Q2 in
(|g〉+ | f 〉)/

√
2 state, then performing the encoding and de-

coding processes sandwiched with variable waiting times, and
finally measuring the state tomography of qubit Q2. We then
can counteract this Stark shift by choosing a proper rotation
axis of the decoding pulse in the process tomography mea-
surement.

The two-photon transition drive of qubit Q1 is calibrated in
a similar way. The holonomic gates for Fock states |0〉 and
|1〉 are realized when both the two-photon transition and the
cavity-assisted Raman transition drives are simultaneously on,
therefore the resonant frequencies of the two drives change
slightly. We optimize the resonant frequencies of the two
drives in order to realize high-fidelity holonomic gates.

For the holonomic gates on Q1, Xπ =U2(π/2,0) and Yπ =
U2(π/2,π/2) with θ = π/2, we choose the effective cou-
pling strengths g̃1/2π = g̃2/2π = 0.25 MHz for both drives.
Two square pulses (1420 ns long) with gradual ramp-up and
ramp-down edges (10 ns for each) are used to implement these
two holonomic gates. The only difference between these two
gates is the phase difference between the two drives. For the
two Hadamard gates H1 =U2(π/4,0) and H2 =U2(π/4,π/2)
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∆ = 0. (d) Process fidelity as a function of qubit frequency detuning
∆ with ε = 0.
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with θ = π/4, the effective coupling strengths are g̃1/2π =

0.25 MHz and g̃2/2π = 0.60 MHz for the two-photon tran-
sition drive and the cavity-assisted Raman transition drive re-
spectively. The time for these two Hadamard gates are 779 ns,
also including the gradual ramp-up and ramp-down edges.
Since the phase difference between the two drives can be well
controlled, we could realize the holonomic gates U2(θ ,φ)
with arbitrary θ and φ . With the same method for the trans-
mon qubit, we can divide the evolution time into two intervals
with different phase sets to realize arbitrary single-qubit holo-
nomic gates U1(θ ,γ,φ) on the Fock states.

VI. NOISE-RESILIENT FEATURE OF THE HOLONOMIC
GATES

Since the robustness of geometric phase gates against lo-
cal noises has been extensively studied [14–16] and experi-
mentally verified [17, 18], here we only consider the crosstalk
noises. As qubit coherence properties are improved and the
size of quantum system becomes larger, control amplitude er-
rors and qubit frequency shifts induced by crosstalk (between
qubits and their neighboring control drives; between neigh-
boring qubits) become prominent gate error sources. To il-
lustrate the robustness of holonomic gates against these er-
rors, we numerically simulate the performance of dynamic
and holonomic gates for the transmon qubit as a function of
Rabi error ε (a relative offset in Rabi frequency) of the control
field and qubit frequency detuning ∆.

To realize the dynamic gates between |g〉 and | f 〉, multi-
ple sequential gate pulses are necessary. For example, for
the single-qubit universal gate set, a Hadamard gate requires
Xge

π Xef
π/2Xge

π , while a T gate requires Xge
π Y ef

π Ref
π Xge

π , where Ref
π

denotes a π rotation between |e〉 ↔ | f 〉 along an axis in the
xy plane with an angle of −π/8 to the x axis. In contrast, the
holonomic gate requires multiple drives to be applied simulta-
neously in a single step. This difference already makes holo-
nomic gate more robust against qubit decoherence during gate
operations. It is worth mentioning that for the dynamic gates
extra phases caused by the energy space difference (ωge 6=ωef)
need to be carefully calibrated. In our numerical simulation,
we focus only on the crosstalk noise, so both T1 and T2 are set
to be infinite. The pulses in the dynamic gates are set to have
the same Gaussian envelope (σ = 30 ns) with DRAG as those
in the holonomic gates. In Fig. S6 (Fig. S7), we present the
comparison between holonomic and dynamic Hadamard (T )
gate, confirming the holonomic gates indeed perform better
than the dynamic gates. This comparison can be generalized
to the holonomic gates on the cavity, which provide an alter-
native way of arbitrary control over Fock states and could also
be robust against experimental noises.
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