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Abstract

In decision tree models, considerable attention has been
paid on the effect of symmetry on computational complex-
ity. That is, for a permutation group Γ, how low can the
complexity be for any boolean function invariant under Γ?
In this paper we investigate this question for quantum de-
cision trees for graph properties, directed graph properties,
and circular functions. In particular, we prove that the n-
vertex Scorpion graph property has quantum query com-
plexity Θ̃(n1/2), which implies that the minimum quantum
complexity for graph properties is strictly less than that
for monotone graph properties (known to be Ω(n2/3)). A
directed graph property, SINK, is also shown to have the
Θ̃(n1/2) quantum query complexity. Furthermore, we give
an N -ary circular function which has the quantum query
complexity Θ̃(N1/4). Finally, we show that for any per-
mutation group Γ, as long as Γ is transitive, the quantum
query complexity of any function invariant to Γ is at least
Ω(N1/4), which implies that our examples are (almost) the
best ones in the sense of pinning down the complexity for
the corresponding permutation group.

1. Introduction

In classical decision trees, considerable attention has
been paid on the effect of symmetry on computational com-
plexity. The most famous example is the confirmation of
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the Aanderra-Rosenberg Conjecture that all non-constant
monotone graph properties on n vertices have (determin-
istic) decision tree complexity Θ(n2) [11]. There are how-
ever many intriguing questions that remain open, in classi-
cal as well as quantum decision trees. The purpose of this
paper is to fill some of these gaps in the area of quantum
complexity.

Let Γ be a group of permutations of 1, 2, · · · , N . Let f :
{0, 1}N → {0, 1} be any boolean function invariant under
Γ, i.e., f(x1, x2, · · · , xN ) = f(xσ(1), xσ(2), · · · , xσ(N))
for all σ ∈ Γ. We are interested in how low the complexity
can be for such functions. In the case of classical decision
trees, let DΓ be the minimum deterministic complexity for
any non-constant boolean function invariant under Γ, and
let D

(M)
Γ be the minimum deterministic complexity for any

non-constant monotone boolean function invariant under Γ.
For quantum decision trees, let QΓ and Q

(M)
Γ be the corre-

sponding minimum complexities (allowing ε two-sided er-
rors).

Much is known about DΓ and D
(M)
Γ when Γ is a tran-

sitive group. See Section 4 for the definition of transi-
tive groups. In particular, the Aanderra-Rosenberg Conjec-
ture mentioned above can be phrased as D

(M)
Γ = Θ(N),

where N =
(
n
2

)
and Γ is the permutation group on the N

edges of an n-vertex graph induced by the relabelling of
the n vertices. It also has been proved that, for the same Γ,
DΓ = Θ(N1/2). We remark that it was not easy to con-
struct a graph property with O(N1/2) complexity, and the
first non-trivial such example found was the property of be-
ing Scorpion graphs (see Section 2 for definition).

Less is known about QΓ and Q
(M)
Γ . For the case when Γ



is the set of all permutations on 1, 2, · · · , N , it is known
that QΓ, Q

(M)
Γ = Θ(

√
N) [3]. It is generally believed

that, for the Γ corresponding to graph properties, Q
(M)
Γ =

Θ(N1/2). Clearly, O(N1/2) is an upper bound, and so far
the best lower bound (by Santha and Yao (unpublished))
is Ω(N1/3). There does not seem to be published results
on QΓ, and at first glance, it appears that QΓ may even be
Θ(N1/2). The main result of this paper is to pin down QΓ.

Theorem 1 For the Γ corresponding to graph properties,
QΓ = Θ̃(N1/4).

It is of interest to note that this is strictly below the quan-
tum complexity of any non-constant monotone graph prop-
erties. The graph property used to establish the upper bound
in Theorem 1 is the scorpion graph property. It is perhaps a
natural choice, since scorpion graph property has low clas-
sical complexity, but the proof is nontrivial.

We have also obtained results for several other Γ. Let
Γdirected be the group of permutations of 1, 2, · · · , N cor-
responding to the directed graph properties on n vertices
(where N = n(n − 1)). Let Γcircular be the group of all
cyclic shifts of 1, 2, · · · , N .

Theorem 2 QΓdirected
= Θ̃(N1/4).

Theorem 3 QΓcircular
= Θ̃(N1/4).

The upper bound for Theorem 3 is established by a spe-
cially constructed boolean function. In contrast, the upper
bounds for Theorems 1 and 2 are achieved by some well-
known boolean functions.

The lower bound part of all the above 3 theorems can ac-
tually be generalized to the general transitive permutation
group case.

Theorem 4 For any transitive group Γ, QΓ = Ω(N1/4).

We prove the upper bound parts of Theorems 1 and 2 in
Section 2. The upper bound part of Theorem 3 is proved in
Section 3, and Theorem 4, which implies the lower bound
parts of the first three theorems, is shown in Section 4.

2. Proof of the upper bound parts of Theo-
rems 1 and 2

To prove the upper bound part of Theorems 1 and 2, we
give Õ(N1/4) algorithms for a graph property SCORPION

and a directed graph property SINK, two problems classi-
cally interesting because their classical decision tree com-
plexity is O(n) [4, 5]. Note that N =

(
n
2

)
for graph prop-

erties and N = n(n − 1) for directed graph properties,
where n is the number of vertices. (We remark that instead
of SINK, one can also use a directed graph version of SCOR-
PION.) The definitions of Scorpion graphs and Sink graphs
are as follows.

Definition 1 An n-vertex undirected graph G is a Scor-
pion if there are three special vertices called Body, Tail and
Sting, whose degrees are n − 2, 2 and 1, respectively. Fur-
thermore, the only vertex that Body does not connect to is
Sting, and the only neighbor of Sting is Tail. (See Figure
1) We call any vertex other than these three special ones a
Foot. Between any pair of Feet, there may or may not be an
edge.

Foot

Body Tail

Sting

Figure 1. A Scorpion graph

An n-vertex directed graph G is a Sink if there is a spe-
cial vertex with out-degree 0 and in-degree n− 1. (See Fig-
ure 2)

Figure 2. A Sink graph

Both the properties have classical decision tree complex-
ity of Θ(n). The algorithm for SINK is as follows. From
an arbitrary vertex v, do a depth first search. The first time
we cannot find a new vertex, we get a candidate sink ver-
tex. Check whether this candidate has out-degree 0 and in-
degree n − 1. Output “Sink” if yes and “not Sink” other-
wise. The algorithm for SCORPION is a little more compli-
cated, and we refer to [4, 5] for details of algorithms for
these two properties.

We give quantum algorithms for SCORPION. Similar al-
gorithms work for SINK too, and are omitted in this ex-
tended abstract. We first make some basic observations. The
first one is about Grover search [8] of bounded error input
by Hoyer, Mosca and de Wolf [9].

Lemma 5 (Hoyer, Mosca, de Wolf [9]) Given n elements,
some of which may be marked, we wish to decide whether



there is a marked element and locate one if any exists. Sup-
pose that for any given element, one can decide with er-
ror probability less than 1/3 whether it is marked, by a
q-quantum-query subroutine. Then we can decide whether
there exists a marked element (and output one if there is
any) using an quantum algorithm with expected time and
query complexity E = O(

√
n/mq), where m is the un-

known number of marked elements.

The second lemma considers to find multiple marked el-
ements rather than just one. Suppose we do not know the
number m of marked elements, and are now required to find
k marked ones. We use the following algorithm.

1. for i = 0 to k − 1
2. for j = 0 to log(k/ε)
3. run the algorithm in Lemma 5 for 2Ei long time,
4. if we find a marked element during the time
5. go to line 1 with i incremented
6. output m = i and halt.

In line 3, the Ei is the expected time of the algorithm in

Lemma 5 in the i-th iteration, and Ei = O(q
√

n
m−i ).

We give a brief analysis of this algorithm. If k ≤ m, then
in the i-th outer iteration, the expected time to find a marked

element is
∑log(k/ε)

t=1 2tEi/2t < 4Ei = O(kq
√

n
m−i ) and

the error probability is 2−t = ε/k. So the expected value of
the whole running time is

O(q(
√

n/m +
√

n/(m − 1) + ... +
√

n/(m − k + 1)))
= O(q

√
n · 2(

√
m −√

m − k))
= O(q

√
nk/

√
m) = O(kq

√
n/m)

= O(q
√

kn)

and the whole error probability is less than ε. If k > m, then
for the first m marked elements the analysis is the same as
above and the expected time complexity is O(q

√
mn). Af-

ter we find m marked elements in the i = 0, ...,m − 1 iter-
ations, we shall not find any marked element in the i = m
iteration, thus output m and halt by executing line 6. This it-
eration need O(q

√
n log(k/ε)) time and the error probabil-

ity is ε/k. Thus the whole time complexity in k > m case is
O(q

√
mn + q

√
n log(k/ε)) and the error probability is less

than ε. In summary, we have the following lemma.

Lemma 6 The above algorithm outputs k marked elements
if k ≤ m, and outputs m and the m marked elements
when k > m. In both cases the algorithm is correct
with probability 1 − ε, and the time/query complexity is
O(q

√
min{k,m}n + q

√
n log(k/ε)).

The third lemma is a basic observation that if we find a
candidate for Body, Tail or Sting, then we can easily decide
whether the given graph is a Scorpion or not.

Lemma 7 Given a graph G and a vertex v, We can check
whether G is a Scorpion graph with v being Body, Tail or
Sting with error probability ε by O(

√
n log(1/ε)) queries.

Proof We first check whether the degree of v is 1, 2, or n-2
by O(

√
nlog(2/ε)) queries.

• Case 1: deg(v) = 1. We use Grover search to find
the only neighbor u of v. Check that deg(u) = 2 and
then find the other neighbor w of u. Finally, check that
deg(w) = n−2. Output YES and w, u, v as Body, Tail
and Sting and then halt if and only if G passes all these
checks, and NO otherwise.

• Case 2: deg(v) = n − 2. We use Grover search to find
the only vertex u which is not adjacent with v. Check
deg(u) = 1 and then the rest part is similar with Case
1.

• Case 3: deg(v) = 2. Find the neighbor u,w of v.
Check that deg(u) = 1 or deg(u) = n − 2. Then sim-
ilar as Case 1 or Case 2.

In all the three cases we should use Grover search for
Θ(log(1/ε)) times to let the error probability decrease to
ε/2, and thus the whole error probability is less than ε. �

The last lemma is the key idea of the algorithms in this
paper. Basically, it uses random sampling to find a vertex
with low degree.

Definition 2 For any vertex v in an undirected graph G =
(V,E) and any set U ⊆ V , define the set of neighbors of v
in U as NU (v) = {u : (u, v) ∈ E, u ∈ U}. We write N(v)
for NV (v).

Lemma 8 In a graph G = (V,E), if we pick a random set
T of 2u

d log n vertices from a set U of u vertices, then we
have

Pr[∀v ∈ V, if N(v)∩T = φ, then |NU (v)| ≤ d] > 1−1/n.

This lemma says that, intuitively, if we pick a random
subset T of U and T does not hit any neighbor of v (in U ),
then the degree of v in U is small with high probability.
Proof

Pr[∀v ∈ V, if N(v) ∩ T = φ, then |NU (v)| ≤ d]
= 1 − Pr[∃v ∈ V, s.t. N(v) ∩ T = φ, and |NU (v)| > d]
≥ 1 − n · Pr[N(v) ∩ T = φ, and |NU (v)| > d]
≥ 1 − n · Pr[N(v) ∩ T = φ | |NU (v)| > d]
> 1 − n · (u−d

u )|T |

> 1 − n · e−2 log n

= 1 − 1/n

as claimed. �



2.1. An Õ(n3/4) algorithm

In this section, we give an O(n3/4 log1/4 n) algorithm.
The basic idea is to find a low degree vertex by random
sampling, and then search among the neighbors of this ver-
tex for the body. The algorithm is as in Algorithm 1 box.
The quantity following each step is the query complexity of
that step.

The correctness and complexity of Algorithm 1 is given
by the following theorem.

Theorem 9 Given a graph G, Algorithm 1 can decide
whether G is a Scorpion graph and, if yes, output the Body,
Tail and Sting. The time and query complexity of Algorithm
1 is O(n3/4 log1/4 n).

Proof If G is a Scorpion, then there are at least two low
degree vertices: Tail and Sting. So we can find a vertex v
in Step 2 with probability at least 9/10, and we know by
Lemma 8 that deg(v) ≤ d with probability at least 1− 1/n.
Then if v is Tail or Sting we will find that G is a Scorpion
by Lemma 7 in Step 3. Otherwise, v is a low degree Foot.
So Body must be one of v’s neighbors, all of which have
already been found in Step 4. Thus with probability 9/10,
Body is found in Step 5 and finally it uses Lemma 7 to out-
put the correct answer. The total error probability is less
than 3/10 + 1/n ≤ 1/3.

If G is not a Scorpion, then error can only be made in
Steps 3 or Step 5, where we use Lemma 7 twice each of
which has error probability less than 1/10.

Finally, The query complexity of the algorithm is
O(n3/4 log1/4 n) by letting d =

√
n log n. �

2.2. Improvement

Now we give an improved algorithm, which is of Õ(
√

n)
complexity. The key idea is that in Step 4 in Algorithm 1,
instead of getting all neighbors of v, we again pick some
random samples from these neighbors. We then find another
vertex u which connects to none of these samples, then by
Lemma 8, we know NN(v)(u) is small — in other words, v
and u share few common neighbors. But note that Body still
connects to both v and u if they are feet. So we can search
among these common neighbors for Body. Directly follow-
ing this idea gives an O(n2/3) algorithm. To make full use
of it, we apply it for about log n rounds as in Algorithm 2.

The following theorem actually shows Theorem 1 in
Section 1.

Theorem 10 Given a graph G, Algorithm 2 decides
whether G is a Scorpion with error probability less than
1/3 and, if yes, outputs the body, tail and sting. The time
and query complexity of Algorithm 2 is O(

√
n log2 n).

Proof The proof is similar to the one for Algorithm 1. Note
that by Lemma 8, after the ith iteration of 1(b), with high
probability (at least 1−1/n) the number of common neigh-
bors of v1, ..., vi+1 is no more than di+1. And after the to-
tal Step 1, with high probability (at least 7/10 − m/n) the
number of common neighbors of v1, v2, ..., vm (or v1, ..., vi

if we get Step 2 by jumping out of the ith iteration of Step 1)
is no more than dm (or di, respectively). So if G is a Scor-
pion, then Body will be found finally in Step 3 with proba-
bility at least 6/10, if Tail or Sting is not found in Step 1(c)
luckily (which makes the algorithm succeed even earlier).
On the other hand, if G is not a Scorpion, then similar argu-
ments as in the proof of Theorem 5 yield the small constant
error probability result.

For the complexity, let us first calculate the cost of Step
1. Without loss of generality, suppose that all m iterations of
Step 1 are done before we get to Step 2. The first iteration of
Step 1 is of cost O(

√
k0n log m) = O( n√

d1

√
log n log m)

and the cost of the ith iteration is O(
√

kiin+
√

kin log m).
Note that

ki = 2(di/di+1) log n
= 2((i − 1)!n/mi)/(i!n/mi+1) log n
= 2m

i log n,

thus by noting that
∑m−1

i=1

√
kiin ≥ ∑m−1

i=1

√
kin log m),

we have the cost of Step 1 as

O
(√

k0n log m +
∑m−1

i=1 (
√

kiin +
√

kin log m)
)

= O
(√

k0n log m +
∑m−1

i=1 (
√

kiin)
)

= O
(√

2mn log n log m +
∑m−1

i=1

√
2mn log n

)
= O

(
m
√

mn log n
)

= O
(√

n log2 n
)

since m = 1
2 (log n − log log n) − 1.

Now we consider the cost of Step 2 and 3, which is
O(

√
kini +

√
dmmn) = O(

√
n log n) since

dm = (m−1)!n
mm

= O
(√

m(m/e)m−1n
mm

)
= O

(
n√
m

(1/e)m−1
)

= O
(

n√
log n

1
n/ log n

)
= O

(√
log n

)
As a result, the time and query complexity of Algorithm

2 is O(
√

n log2 n). �

We add some remarks about the SINK problem to end
this section. The same algorithm can be applied to solve
SINK. Now instead of find a vertex with low degree, we are
trying to find one with low out-degree. Here the sink point
plays both the Sting role (by having no out-degree) and the
Body role (by having n − 1 in-degree).



Input: G = (V,E).
Output: Tell whether G is a Scorpion, and if yes, output the Body, Tail and Sting.a

1. Let d =
√

n log n. Pick a set U of 2n
d log n random vertices. — 0

2. Use the algorithm in Lemma 5 to find a vertex v such that NU (v) = ∅, and the error probability is less than
1/10. If we do not find one, then output “not Scorpion” and halt. — O(

√
n
√

n
d log n) = O( n√

d

√
log n)

3. Use Lemma 7 to check whether G is a Scorpion with v being Body, Tail or Sting (and halt if it is). Make the
error probability less than 1/10. — O(

√
n)

4. Find all but up to d neighbors of v by Lemma 6 with error probability less than 1/10. If we find more than d
neighbors of v, output FAILURE and halt. — O(

√
nd)

5. Search among these neighbors of v for a vertex u with degree n − 2 by Lemma 5. If we do not find u, then
output “not Scorpion”; otherwise, use Lemma 7 to check whether G is a Scorpion with u being Body and
output the result. — O(

√
nd)

a There appear “FAILURE” outputs in the algorithms. That is to make the algorithms more clear: “FAILURE” is something unexpected and
the overall probability of “FAILURE” is no more than a small constant.

Figure 3. Algorithm 1

Input: G = (V,E).
Output: tell whether the G is a Scorpion, and if yes, output the Body, Tail and Sting.
Parameters: m = 1

2 (log n − log log n) − 1, di = (i − 1)!n/mi for i = 1, ...,m.

1. for i = 0 to m − 1 do

(a) If i = 0, randomly pick a set T0 of k0 = 2 n
d1

log n vertices from V . — 0
Else, randomly pick a set Ti of ki = 2 di

di+1
log n vertices from ∩i

j=1N(vj) using Lemma 6 and making

the error probability less than 1
10m . If we cannot find so many vertices, jump out of this for loop and go

to Step 2. — O(
√

kiin +
√

in log(ki · 10m)) = O(
√

kiin)
(b) Find a point vi+1 such that vi+1 connects to none of points in Ti using Lemma 5 and making the error

probability less than 1
10m . If no vi+1 is found, output “not Scorpion” and halt. —O(

√
kin log m)

(c) Use Lemma 7 to check whether G is a Scorpion with vi+1 being Body, Tail or Sting (and halt if yes),
making the error probability less than 1

10m . — O(
√

n log m)

2. If we get here by jumping out of the for loop at the ith iteration, then find all common neighbors of v1, ..., vi

using Lemma 6 with error probability less than 1/20. — O(
√

kini)
Otherwise, find all but no more than dm common neighbors of v1, ..., vm using Lemma 6 with error probabil-
ity less than 1/20. —
O(

√
dmnm)

3. Use Lemma 5 to search among these common neighbors for a vertex u with degree n− 2. If we do not find u,
then output “not Scorpion”; otherwise, use Lemma 7 to check whether G is a Scorpion and output the result.
— max{O(

√
dmn), O(

√
kin)}

Figure 4. Algorithm 2



3. Proof of the upper bound part of Theorem
3

To show the upper bound part of Theorem 3, it is suf-
ficient to construct a circular function f whose quantum
query complexity is Õ(N1/4). A circular function is one
whose value is invariant to any circular shift of the input in-
dices.

Definition 3 A function f : {0, 1}N → {0, 1} is a circular
function if any circular permutation of input indices does
not change the function value. In other words, f(x′) = f(x)
for any x and x′ with x′ = xk+1xk+2...xnx1...xk for some
1 ≤ k < n.

Now we give a particular circular function f . Basically, it
is a variant of SINK. Here we only give the definition when
N = n2 for some integer n. The general case can be shown
using the similar algorithm and theorems.

Definition 4 Let the function f : {0, 1}N → {0, 1} be a
Boolean function of N Boolean variables where N = n2.
For each input x = x1x2...xN we write it as an n×n matrix
with row and column indices ranging over {0, 1, ..., n− 1},
and the (i, j)-entry being xin+j+1. We denote this matrix
by Mx, or M if x is clear from the context. We use M(i, j)
to denote the (i, j) entry of the matrix M .

We denote by +
m

and −
m

the addition and substraction
mod n, respectively. For example, (n − 1) +

m
1 = 0 and

0 −m 1 = n − 1.
Let f(x) = 1 if and only if Mx is of the following (i, j)-

form for some i, j ∈ {0, 1, ..., n − 1}: row i contains all
0 entries; in row (i −m 1), all the entries with column in-
dex greater than j are 0; in row (i+

m
1), all the entries with

column index less than j are 0; at last, all the entries in col-
umn j except Mx(i, j) are 1.

0 ... j − 1 j j + 1 ... n − 1

0 1

...
...

i − 1 1 0 ... 0
i 0 ... 0 0 0 ... 0

i + 1 0 ... 0 1

...
...

n − 1 1
(1)

Sometimes we say M is of (i, ∗)-form if M is of (i, j)-
form for some j; we also say M is of (∗, j)-form if M is
of (i, j)-form for some i. The following facts are obvious,
where the D(f) = O(

√
N) part can be shown by using an

algorithm similar to the one for SINK described in Section
2.

Lemma 11 f is a circular function, and D(f) = O(
√

N).

Another key property about f is that if f(x) = 1, then
any row except row i has at least one entry being 1, and ex-
actly one column — column j — intersects all rows but row
i with a 1-entry.

Before describing the algorithm, we construct subrou-
tines analogous to those in Lemma 7.

Lemma 12 Give x and row index i , we can decide whether
Mx is in (i, ∗)-form with high probability by using O(

√
n)

queries; symmetrically, given x and column index j , we
can decide whether Mx is in (∗, j)-form with high proba-
bility by using O(

√
n) queries.

Proof An algorithm for the row case:

1. Check whether M(i, 1) = ... = M(i, n) = 0 and if
not, return NO.

2. Find j s.t. M(i+
m

1, 1) = ... = M(i+
m

1, j−1) = 0
and M(i +

m
1, j) = 1. If no j is found, return NO.

3. Check whether M(i −
m

1, j + 1) = ... = M(i −
m

1, n) = 0 and M(1, j) = ... = M(i − 1, j) = M(i +
1, j) = ... = M(n, j) = 1. Return YES if so and NO
otherwise.

An algorithm for the column case:
1. Check that only one entry is 0 in column j and assume

M(i, j) = 0 if so. If not, return NO.
2. Check whether M(i −m 1, j + 1) = ... = M(i −m

1, n) = M(i +
m

1, 1) = ... = M(i +
m

1, j − 1) = 0 and
all entries in row i are also 0’s. Return YES if so and NO
otherwise. �

Now we give an O(
√

n log2 n) algorithm for f as in Al-
gorithm 3 box.

The following theorem validates Theorem 3 in Section
1. We omit the proof because it is almost the same as that
for Algorithm 2 .

Theorem 13 Algorithm 3 decides f with high probability
and the time and query complexity is O(

√
n log2 n).

We give some brief remarks on the case of N not being a
square number to end this section. Let n to be the maximal
integer such that n2 ≤ N . Again we write x1...xN in the
matrix form similar as in Definition 4, now with n columns
and n + 1 or n + 2 rows, but the last row may be not com-
plete. Suppose the last entry in the last row is in the j0-th
column. We define f(x) = 1 if, for some circular permuta-
tion σ, Mσ(x) is in the form of (1) with j ≤ j0. It can be
shown that all the lemmas and theorem hold for this case.
We leave the details in the complete version of the paper.



Input: x
Output: f(x)
Parameters: m = 1

2 (log n − log log n) − 1, di = (i − 1)!n/mi for i = 1, ...,m.

1. for i = 0 to m − 1 do

(a) If i = 0, randomly pick a set T0 of k0 = 2 n
d1

log n column indices {c1, ..., ck0}. — 0
Else, randomly pick a set Ti of ki = 2 di

di+1
log n column indices {c1, ..., cki

} s.t. ∀c ∈ Ti, M(rs, c) = 1
for all s ∈ [i] using Lemma 6 and making the error probability less than 1

10m . If we cannot find so many
columns, then jump out from this for loop and go to Step 2. — O(

√
kiin)

(b) Find a row index ri+1 s.t. M(ri+1, c1) = ... = M(ri+1, cki
) = 0 using 5 and making the error proba-

bility less than 1
10m . If no ri+1 is found, output f(x) = 0 and halt. —

O(
√

kin)
(c) Check whether Mx is in (ri+1, ∗)-form by Lemma 12 with error probability less than 1

10m . If YES, out-
put f(x) = 1 and halt. —
O(

√
n)

2. If we get here by jumping out of the for loop at the ith iteration, then use Lemma 6 to get all the columns c
s.t. M(r1, c) = ... = M(ri+1, c) = 1 with error probability less than 1

20 . — O(
√

kini)
Otherwise, get all but no more than dm columns c s.t. M(r1, c) = ... = M(rm, c) = 1 using Lemma 6 with
error probability less than 1

20 . — O(
√

dmnm)

3. Search among these columns for a column c s.t. Mx is of (∗, c)-form by the algorithm in Lemma 12 with error
probability less than 1

20 . Output f(x) = 1 if we succeed and f(x) = 0 otherwise. —
max{O(

√
dmn), O(

√
kin)}

Figure 5. Algorithm 3

4. Proof of Theorem 4

Before we prove Theorem 4, we remark that the lower
bound part of Theorem 1 is easy to obtain by existing re-
sults. Let us first review some complexity measures (see [7]
for an excellent survey).

Definition 5 The sensitivity of a Boolean function f on in-
put x = x1x2...xn ∈ {0, 1}n is

s(f, x) = |{i ∈ {1, ..., n} : f(x) 
= f(x(i))}|,
where x(i) is the n-bit string obtained from x by flipping xi.
The sensitivity of f is s(f) = maxx∈{0,1}n s(f, x).

The block sensitivity of f on x is the maximum num-
ber b such that there are b disjoint B1, ..., Bb for which
f(x) 
= f(xBi). The block sensitivity of f is bs(f) =
maxxbs(f, x).

A certificate set CSx of f on x is a set of indices such that
f(x) = f(y) whenever yi = xi for all i ∈ CSx. The cer-
tificate complexity C(f, x) of f on x is the size of a small-
est certificate set of f on x. The b-certificate complexity of f
is Cb(f) = maxx:f(x)=b C(f, x). The certificate complex-
ity of f is C(f) = max{C0(f), C1(f)}.

Turan showed that, for any graph property f , s(f) ≥
n/4 [12] and Beals et al showed Q2(f) ≥ √

bs(f)/4 [3],

which together imply Q2(f) ≥ √
n/8 because of the triv-

ial fact bs(f) ≥ s(f).
In this section we prove Theorem 4 using the Ambainis’s

lower bound technique [2].
A permutation group Γ on the set {1, 2, ..., N} is tran-

sitive if, for any i, j ∈ {1, 2, ..., N}, there is a permutation
σ ∈ Γ such that σ(i) = j. A simple but useful fact about
any transitive group Γ is the following lemma in [11]. We
denote by w(x) the number of 1’s in x, and by σ(x) the
string xσ(1)xσ(2)...xσ(N).

Lemma 14 (Rivest and Vuillemin) If Γ is transitive, then
for any x ∈ {0, 1}N and any i ∈ {1, 2, ..., N}

w(x) · |{σ(x) : σ ∈ Γ}| = N · |{σ(x) : σ ∈ Γ, σ(x)i = 1}|.

For completeness, we first show the following classical
folklore result.

Proposition 15 For any N -ary function f invariant to a
transitive group Γ, we have C0(f)C1(f) ≥ N and thus
D(f) ≥ C(f) ≥ √

N .

Proof Let A and B be a 1 and 0-certificate with size C1(f)
and C0(f), respectively. Let Γ(B) = {σ(B) : σ ∈ Γ}.
Then for any B′ ∈ Γ(B), B′ is also a 0-certificate assign-



ment. So A ∩ B′ 
= ∅, and thus
∑

B′∈Γ(B)

|A ∩ B′| ≥ |Γ(B)| (2)

By Lemma 14 we know that

|B| · |Γ(B)| = N · |σ(B) : σ ∈ Γ, i ∈ σ(B)|.
Therefore,∑

B′∈Γ(B) |A ∩ B′| = |A| · |σ(B) : σ ∈ Γ, i ∈ σ(B)|
= |A| · |B|·|Γ(B)|

N
(3)

Combine (2) and (3) we have |A| · |B| ≥ N , i.e.
C1(f)C0(f) ≥ N . So D(f) ≥ C(f) ≥ √

N . �

Now the proof of Theorem 4 is as follows. We denote 0 =
00...0. For any x, let x(S) be the string that obtained from x
by flipping all the xi that i ∈ S.
Theorem 4 QΓtransitive

= Ω(N1/4).
Proof Let f be a nontrivial function invariant under a tran-
sitive permutation group Γ. Without loss of generality, we
assume that f(0) = 0. Let B be a minimal subset such that
f(0(B)) = 1, i.e. for any B′ ⊆ B, we have f(0(B′)) = 0.
Thus flipping any xi where i ∈ B changes the value of
f(0(B)), therefore bs(f) ≥ |B|.

Now we use the Ambainis’s lower bound technique [2]
to show that Q2(f) = Ω(

√
n/|B|). Let X = {0}, Y =

{σ(0(B)) : σ ∈ Γ} and R = X × Y . Then

m = max
x

|{y : (x, y) ∈ R}| = |Y |,

m′ = max
y

|{x : (x, y) ∈ R}| = 1.

And

l = maxx,i |{y : (x, y) ∈ R, xi 
= yi}|
= |{σ(0(B)) : σ ∈ Γ, σ(0(B))i = 1}|,

l′ = max
y,i

|{x : (x, y) ∈ R, xi 
= yi}| = 1.

Thus by Theorem 5.1 in [2] and the above lemma, we have

Q2(f) = Ω(
√

mm′
ll′ ) = Ω

(√
|Y |·1

|B||Y |
N ·1

)

= Ω(
√

N/|B|) = Ω(
√

N/bs(f)).

On the other side, we know Q2(f) = Ω(
√

bs(f)), so
Q2(f) = Ω(N1/4). �
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