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Abstract—Modern machine learning models (such as deep
neural networks and boosting decision tree models) have become
increasingly popular in financial market prediction, due to
their superior capacity to extract complex non-linear patterns.
However, since financial datasets have very low signal-to-noise
ratio and are non-stationary, complex models are often very
prone to overfitting and suffer from instability issues. Moreover,
as various machine learning and data mining tools become more
widely used in quantitative trading, many trading firms have
been producing an increasing number of features (aka factors).
Therefore, how to automatically select effective features becomes
an imminent problem. To address these issues, we propose
DoubleEnsemble, an ensemble framework leveraging learning
trajectory based sample reweighting and shuffling based feature
selection. Specifically, we identify the key samples based on the
training dynamics on each sample and elicit key features based
on the ablation impact of each feature via shuffling. Our model is
applicable to a wide range of base models, capable of extracting
complex patterns, while mitigating the overfitting and instability
issues for financial market prediction. We conduct extensive
experiments, including price prediction for cryptocurrencies and
stock trading, using both DNN and gradient boosting decision
tree as base models. Our experiment results demonstrate that
DoubleEnsemble achieves a superior performance compared with
several baseline methods.

Index Terms—Quantitative trading, Neural network, Ensemble
model, Feature selection

I. INTRODUCTION

Financial market is notoriously difficult to predict due to
its competing nature. There are some common reasons that
partially explain why the prediction task is extremely difficult.
First, the difficulty comes from the widely known efficient
market theory, which is a hypothesis that states that share
prices reflect all information and it is impossible to consis-
tently outperform the overall market (see e.g., the original
paper by Samuelson [1]). Second, due to existence of a large
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number of “noisy traders” [2], and other hidden factors that
impact the movement of the market (e.g., government policy
changes and breaking news), the financial data is highly noisy,
dynamic and volatile.

Multifactor model [3] is a popular model for asset pricing
and market prediction. The model prices the asset or predicts
the market movement based on multiple features (or factors),
such as the firm size [4], the earnings’ yield [5], the leverage
[6] and the book-to-market ratio [7]. Linear model has been
a standard algorithm for the multifactor model but has a
great limitation in exploiting complex patterns. Recently, non-
linear machine learning models (such as gradient boosting
decision trees or deep learning models) become popular due
to their large model capacity [8, 9, 10, 11, 12]. However,
these complex non-linear models are prone to overfitting and
susceptible to noisy samples.

To provide the model with more information, quantitative
traders or researchers often create hundreds or even thousands
of features (aka factors) [13, 14, 15, 16]. However, training a
prediction model with all the available features may lead to
poor performance. Therefore, it is essential to select features
that are not only informative but also uncorrelated with other
features. For linear models (such as linear regression), we
can select features with low correlations to alleviate the
multicollinearity problem (see e.g., [17]). For highly complex
non-linear models and highly noisy financial data, it is less
clear how to effectively select features.

To address the aforementioned issues, we propose Dou-
bleEnsemble, a new ensemble framework for financial mar-
ket prediction. In particular, we construct sub-models in the
ensemble one by one, where each sub-model is trained with
both the weights of samples and carefully selected features.
A wide range of base models can be used in learning the
sub-models, such as the linear regression model, boosting
decision trees, and deep neural networks. Each time, using
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our learning trajectory based sample reweighting scheme, we
assign a weight to each sample in the original training set
based on the loss curve of the previous sub-model and the
loss value of the current ensemble (which we refer to as
the learning trajectory). Moreover, we select features based
on their contribution to the current ensemble via a shuffling
technique.

There are three major contributions/features of our proposed
DoubleEnsemble framework.

1) Our method integrates sample reweighting and feature
selection into a unified framework, and is named Dou-
bleEnsemble. We ensemble diversified sub-models that
are trained with not only different sample weights but also
features. This property greatly alleviates the overfitting
problem and makes DoubleEnsemble more stable and
suitable for learning from highly noisy financial data.

2) For the sample reweighting component, we propose a new
learning trajectory based sample reweighting scheme,
which fully incorporates the learning trajectory into the
construction of sample weights. This reweighting scheme
can effectively reduce the weights of very easy and noisy
samples and boosts that of the key samples that are more
informative for training the model. 1

3) For feature selection, traditional approaches (e.g., back-
ward elimination and recursive feature elimination) usu-
ally attempt to remove redundant features according to
their importance and retrain the whole model after re-
moving each feature. In practice, retraining incurs a huge
computational cost. Moreover, when training with neural
networks, removing a feature could completely change
the distribution of inputs, which leads to extremely unsta-
ble training process. To address the challenge, we propose
a new shuffling based feature selection method. Instead
of removing a feature, we shuffle a feature across training
samples and measure the change of the loss. The small
change indicates that the feature is less relevant for the
predication task. Our feature selection approach is both
computationally efficient and has shown to be effective
on real financial datasets with a large number of factors.

In the experiments, we apply DoubleEnsemble to two
financial markets, the cryptocurrency exchange OKEx and
the securities exchange China’s A-share market. These two
markets possess different trading rules and market partici-
pants, and therefore there are different types of noise and
patterns in the historical data of these two markets. Moreover,
we use DoubleEnsemble to construct prediction models to
trade at different frequencies (from seconds to weeks). Our
experiments show that DoubleEnsemble achieves superior
performances in both markets. Specifically, DoubleEnsemble
achieves a precision of 62.87% for predicting the direction of
the cryptocurrency movement and an annualized return over
51.37% with the Sharpe ratio 4.941 in China’s A-share market.

1Easy samples are those which the algorithm can classify correctly very
easily. Fitting pure noisy samples may lead to overfitting. Hence, we would
like the learning algorithm to focus less on these and more on the remaining
samples. See Section III-A for the details.

The rest of our paper is organized as follows. We introduce
the related work in Section II. Then, we introduce Dou-
bleEnsemble in Section III and present the experiment results
in Section IV. At last, we summarize our work in Section V.

II. RELATED WORK

Ensemble Model. Ensemble is an effective way to enhance
the model robustness. The key for an ensemble model is
to construct good and diverse sub-models. The methods to
construct sub-models can be divided into two categories. In
the first category, individual but different models can be built
separately, such as bagging [18]. This category is popular for
financial market prediction. For example, Liang and Ng [19]
use different base models to construct different sub-models;
Xiang and Fu [20] and Zhai et al. [21] construct sub-models
by selecting financial data from different time periods or
different market environments respectively. The other category
builds the sub-models based on the performance of those built
previously, such as boosting [22]. The model built through this
category of methods has better predictive accuracy but tends
to overfit to the noise in the training data [23] and therefore
is not currently widely used for financial market prediction.

Sample reweighting. Weighting the samples for the model
training is shown to be effective in some computer vision
applications: Saxena et al. [24] treat the weights of the samples
as parameters and learn the weights via the gradient. Hu
et al. [25] and Fan et al. [26] design a reward function for
the weights and learn the weights via reinforcement learning.
Ren et al. [27] train an additional neural network to learn the
weights.

There is a conflict between the objective of boosting and
denoising when assigning weights to the samples for the model
training. Boosting increases the weights of the hard samples.
This is similar to curriculum learning [28] where the model is
trained to first fit the easy samples and then the hard samples.
In financial market prediction, this can also be interpreted as
learning another new pattern when the previous patterns are
exploited. Examples of this trend of reweighting are [24] and
[26]. On the other hand, for constructing an ensemble robust
to the outliers and noisy samples, weights of these samples
should be reduced. For instance, Jiang et al. [29], Liu et al.
[30] and Nguyen et al. [31] reduce the weights of the samples
that the model does not fit well. However, it is hard for us to
distinguish between the hard samples and the outliers or the
noisy samples. It is a challenge to reduce the weights of noisy
samples while performing a boosting style of learning.

Feature selection. Conventionally, features for financial
market prediction are manually selected [32, 33]. However,
automation for feature selection is desired when the number
of features increases. Xu et al. [34] and Booth et al. [35] recur-
sively select the features based on the degree of performance
degeneration when the values for the feature are permuted.
De Prado [14] introduces several feature importance metrics
for financial machine learning. Sun et al. [36] maximize the
mutual information between selected features and labels. How-



ever, they do not study how to select features in conjunction
with sample reweighting for better performance.

Noise reduction for finance. Noise reduction is crucial
to extract information from the financial data with a low
signal-to-noise ratio. In this paper, we focus on denoising
in the phase of model training. Apart from reweighting the
samples to denoise, Zhang et al. [37] and Xu et al. [38]
design specific loss functions to denoise. Noise reduction can
also be performed from the perspective of signal processing
(e.g., filtering on the raw sequential data before extracting the
features [39, 40]) or the perspective of financial risk control
(e.g., controlling the extent of the risk exposure [41]).

III. METHOD

In this section, we propose DoubleEnsemble, an ensemble
model with two key components: learning trajectory based
sample reweighting and shuffling based feature selection. We
show the training process in Algorithm 1.

The training data consists of the feature matrix X and the
labels y. Here, X = [x1, · · · ,xN ]T ∈ RN×F is a matrix
where N is the number of samples, F is the number of
features, and xi is the feature vector for the i-th sample.
y = (y1, · · · , yN ) is a vector of size N where yi is the
label for the i-th sample. In the process, we sequentially
construct K sub-models, M1, · · · ,MK . After constructing
the k-th sub-model, we define the current ensemble model
Mk

(·) = 1
k

∑k
κ=1Mκ(·) to be a simple average over the

first k sub-models. The output of DoubleEnsemble is MK
(·)

which is the average of all the K sub-models.
Each sub-model is trained based on not only the training

data (X,y) but also a set of selected features f ⊆ [F ] and the
weights w = (w1, · · · , wN ) where wi is the weight assigned
to the i-th sample. For the first sub-model, we use all the
features and equal weights. For the subsequent sub-models,
we use learning trajectory based sample reweighting (SR) and
shuffling based feature selection (FS) to determine the weights
and select features respectively.

Before we introduce the details of SR and FS, we first
introduce the input for these two processes. For SR, we retrieve
the loss curves during the training of the previous sub-model
and the loss values of the current ensemble. Suppose there
are T iterations in the training of the previous sub-model. We
use C ∈ RN×T to denote the loss curves where the element
ci,t is the error on the i-th sample after the t-th iteration in
the training of the previous sub-model. For neural network,
an iteration is one training epoch, and for boosting trees, we
construct a new tree in an iteration. Next, we use L ∈ RN×1

to denote the loss values where the element li is the error of
the current ensemble on the i-th sample (i.e., the error between
Mk

(xi) and yi). For FS, we directly provide the training
data and the current ensemble as the input. In the subsequent
subsections we will introduce SR and FS in details.

Discussion. To extract the temporal information prior to the
time point for prediction, we filter the signals (e.g., using the
moving average, the Kalman filter, etc.) before calculating the
features. We empirically found that this is more effective than

Algorithm 1 DoubleEnsemble

1: Input: The training data (X,y) and the number of sub-
models K.

2: Set the weights w ← (1, · · · , 1)
3: Select the features f ← [F ]
4: for k = 1 to K do
5: Mk ← TrainSubModel(X,y,w,f)
6: Retrieve the loss curves C and the loss values L
7: w ← SR (C,L, k) . sample reweighting
8: f ← FS

(
Mk

, X,y
)

. feature selection

9: Return: The ensemble model MK

Algorithm 2 SR: Learning trajectory based sample reweight-
ing

1: Inputs: The loss curves C, the loss values L and the index
of the sub-model k

2: Parameters: The coefficients α1 and α2, the number of
bins B and the decay factor γ

3: Calculate the h-value for each sample based on (1)
4: Divide the samples into B bins according to the h-values
5: Calculate the weight w based on (2)
6: Return: The weights w

filtering the signals using variants of recurrent neural networks
(e.g., SFM [42]). Besides, in our model, the prediction of the
ensemble model is a simple average of the predictions from all
the sub-models. This is a simplest yet robust way to aggregate
the sub-models. We note it is possible to set a weight for each
sub-model or develop a stacked generalization ensemble (aka
stacking). In general, a proper way to combine the sub-models
can further improve the performance and we leave it as a future
research direction.

A. Learning trajectory based sample reweighting

We show the learning trajectory based sample reweighting
(SR) process in Algorithm 2. In the process, we first calculate
the h-value for each sample and then divide all the samples
into B bins according to the h-value. Later, we assign the
same weights to the samples in the same bin.

The calculation of the h-value is based on the loss curves
of the previous sub-model C and the loss values of the current
ensemble L. For robustness, we first normalize C and L
via ranking. The normalization function norm : RN×d →
[0, 1]N×d replaces each element in the matrix with its rank
across other elements in the column, i.e., norm(X)ij = 0.9 if
Xij is larger than 90% of the elements in the j-th column of
X . Then, we can define normalized loss curves C̃ = norm(C)
and normalized loss values L̃ = norm(L). To indicate whether
the loss of a sample gets improved during the training, we
compare its loss at the start and at the end of training. We use
Cstart, Cend ∈ RN×1 to denote the loss for all the samples at
the start and at the end of training respectively. Specifically,
they are the average of the first and the last 10% rows of
C̃ respectively. For example, if we train T = 100 iterations



for each sub-model, each element in Cstart is the average
normalized loss of a sample across the first 10 iterations. Next,
we calculate the h-values for all the samples as follows:

h = α1 (−L̃)︸ ︷︷ ︸
h1

+α2 norm
(
Cend

Cstart

)
︸ ︷︷ ︸

h2

, (1)

where h, L̃, Cstart, Cend ∈ RN×1 and the operations are
element-wise.

To avoid extreme values for the weights, we further divide
the samples into B bins according to the h-values and assign
the same weights to the samples in the same bin. Suppose the
i-th sample is divided into the bi-th bin. The weight of this
sample is assigned as follows:

wi =
1

γk〈h〉bi + 0.1
, (2)

where 〈h〉b is the average h-value for the b-th bin. Further,
we use a decay factor γ ∈ [0, 1] to encourage the weight
distribution to be more uniform in the latter sub-models of
the ensemble. This technique is a simplified version from the
concept of the self-paced factor in [30].

Now, we explain the intuition behind our design with a small
example in Figure 1. Consider three types of samples in a
classification task: the easy samples that are easily classified
correctly, the hard samples that are close to the true decision
boundary and may easily get misclassified, and the noisy
samples that may mislead the model. We would like our
reweighting scheme to boost the weights of hard samples
while reducing the weights of the easy and the noisy samples,
since easy samples can be fitted anyway and fitting noisy
samples may lead to overfitting. The h1 term helps to reduce
the weights of easy samples. Specifically, the loss of an easy
sample is prone to be small which leads to a large value for h1

and therefore a small weight. However, this term also boosts
the noisy samples since it is hard to distinguish the noisy
samples and the hard samples solely based on the loss value.
Fortunately, we can distinguish them by their loss curves using
h2 (cf. Figure 1b). Intuitively, we assign large weights to the
samples with a descending normalized loss curve. Since the
training process is driven by the majority of the samples, the
loss of most of the samples tends to decrease while the loss
of noisy samples usually keeps the same or even increases.
Therefore, the normalized loss curves of noisy samples will
increase which leads to large h2 values and therefore small
weights. For easy samples, their normalized loss curves are
more likely to remain the same or fluctuate slightly after a
quick decay, which results in moderate h2 values and therefore
moderate weights. For hard samples, their normalized loss
curves slowly decline during the training which indicates their
contribution to the decision boundary. This results in small h2

values and therefore large weights. We show the weights of
the three types of samples calculated using h1, h2 and h as
the h-value respectively in Figure 1c. We observe that, using
h1 not only boosts the weights of hard samples but also those
of noisy samples, while using h2 suppresses the weights of

Algorithm 3 FS: shuffling based feature selection

1: Inputs: An ensemble model M, the training data (X,y)
2: Parameters: The number of bins D and the sampling

ratio for each bin (r1, · · · , rD)
3: L = loss

(
M(X),y

)
4: for each feature index f in [F ] do
5: Xf ← X with the f -th column shuffled
6: Lf = loss

(
M(Xf ),y

)
7: gf = mean (Lf − L) /std (Lf − L)
8: Divide the features into D bins according to the g-values

where the d-th bin contains Nd features
9: f = ∅

10: for each bin d ∈ [D] do
11: fd ← drdNde features randomly sampled from the bin
12: f = f ∪ fd
13: Return: The selected features f

noisy samples. With h1 and h2 combined (i.e., h), we can
effectively boost the hard samples and reduce the weights for
the easy samples and the noisy samples.

B. Shuffling based feature selection

We use the shuffling based feature selection (FS) process in
DoubleEnsemble to select features for training the next sub-
model. We show this process in Algorithm 3. Similar to SR,
we first calculate a g-value for each features and then divide
all the features into D bins according to their g-values. Later,
we randomly select features from different bins with different
sampling ratios.
g-value for a feature measures the contribution of this

feature to the current ensemble (i.e., feature importance). To
calculate the g-value for a feature, we shuffle the values of this
feature and compare the losses before and after the shuffle (cf.
Line 5-7 in Algorithm 3). The g-value for a feature is large
when the elimination of the feature (via shuffling) significantly
increases the losses on the samples, which indicates that this
feature is important to the current ensemble. For robustness
against extreme g-values, we then divide all the features into
D bins according to the g-values and randomly select features
from different bins with different sampling ratios (cf. Line 8-
12 in Algorithm 3). The sampling ratios are preset and the ratio
is large for the bin with large g-values. At last, we concatenate
and return all the randomly selected features.

The reason for the design is as follows: To estimate the
contribution of a feature to the model, we would like to
compare with the performance when the feature is absent.
One natural but costly way is to eliminate the feature, retrain
and then re-evaluate the model. Instead of training a new
model, we perturb the dataset to eliminate the contribution of
the feature and compare the performance of the model using
the perturbed dataset and that using the original dataset. Our
scheme computationally is more efficient since there is no need
to retrain a model.



Fig. 1: A toy example to illustrate the learning trajectory based sample reweighting scheme. a) The example is a binary
classification task with the dotted line being the underlying true decision boundary. The easy samples (blue) are those with
large margins to the true decision boundary while the hard samples (orange) are very close to the true decision boundary. There
are some noisy samples (green) whose labels are random regardless of the decision boundary. b) We train a neural network
with one hidden layer as the classifier with stochastic gradient descent and plot the normalized loss curves of several samples
from the three types, i.e., the corresponding rows in C̃ ∈ [0, 1]N×T . c) The weights of the three types of samples calculated
using Equation (2) with h1, h2 or h as the h-value, which are denoted as W1, W2 and W respectively.

Moreover, we argue that shuffling is more appropriate than
replacing with zeros (or the mean of the feature). This is
because many machine learning models are sensitive to the
input data distribution. Shuffling keeps the marginal distri-
bution of that feature, and replacing with zeros completely
changes the distribution. For a simple example, consider a
feature whose values are either +1 or −1 and the mean is
0. The trained model would focus on the regions where the
feature value is +1 or −1 (regions with denser samples are
better fitted). Hence, the region around feature value 0 is not
fitted well and the model may behave arbitrarily for samples
with feature value replaced by 0, and cannot correctly reflect
the performance when this feature is eliminated.

In addition, the shuffling based feature selection method has
the following advantages: First, it considers the contribution
of the feature to the model which is trained along with other
features, instead of the quality of the feature itself such as the
frequently used information coefficient and information ratio
[43] in finance. Second, unlike other feature importance met-
rics that only apply to specific models (such as the information
gain in boosting trees and the coefficients in Lasso [44]), the
g-value is applicable to different base models.

IV. EXPERIMENTS

We apply DoubleEnsemble to predict for two different
financial markets: OKEx (a cryptocurrency exchange) and
China’s A-share market (a securities exchange).

In the first set of experiments on OKEx, we compare
DoubleEnsemble with a set of baseline methods and several
ablated variants of DoubleEnsemble to measure the effec-
tiveness of the designs in DoubleEnsemble. Also, we design
comparative experiments to quantify the robustness of our
model to different level of noise.

In the second set of experiments on China’s A-share market,
we train predictors and then construct trading strategies based
on the predictors via variants of DoubleEnsemble and several

baselines. The experiments demonstrate that the superior per-
formance of our predictors can be translated into the profits
from the induced strategy. We also conduct experiments under
two different trading frequencies with different set of features.

In the following experiments, we use K = 6 sub-models.
In the SR process, we use α1 = α2 = 1 and B = 10 bins. In
the FS process, we use D = 5 bins and the sample ratios are
(0.8, 0.7, 0.6, 0.5, 0.4).

A. DoubleEnsemble to trade cryptocurrencies

This set of experiments are based on the data from OKEx.
OKEx is a cryptocurrency exchange where traders around
the world can trade between different cryptocurrencies in 24
hours a day. In this set of experiments, we use the data
from four trading pairs: ETC/BTC, ETH/BTC, GAS/BTC and
LTC/BTC. For each trading pair, one sample corresponds to
one market snapshot, which is captured for approximately
every 0.3 second. The training samples used in the experiments
are from 10 consecutive trading days, with a total number of 3
million. The testing samples come from the following 5 trading
days, with a total number of 1.5 million. We use 31 features,
which are calculated based on the microstructure information
of the market (snapshots of the limit order book), such as order
flow imbalance (OFI) [47] and relative strength index (RSI)
[48].

We compare the algorithms under two settings with different
noise levels. In the setting denoted by 30% noise, we add
20 additional random features and 30% random samples (i.e.,
the values of these features/samples are randomly drawn from
U [0, 1]). In the setting denoted by 50% noise, we add 30
random features and 50% random samples. Next, we introduce
the algorithms that we compare and the performance metrics
that we use.

DoubleEnsemble variants
We use SR to denote the ensemble model that only uses the

SR process, i.e., using all the features. We use 1st only and
2nd only to denote the variants that only use the first term



TABLE I: Experiment results on OKEx. See the detailed description of the experiment in Section IV-A. The numbers in each
entry are the mean and the standard deviation from 5 independent runs respectively. The transaction fee is 0.2‰.

30% Noise 50% Noise
ACC (%) AUC (%) F1 (%) PCT (‰) ACC (%) AUC (%) F1 (%) PCT (‰)

MLP

DoubleEnsemble

SR 60.78/0.65 52.54/0.54 75.83/0.51 2.20/1.01 60.05/0.43 53.49/0.17 75.04/0.34 1.89/0.67
SR (1st only) 60.93/0.17 52.86/0.14 75.72/0.13 2.49/0.26 59.95/0.44 52.89/0.51 74.96/0.34 1.82/0.67
SR (2nd only) 60.17/1.49 53.65/1.78 75.33/1.17 2.28/2.29 59.78/3.90 53.59/0.45 74.43/3.14 1.70/1.02
FS 61.00/0.11 52.69/0.60 75.77/0.09 2.53/0.18 59.40/0.58 53.59/0.76 74.53/0.46 1.44/0.90
SR+FS 62.10/0.87 53.56/0.76 76.62/0.66 3.18/1.35 60.94/0.94 54.27/0.55 75.72/0.73 2.49/1.44

Basic Methods
SingleModel 58.03/0.46 52.57/0.39 73.44/0.28 0.50/0.60 58.10/0.52 52.68/0.51 74.29/0.26 0.73/0.52
SimpleEnsemble 59.77/0.46 53.47/0.97 74.82/0.36 1.69/0.70 59.63/0.24 53.25/0.94 74.71/0.18 1.59/0.36
RandomEnsemble 60.17/0.67 52.42/0.20 75.13/0.51 1.97/1.03 59.85/0.57 52.12/0.63 74.88/0.44 1.75/0.88

Baseline Methods

LDMI[38] 58.61/0.51 52.09/0.47 73.91/0.41 0.90/0.78 57.52/1.72 51.73/0.69 73.01/1.41 0.15/2.63
LCCN[45] 57.96/0.41 52.80/0.53 73.38/0.32 0.45/0.62 58.34/0.19 52.27/0.47 73.69/0.15 0.71/0.30
CoTeach[46] 59.37/0.56 51.03/0.45 74.50/0.44 1.42/0.86 58.63/0.31 51.30/0.74 73.91/0.24 0.91/0.46
MentorNet[29] 58.37/0.40 52.75/0.41 73.71/0.32 0.73/0.62 57.92/0.41 52.60/0.37 73.35/0.33 0.43/0.64
LearnReweight[27] 58.72/0.56 52.50/0.53 73.98/0.44 0.97/0.86 56.06/0.15 51.46/0.14 71.84/0.12 -0.85/0.22
Curriculum[28] 60.39/0.36 52.38/0.50 75.62/0.26 2.16/0.55 60.15/0.62 53.12/0.95 75.12/0.48 1.96/0.95

No noise, SingleModel 61.20/0.82 52.85/0.74 75.93/0.62 2.68/1.25

GBM

DoubleEnsemble

SR 61.73/0.40 52.53/0.34 76.34/0.31 3.04/0.62 60.54/0.68 54.33/0.28 75.42/0.53 2.22/1.05
SR (1st only) 57.92/0.33 52.14/0.23 73.35/0.25 0.42/0.51 58.56/0.24 52.81/0.16 73.87/0.19 0.87/0.36
SR (2nd only) 62.47/0.77 53.08/0.62 76.90/0.59 3.54/1.81 60.92/0.87 52.93/0.75 75.71/0.67 2.48/1.33
FS 57.53/0.30 52.85/0.37 72.90/0.24 0.04/0.46 58.06/1.80 54.40/0.58 73.25/1.40 -0.89/0.37
SR+FS 62.87/1.07 54.15/0.80 77.67/0.83 3.83/1.64 61.49/0.58 53.71/0.21 76.16/0.45 2.87/0.90

Basic Methods
SingleModel 56.17/0.36 52.71/0.46 71.93/0.29 -0.77/0.55 55.13/0.59 54.05/0.55 71.07/0.49 -1.44/1.01
SimpleEnsemble 56.04/0.30 53.35/0.42 71.82/0.24 -0.87/0.45 54.42/0.19 54.61/0.49 70.48/0.16 -1.49/0.91
RandomEnsemble 56.23/0.28 53.35/0.33 71.98/0.23 -0.73/0.43 53.62/0.28 54.14/0.25 69.81/0.23 -2.52/0.42

Baseline Methods Curriculum[28] 58.31/0.58 52.88/0.14 73.67/0.46 1.94/0.89 57.24/0.29 53.37/0.80 72.34/0.23 0.04/0.49
No noise, SingleModel 57.30/0.60 51.37/0.29 72.86/0.48 0.00/0.92

(i.e., h1) or the second term (i.e., h2) in Equation (1) for the
SR process respectively. We use FS to denote the ensemble
model that only uses the FS process, i.e., using equal weights.

Basic methods
SingleModel: We use the training samples with all the

available features and equal weights to train a single model.
In the experiments, we use two types of base model: the
neural network model (denoted as MLP) and the gradient
boosting decision tree model (denoted as GBM). For the MLP
model, we use a multi-layer perceptron with two hidden layers
(each of which has 64 neurons) followed by a dropout layer
[49] and a batch-norm layer [50]. We use Mish [51] as the
activation function and train the model for 200 epochs with
early stopping and exponentially decaying learning rate. For
the GBM model, we use LightGBM [52] with 200 trees, each
of which has at most 32 leaves. In the later experiments,
unless otherwise stated, the hyperparameters for training the
sub-models are the same as used here. Notice that this single
model is the same as the first sub-model in DoubleEnsemble.
SimpleEnsemble: This baseline model is an ensemble

model that contains K identical sub-models. The only dif-
ference between the sub-models is that they use different
random seeds. We set this baseline to observe the performance
difference brought by constructing an ensemble.
RandomEnsemble: This baseline model is different from

the previous baseline SimpleEnsemble in that, the sub-
models in this baseline not only use different random seeds
but also are trained with the samples assigned with random
weights. We notice that randomly reweighting the samples
may improve the performance due to the fact that it increases

the diversity of the sub-models. We set this baseline to
isolate the performance different raised by the above reason.
Constructing an ensemble by randomly reweighting samples
is similar to bagging where the samples are randomly selected
to construct different sub-models [18].

Baseline methods
The following baseline methods are designed for noise ro-

bustness and we compare our algorithm with them in terms of
noise sensitivity. LDMI [38] uses an information-theory based
loss function for training a neural network robust to noisy
samples. Latent class-conditioned noise model (LCCN) [45] is
another model designed for training a robust deep learning
model against the noise by modeling the noise transition.
CoTeaching [46] simultaneously trains two neural networks
and utilize the communication between the two networks to
select clean data. MentorNet [29] trains a mentor network
to weight the samples based on their training dynamics for
noise reduction. LearnReweight [27] sets the weights of
the samples as parameters and learns the weights via gradient
descent. The above baseline methods construct single models.
Additionally, we design Curriculum to construct an ensem-
ble model with K sub-models, each of which uses the 30% to
100% of the easiest samples (the samples with lowest losses),
which can be regarded as an ensemble version of curriculum
learning [28].

Performance metrics
Precision: While standard classification problems care

about the prediction accuracy on all the samples, the classi-
fication problems for financial market prediction care more
about the accuracy for the retrieved samples. In financial



market prediction, a retrieved sample corresponds to a trading
signal and therefore relates to the profit of the trading strategy.
Hence, we set the threshold such that approximately 1% of the
samples are retrieved, and use precision as the performance
metric. This corresponds to trading each pair for every 30
seconds on average.
AUC: We also use the area under the ROC curve (ROC

AUC) as the performance metric to summarize the perfor-
mances of the predictor under different thresholds.
F1: In financial market prediction, we also care about the

recall, which indicates the ability of the model to seize the
trading opportunity. Therefore, we also use the F1 score as
the performance measure which integrates the precision and
the recall and it is defined as F1 = 2/(precision−1+recall−1).
PCT: Finally, we directly measure the profitability by PCT,

which is the average return for each trading day if we follow
the following strategy. Each time the sample corresponding
to the current trading time point is retrieved by the predictor
(which we call a trading signal), we long the base currency in
the next trading time point and then close the position after
20 seconds.

Experiment results
We show the experiment results for the cryptocurrency

prediction in Table I. The first number in each entry is the
mean of 5 runs with different random seeds, and the second
number in the entry is the standard deviation of the 5 runs.

First, we observe that the DoubleEnsemble variants achieve
a good performance in the two settings with different noise lev-
els and the DoubleEnsemble algorithm (i.e., SR+FS) achieves
the best performance. Besides, although the AUC difference
between the DoubleEnsemble variants and other baselines is
not significant, the precision and the profitability difference
is notable. This indicates that DoubleEnsemble has a higher
accuracy on the key samples (i.e., the distinguishable samples
with high future returns) and therefore is more suitable for
financial applications.

Second, the experiment result also demonstrates the role of
the SR process. We can compare the SR models (the models
that use SR) with SingleModel, SimpleEnsemble and
RandomEnsemble. When using MLP as the base model,
the performance improvement brought by the SR process not
only comes from constructing an ensemble or the diversity
increase resulted from reweighting, but also comes from the
reweighting scheme used in the SR process. When using GBM
as the base model, the performance improvement is mainly
resulted from the reweighting scheme of the SR process. This
quantifies the important role that SR plays in identifying and
weighting the key samples. We also found that, although some
baselines (such as LCCN) are robust to different noise levels,
the SR models outperform the previous baseline methods that
reweight the samples to denoise. The reason may be that the
SR process is designed not only to denoise but also to promote
the performance by boosting the key samples.

At last, the experiment result shows the performance im-
provement brought by the FS process. We can observe the

improvement brought by the FS process by comparing FS
with RandomEnsemble or by comparing SR+FS with SR.

B. DoubleEnsemble to trade stocks

In this set of experiments, we train predictors for the stock
market and trade the stocks based on the prediction. We base
our experiments on China’s A share market where over 3,000
stocks are traded. Each sample corresponds to one trading day
of one stock.

Experiment settings
We conduct experiments in two different settings. In the

first setting (denoted by DAILY), we long the top 20 stocks
suggested by the predictor at the market closing of each
trading day, and then sell these stocks upon the closing
time of the next trading day. The predictions are based on
182 features that are calculated 3 minutes before the market
closing of that trading day. In the second setting (denoted
by WEEKLY), after the market closing on each trading day,
we calculate 254 features based on the historical market
information and make the prediction. In the next trading day,
we long the top 10 stocks suggested by the prediction at
the open price and hold these stocks for five trading days.
Thereafter, we sell these stocks after the opening of the fifth
trading day. In this setting, we are holding 50 stocks for most
of the time. The features in both settings are composed of
technical factors and fundamental factors, such as moving
average convergence/divergence (MACD) [53] and price-to-
book ratio (P/B) [7]. They are designed for the prediction at
different frequencies and created by different trading firms.
Therefore, they possess quite different underlying properties.
Since there are more features in this experiment, we use three
hidden layers with more neurons (256, 128 and 64 neurons
respectively) in the MLP model and 250 trees in the GBM
model.

We run the backtests for the models following a rolling
scheme described as follows. We re-train the model every
week and use the features of the latest 500 trading days (i.e.,
approximately the latest two years) each time we train the
model. The trading period for two settings is from January
2017 to November 2019. For trading details, we exclude the
stocks that reach daily surged limit or listed within 3 months.
We long the top N stocks with equal weights. The transaction
fee plus slippage is 0.3%. We did not particularly consider the
impact of holidays and suspension when making predictions
and conducting backtest.

Models
In this set of experiments, we compare the DoubleEnsemble

variants with a set of baselines.
In terms of sample reweighting, we compare the SR process

with SimpleEnsemble and two other heuristic reweighting
schemes designed for financial market prediction. Based on
the observation that the patterns in the market varies with
time, TimeWeighted gives larger weights to more recent
samples to encourage the model to exploit current patterns.
Also, since we care about the accuracy on the samples that
trigger trading signals, the model should pay more attention



(a) Results in the DAILY setting using MLP as the base
model.

(b) Results in the DAILY setting using GBM as the base
model.

(c) Results in the WEEKLY setting using MLP as the base
model.

(d) Results in the WEEKLY setting using GBM as the base
model.

Fig. 2: Hedged equity curves of different models under different settings. The transaction fee for each pair of trading is 0.3%.
The blue bars in the background indicate the ICs for the overall prediction.

to the samples that are possibly retrieved. Accordingly, we
design and compare to PCTWeighted where the historical
samples with high returns are assigned with larger weights.
We use PCT to refer to the percentage of price movement,
i.e., return. .

In terms of feature selection, we compare the FS process
with the baseline that uses fixed manually selected features
(Manual) or uses all features without selection (All). The
manually selected features are obtained based on a careful
analysis on various aspects of the features, such as the his-
torical performance, the information source and the risk. The
two set of features (for DAILY and WEEKLY respectively) are
used in the real trading and shown to be stable and effective
in the real practice.

Performance metrics
Ann.Ret.: We use the hedged annualized return to mea-

sure how much return the investment portfolio constructed
by the model earned exceeds the market. We divide our
daily funds into two equal parts to buy stocks and hedge
the market respectively. To hedge the market, we short the
corresponding stock index futures. Moreover, we consider the
compound return, i.e., (1 + Ann.Ret.)n = Total.Ret.
where Total.Ret. the return during n years.

Sharpe: The Sharpe ratio is one of the most com-
monly used metrics for stock investment, it reflects
the risk adjusted profitability. Specificaly, Sharpe =
Ann.Ret./Ann.Vol., where Ann.Vol. is annualized
volatility.
MDD: Maximum drawdown (MDD) is the maximum relative

loss from a peak to a trough for a portfolio. MDD is an
indicator of downside risk over a specified time period. MDD
is related to investors’ maximum affordability and needs to be
kept as low as possible.
IC/IR: The information coefficient (IC) and information

ratio (IR) indicate the quality of the prediction. In our exper-
iments, we use ICdaily = corr(rank(Ypred)/rank(Ytrue)) and
IC = mean(ICdaily), IR = IC/std(ICdaily), where Ypred is
the prediction and Ytrue is the truth, ICdaily is the IC for each
time step.

Experiment results
We run backtests for the aforementioned models and hedge

the systemic risk of the market by holding a short position of
the corresponding exchange traded funds (ETF). We plot the
hedged equity curves for these models under different settings
in Figure 2. We also list the performance measures of the the
backtest results in Table II.



TABLE II: Performance of the stock trading strategies. The transaction fee is 0.3%.

DAILY WEEKLY
Ann.Ret. Sharpe MDD IC/IR Ann.Ret. Sharpe MDD IC/IR

MLP

DoubleEnsemble
SR+FS 51.37% 4.941 5.98% 0.115/1.035 25.67% 4.448 2.41% 0.078/0.773
SR+Manual 50.68% 4.343 7.94% 0.106/0.994 19.16% 3.300 2.48% 0.078/0.784
SR+ALL 37.25% 2.933 14.34% 0.103/0.966 15.36% 3.051 2.32% 0.070/0.691

Baselines

SimpleEnsemble+All 26.74% 2.435 12.61% 0.091/0.967 12.56% 2.049 4.59% 0.058/0.670
SimpleEnsemble+Manual 46.49% 3.813 11.75% 0.097/0.963 16.78% 2.817 2.45% 0.068/0.757
TimeWeighted+Manual 22.10% 1.936 18.49% 0.081/0.791 15.10% 2.342 3.56% 0.061/0.700
PCTWeighted+Manual 28.65% 2.269 10.32% 0.094/0.940 17.07% 3.704 2.84% 0.070/0.735

GBM

DoubleEnsemble
SR+FS 46.60% 4.151 8.60% 0.103/0.861 16.77% 3.160 3.23% 0.068/0.668
SR+Manual 41.24% 3.854 9.87% 0.096/0.807 19.84% 3.862 3.93% 0.071/0.676
SR+ALL 29.75% 3.594 7.13% 0.097/0.816 15.76% 3.379 4.04% 0.070/0.670

Baselines

SimpleEnsemble+All 18.19% 1.661 18.45% 0.101/0.858 11.55% 2.337 3.61% 0.065/0.635
SimpleEnsemble+Manual 26.74% 2.435 12.61% 0.097/0.815 15.48% 2.902 3.52% 0.068/0.650
TimeWeighted+Manual 23.39% 2.176 21.72% 0.093/0.768 12.47% 2.498 3.13% 0.062/0.636
PCTWeighted+Manual 22.20% 1.669 13.68% 0.093/0.832 14.49% 2.355 4.22% 0.066/0.642

In Figure 2, we show four sets of experiments. The four
sets of experiments are conducted under different settings
(DAILY or WEEKLY) and using different base models (MLP or
GBM). The curves in the figure are the hedged equity curves
for different models, and the blue bars in the background
indicate the information coefficient (IC) of the SR+FS model
on each trading day. The information coefficient on a trading
day is the Spearman’s rank correlation coefficient between the
continuous signals outputted by the model on that trading
day and the actual future returns. While the equity curve
reflects the prediction accuracy on the top retrieved samples,
the information coefficient reflects the prediction accuracy on
all the samples

We can see that the performance of SR+FS (the red lines)
is better than that of SR+ALL (the orange lines) where all the
features are used in each of the sub-models without selection.
This indicates the effectiveness of the FS process. However,
the automatic feature selection by the FS process is not as
good as the manually selected features, which is quite a
strong benchmark. We leave it as a future research direction
to discover an automatic end-to-end feature selection method
that is comparable or better than the manual selection.

Moreover, we observe that the models with the SR process
achieve better performances than the models without the SR
process (i.e., SimpleEnsemble). This can be observed by
comparing the SR+Manual model (green solid line) with the
SimpleEnsemble+Manual model (green dashed line) or
by comparing the SR+ALL model (orange solid line) with the
SimpleEnsemble+ALL (orange dashed line). This indicates
that the SR process can improve the performance by paying
more attention to the key samples.

At last, we observe that the performance of
PCTWeighted and TimeWeighted is even not as
good as that of SimpleEnsemble in most of the
settings, except that PCTWeighted+Manual is better than
SimpleEnsemble+Manual in the WEEKLY setting when
using MLP as the base model. Also, the performance of
these two reweighting schemes varies largely across different
settings or different base models. The effectiveness of paying
attention to the near samples or the samples with high future

returns depends on the market environment. For example,
if the market environment changes quickly, paying attention
to the near samples may avoid the interference of the past
samples which represent different market patterns. Paying
attention to the samples with high future returns corresponds
to the emphasis on the positive samples instead of all the
samples. This may improve the precision when the market
environment is stable. Compared with these two heuristic
reweighting schemes, the SR process weights the samples
in a self-paced style and therefore is more robust across
different settings.

In Table II, we use the hedged annualized return
(Ann.Ret.), the Sharpe ratio (Sharpe), the maximum
drawdown (MDD), the mean of the ICs (IC) and the infor-
mation ratio (IR) as the performance measure for the trading
strategies. The information ratio is the mean of the ICs divided
by the standard variation of the ICs.

We found that DoubleEnsemble (SR+FS) achieves an annu-
alized return of more than 50% with low risk. The Sharpe ratio
is near 5.0 and the maximum drawdown is less than 6.0%. This
demonstrate that the strategy induced by DoubleEnsemble has
a superior and stable performance.

C. Discussion on computational complexity

First, we observe that sample reweigting (SR) and feature
selection (FS) do not significantly increase the training time.
Compared with the training sub-models, the cost of the SR
and FS process is negligible. Indeed, each FS process uses the
existing model to predict multiple times. However, it does not
involve additional training and the prediction time is generally
far less than the training time of a sub-model. Second, in
financial applications, the model can be trained offline and
is embedded in real-time trading systems where latency may
lead to slippage. Therefore, we care more about the execution
time instead of the training time. In terms of the execution
time of the whole process, we find the main constraint is
the calculation of factors instead of the model prediction in
practice. Moreover, the sub-models in the ensemble can predict



in parallel to avoid the additional time cost induced by using
an ensemble model.

V. CONCLUSION

In this paper, we proposed a robust and effective ensemble
model, DoubleEnsemble, via learning trajectory based sample
reweighting and shuffling based feature selection for finan-
cial market prediction. The learning trajectory based sample
reweighting assigns the samples of different difficulty with
different weights, and hence is particularly suitable for highly
noisy and irregular market data. The shuffling based feature
selection can identify the contribution of the features to the
model and select important and divers features for differ-
ent sub-models. We conducted experiments on two different
financial markets and compared DoubleEnsemble with sev-
eral ablated variants and baseline methods. Our experiments
demonstrate that the designs in DoubleEnsemble are effective
and lead to a profitable and robust trading strategy.
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