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Higher-order topological insulators are established as topological crystalline insulators protected
by crystalline symmetries. One celebrated example is the second-order topological insulator in three
dimensions that hosts chiral hinge modes protected by crystalline symmetries. Since amorphous
solids are ubiquitous, it is important to ask whether such a second-order topological insulator can
exist in an amorphous system without any spatial order. Here we predict the existence of a second-
order topological insulating phase in an amorphous system without any crystalline symmetry. Such
a topological phase manifests in the winding number of the quadrupole moment, the quantized
longitudinal conductance and the hinge states. Furthermore, in stark contrast to the viewpoint that
structural disorder should be detrimental to the higher-order topological phase, we remarkably find
that structural disorder can induce a second-order topological insulator from a topologically trivial
phase in a regular geometry. We finally demonstrate the existence of a second-order topological
phase in amorphous systems with time-reversal symmetry.

Amorphous solid phases are ubiquitous in condensed
matter systems [1]. Since atoms in amorphous mate-
rials are randomly distributed in space, the solids do
not respect translational symmetries. While the physics
on topological phases of matter is mainly established in
crystalline solids with spatial order, it was surprisingly
found that topological states can also occur in amor-
phous solids [2–20]. Recently, topological phases have
been generalized to the higher-order case where (n−m)-
dimensional (with 1 < m ≤ n) gapless boundary states
happen in an n-dimensional system [21–41]. For in-
stance, a quadrupole topological insulator in two dimen-
sions (2D) can support zero-energy corner modes [21, 35].
In fact, zero-energy corner modes have also been found
in a two or three dimensional amorphous lattice [32],
which are later understood as protected by chiral sym-
metry [42, 43]. However, chiral symmetry is usually ab-
sent in amorphous materials. In three dimensions (3D),
a second-order topological insulator (SOTI) holding chi-
ral hinge modes can exist protected by the combination
of the time-reversal symmetry and the four-fold rota-
tional symmetry [27]. The requirement of the crystalline
symmetry to protect a SOTI may suggest the absence
of the topological phase in amorphous systems, despite
some evidence of their robustness to weak on-site dis-
order [44]. Furthermore, while a previous study shows
that structural disorder, disorder arising from randomly
distributed atoms in space, is detrimental to the higher-
order topology protected by chiral symmetry [32], it is
unclear whether this is the case for the 3D second-order
topology.

In this work, we theoretically demonstrate the exis-
tence of a second-order topological insulating phase in
a 3D random lattice model without any symmetry. We
find that despite the complete breaking of the transla-
tional symmetry, the amorphous system can still exhibit
nonzero quantized winding number of the quadrupole
moment (see Fig. 1) associated with nonzero quantized
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FIG. 1. (Color online) (a) In-gap hinge states with the size of
each sphere indicating the sum of local densities of four eigen-
states closest to zero energy at that site. (b) The quadrupole
moment Qxy with respect to an inserted flux Φz, reflecting
that the winding number WQ = 1 defined in (3). Here, we
consider a typical sample of a SOTI on an amorphous lattice
of size L = 20 for M = −3 in Hamiltonian (1).

longitudinal conductances 2e2/h. The two-terminal con-
ductance is contributed by the chiral modes localized at
the hinges (see Fig. 1) evidenced by the local density of
states (LDOS). In the 2D (or 3D) amorphous system with
chiral symmetry, it has been shown that when structural
disorder percolates to the boundaries, the corner modes
will be destroyed [32], suggesting the detrimental effects
of the structural disorder on the higher-order topological
phases. However, we remarkably find that, in stark con-
trast to the case with chiral symmetry, the structural dis-
order can in fact induce a higher-order topological phase
transition from a topologically trivial phase in a crys-
talline geometry, suggesting that the amorphous systems
can favour the development of the second-order topology
in 3D than crystalline systems. While the results are con-
sistent with the previous finding of the on-site disorder
induced first-order topological phase transitions, such as
topological Anderson insulators [45–48], we are the first
to show that the structural disorder which connects a
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crystalline material to an amorphous material can drive
a topologically trivial phase to a higher-order nontriv-
ial phase. We finally generalize our results to the case
with time-reversal symmetry (TRS) and show that the
second-order topological phase can exist in amorphous
systems with time-reversal symmetry characterized by a
Z2 topological invariant, a spin winding number of the
quadrupole moment and a quantized longitudinal con-
ductance of 4e2/h.

Model Hamiltonian.— To demonstrate the existence of
amorphous SOTIs in 3D and structural disorder induced
SOTIs, we will work with the following tight-binding
Hamiltonian on 3D lattices with four degrees of freedom
per site

Ĥc =
∑
r

[Mĉ†rτzσ0ĉr +
∑
d

t(|d|)ĉ†r+dTc(d̂)ĉr], (1)

where ĉ†r = (ĉ†r,1, ĉ
†
r,2, ĉ

†
r,3, ĉ

†
r,4) with ĉ†r,α creating an elec-

tron of the αth component at the site of position r. {τν}
and {σν} with ν = x, y, z are two sets of Pauli matrices
acting on internal degrees of freedom. The above Hamil-
tonian includes mass terms Mτzσ0 at each site and hop-
ping terms between different sites. For two sites at r and
r + d, the hopping matrix Tc(d̂) = [t0τzσ0 + it1τx(d̂ ·
σ) + t2(d̂2

x − d̂2
y)τyσ0]/2 with d̂ = d/|d| = (d̂x, d̂y, d̂z)

being the unit vector along d. The hopping strength
t(|d|) is chosen to decay exponentially with the distance
as t(|d|) = Θ(dc − |d|)e−λ(|d|/a−1) consistent with real
material scenarios. Here, dc in the step function is a
cutoff distance such that hoppings for |d| > dc are ne-
glected, and we set the unit length of the system a = 1 for
simplicity. Here, we choose the Hamiltonian parameters
t0 = t1 = t2 = 1 as the units of energy, and the parame-
ters for the hopping strength as λ = 3 and dc = 2.5. The
system is assumed to be half-filled with the Fermi level
at zero energy.

For a regular cubic lattice including only the nearest-
neighbor hoppings, the Hamiltonian (1) reduces to the
paradigmatic model for 3D SOTIs hosting gapless chiral
states localized at the hinges, giving rise to a quantized
longitudinal conductance of 2e2/h along z. The chiral
hinge states are characterized by the Chern-Simons in-
variant, which is protected to be quantized by a crys-
talline symmetry, the combination of the time-reversal
T̂ and four-fold rotational Ĉ4 symmetry about the z
axis [27]. The requirement of the crystalline symme-
try may suggest the absence of SOTIs in 3D amorphous
systems. Yet, besides the quantized Chern-Simons in-
variant, the topological phase can also be protected by
the winding number of the quadrupole moment about
kz in momentum space, reminiscent of a Chern insula-
tor protected by the winding number of the Berry phase.
This makes it possible that SOTIs can exist in 3D amor-
phous materials without any spatial symmetry. Indeed,
we find a second-order topological insulating phase in a
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FIG. 2. (Color online) (a) Configuration averaged longitudi-
nal conductancesG along z (blue and green lines) and winding
numbers WQ of the quadrupole moment (red line) versus the
mass M for Hamiltonian (1) on amorphous lattices in com-
parison with the conductance for a cubic system (black line).
The blue, green and red lines correspond to systems with size
L = 30, 40, 16, respectively. Three distinct phases including
amorphous SOTIs, metals and trivial insulators are identified
for amorphous systems as separated by the light yellow lines.
For the metal phase, the zoomed-in view of the conductance
is plotted in the inset. See the Supplementary Materials for
standard deviations of the winding number. (b) Configura-
tion averaged bulk energy gaps (left vertical axis) versus M
for amorphous lattices in comparison with the result for a
cubic lattice and the density of states (DOS) at zero energy
ρ(E = 0) (right vertical axis) versus M for amorphous lat-
tices with L = 30 calculated by the kernel polynomial method
(KPM) with the expansion order Nc = 29.

3D amorphous system hosting in-gap hinge states (see
Fig. 1(a)) protected by the nontrivial winding number of
the quadrupole moment with respect to an inserted flux
(see Fig. 1(b)). We further show that structural disorder
can induce a higher-order topological insulator in 3D.

Amorphous SOTIs.— To show that SOTIs can exist
in amorphous systems, we study the topological proper-
ties of the Hamiltonian (1) on completely random lat-
tices, where N lattice sites are randomly placed in a cu-
bic box of size L. The coordinates of each site, rν with
ν = x, y, z, are randomly sampled from the uniform dis-
tribution in the interval [0, L]. We set the average site
density ρ = N/L3 = 1 without loss of generality, and
take the average over 100 random configurations with
standard deviations in numerical calculations. By study-
ing transport and band properties as well as the topo-
logical invariant for the Hamiltonian (1) on amorphous
lattices, we map out the phase diagram with respect to
the mass M and identify three distinct phases includ-
ing amorphous SOTIs, metals and trivial insulators, as
shown in Fig. 2(a).

Since the chiral hinge states contribute a quantized
longitudinal conductance of 2e2/h along z in crystalline
lattices, we expect that the quantized conductance may
arise in amorphous systems when it becomes second-
order topological. To numerically determine the zero-
temperature two-terminal conductance G, we use the
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Landauer formula

G =
e2

h
T (EF ), (2)

where T (EF ) is the transmission probability from one
lead to the other with incident electron energy at the
Fermi level for a randomized system connected to two
semi-infinite leads along z; the transmission probability
is calculated using the nonequilibrium Green’s function
method [49, 50].

In Fig. 2(a), we plot the sample averaged conduc-
tance G as a function of M for amorphous lattices (blue
and green lines), remarkably illustrating the existence
of a topological regime with the quantized conductance
G = 2e2/h for −7.5 . M . −1 corresponding to an
amorphous SOTI phase. Specifically, as M is increased
from M < −8 in the trivial insulating phase, we see
that the conductance G suddenly rises to nonzero val-
ues around M ≈ −7.5 and then enters into the quan-
tized regime with G = 2e2/h. The results for L = 30
and L = 40 are plotted to show that around the critical
point, the conductance tends to become quantized for a
system with a larger size. In fact, the critical point be-
tween the trivial phase and the amorphous SOTI phase
corresponds to a bulk energy gap closing as shown in
Fig. 2(b) because our disorder system respects a Ĉ4T̂
symmetry on average. Without the average symmetry,
the topological phase can change through a surface en-
ergy gap closing [51]. Near the critical point, the energy
gap is small so that a larger system is required to obtain
a nonzero quantized conductance.

When we further raise M , the system exhibits large
values of the conductance suggesting a metallic phase up
to M ≈ 2.5 (see the inset of Fig. 2(a)). Indeed, the bulk
energy gap vanishes in this regime associated with large
density of states (DOS) as shown in Fig. 2(b).

Figure 2 also remarkably demonstrates the existence
of a regime for −7.5 . M . −5.8 where G = 2e2/h in a
random glass geometry while G = 0 in a regular geome-
try, implying that structural disorder can induce a topo-
logical phase transition from a topologically trivial phase
to a higher-order topological nontrivial one. The phe-
nomenon is further evidenced by the gap closing points
for different geometries as shown in Fig. 2(b). We will
elaborate on the structural disorder induced topological
phase transition in the next section.

To further show that the quantized conductance arises
from the topological bulk property of the system, we eval-
uate the winding number of the quadrupole moment with
respect to an inserted flux [58] defined as

WQ =

∫ 2π

0

dΦz
∂Qxy(Φz)

∂Φz
, (3)

where Φz is the flux twisting the boundary condition
along z and Qxy(Φz) is the quadrupole moment in

the (x, y) plane for the 3D random lattice under the
flux Φz. The flux is added by replacing the hop-
ping strength t(|d|) from site r to site r + d with
t(|d|)eiΦzdz/Lz . Qxy(Φz) is calculated using occupied
single-particle states |ψn(Φz)〉 (n = 1, · · · , Nocc) of
the Hamiltonian under periodic boundary conditions as
Qxy(Φz) = 1

2π Im log det(UQ(Φz)) where [UQ(Φz)]mn =

〈ψm(Φz)|ÛQ|ψn(Φz)〉 and ÛQ = ei2πx̂ŷ/(LxLy) with x̂ (ŷ)
denoting the x-position (y-position) operator for a single
electron [59, 60]. As the flux Φz varies from 0 to 2π, the
quadrupole moment Qxy(Φz) should exhibit a nontrivial
winding number for the SOTI phase.

In Fig. 2(a), we plot the calculated winding number
WQ averaged over configurations for amorphous lattices
with respect to M . We see that WQ grows up rapidly
from zero to nonzero values as M increases to a critical
pointM ≈ −7.5, and then becomes close to the quantized
value WQ = 1, reflecting a phase transition from the
topologically trivial phase to the amorphous SOTI phase,
in consistent with the results of the conductance.

Structural disorder induced SOTIs.— To demonstrate
the structural disorder induced topological phase tran-
sition, we consider adding structural disorder gradually
on the cubic lattice as follows. For each lattice site, we
add a random displacement along three orthogonal di-
rections from the corresponding regular position in the
cubic lattice based on the uniform distribution in the in-
terval [−W/2,W/2], where W represents the strength of
structural disorder (see Fig. 3(a) for typical configura-
tions). When W is increased from zero, the lattice struc-
ture changes from a cubic lattice to a slightly irregular
lattice and then to a completely random lattice.

To see the structural disorder induced topological
phase transition, in Fig. 3(b), we plot the longitudinal
conductance G along z and the winding number WQ of
the quadrupole moment with respect to the structural
disorder strength W for M = −6.5. For small W ′s,
the system deviates slightly from the cubic lattice and
remains in the topologically trivial phase with zero con-
ductance and winding number. As we further increase
W , both G and WQ suddenly rise to nonzero values at
W ≈ 0.8, indicating that the system undergoes a topo-
logical phase transition entering into the SOTI phase.
The topological phase transition is also identified by the
bulk energy gap closing at the critical point as shown in
Fig. 3(b). We note that both G and WQ averaged over
random configurations are not quantized due to finite-
size effects. To illustrate this, we calculate |2 − G| in
units of e2/h for different system sizes when W = 6 and
show that |2−G| ∝ L−4.27 (see Fig. 3(c)), indicating that
G will approach the quantized conductance of 2e2/h in
the thermodynamic limit.

To further identify the existence of gapless hinge states
in the structural disorder induced SOTI phase, we com-
pute the LDOS at zero energy under open boundary con-
ditions along x and y directions and periodic boundary
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(a) W=0 W=0.4 W=2.8

FIG. 3. (Color online) (a) Schematics of lattice structures
for three structural disorder strengths W added on a regular
cubic lattice. (b) Configuration averaged longitudinal con-
ductances along z, quadrupole moment winding numbers and
bulk energy gaps versus W . (c) The finite-size scaling of the
conductance versus the system size L for W = 6, which dis-
plays a power-law decay fitted by a black line. A top view
of LDOS at zero energy for (d) W = 0 and (e) W = 6, ob-
tained by averaging over different random configurations and
summing over the coordinates along z. For (b-e), we take
M = −6.5 in Hamiltonian (1).

conditions along z. In Fig. 3(d) and (e), we display the
LDOS summed over the coordinates along z for W = 0
and W = 6, respectively. The LDOS clearly shows the
existence of in-gap states localized near the hinges when
W = 6 in the amorphous SOTI phase, in stark contrast
to the trivial phase without the hinge states whenW = 0.

Amorphous SOTIs with TRS.— We now construct a
model for SOTIs with TRS on random lattices with eight
degrees of freedom per site

Ĥh =
∑
r

[Mĉ†rτzs0σ0ĉr +
∑
d

t(|d|)ĉ†r+dTh(d̂)ĉr], (4)

where ĉ†r = (ĉ†r,1, · · · , ĉ
†
r,8) with ĉ†r,α being a creation op-

erator for an electron of the αth component at site r.
Besides {τν} and {σν}, {sν} with ν = x, y, z is also
a set of Pauli matrices. Here, the hopping matrix be-
tween two different sites r and r + d is described by
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FIG. 4. (Color online) Sample averaged longitudinal conduc-
tances G along z (blue line) and Z2 invariants νQ (red line)
versus the massM for Hamiltonian (4) on amorphous lattices
in comparison with the conductance (black line) and the Z2

invariant (green line) on a cubic lattice. The blue (red) line
corresponds to a system with size L = 30 (L = 12).

Th(d̂) = [t0τzs0σ0 + it1τxs0(d̂ ·σ) + t2(d̂2
x − d̂2

y)τysyσ0 +

it3d̂zτysxσ0]/2. The Hamiltonian Ĥh respects the TRS T̂
implemented through T̂ iT̂−1 = −i and T̂ ĉrT̂−1 = UT ĉr
with UT = iτ0s0σy, such that T̂ ĤhT̂

−1 = Ĥh. When
t3 = 0, Ĥh respects an additional U(1) pseudospin rota-
tional symmetry with the conservation of the pseudospin
sy so that Ĥh can be written as the direct sum of two
copies of Hamiltonian (1) with opposite signs of t2 due to
opposite eigenvalues of the Pauli matrix sy. In this case,
we introduce a spin quadrupole moment winding num-
ber to characterize the helical hinge states present in an
amorphous SOTI with TRS [51]. For nonzero t3, while
sy is no longer conserved, we find that the spin winding
number can still characterize the amorphous SOTI with
TRS when t3 is not very large [51].

In a generic case with TRS, we further derive a Z2

topological invariant νQ ∈ {0, 1} defined as

(−1)νQ =
Pf[A(π)]

Pf[A(0)]

√
det[A(0)]

det[A(π)]
, (5)

where
√

det[A(0)]
det[A(π)] = exp

{
− 1

2

∫ π
0
dΦz

∂ log det[A(Φz)]
∂Φz

}
, Pf[·]

represents the Pfaffian of an antisymmetric matrix,
and the matrix A(Φz) is defined as [A(Φz)]mn =
〈ψm(−Φz)|ÛQT |ψn(Φz)〉 for occupied single-particle
states |ψn(Φz)〉 [|ψm(−Φz)〉] of Hamiltonian (4) with the
flux Φz [−Φz]. For numerical calculations, we derive
a simplified formulation for the invariant based on the
quadrupole moment [51].

In Fig. 4, we map out the phase diagram for Hamil-
tonian (4) on random lattices. The existence of quan-
tized conductances of 4e2/h and Z2 invariants indicate
the presence of amorphous SOTIs with TRS. Apart from
the topological insulating phase, a metal and a trivial
insulator are also identified.

In summary, we have demonstrated the existence of
a SOTI in an amorphous system and predicted a struc-
tural disorder induced topological phase transition from
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a topologically trivial phase in a crystalline lattice to a
SOTI. Our results should be far more generic than our
model given that our analysis indicates that the SOTI
does not require any spatial order. Our results also
have important implications that amorphous solids may
broadly support the SOTI phase. Specifically, the bis-
muth crystal has been experimentally identified as a 3D
SOTI with helical hinge states [61]. We thus expect that
the 3D amorphous SOTIs may be observed in amorphous
bismuth. In fact, 3D amorphous topological insulators
with TRS has been experimentally observed in the films
of Bi2Se3 grown on the amorphous substrates [11]. We
expect that amorphous bismuth can be fabricated simi-
larly. In addition, amorphous SOTIs and the structural
disorder induced topological phase transition can also be
experimentally observed in metamaterials, such as pho-
tonic, phononic and electric circuit systems [62–64].
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In the supplementary material, we will provide the winding number with a standard deviation in Section S-1, discuss
the effects of the Ĉ4T̂ symmetry on average in Section S-2, deduce a Z2 topological invariant for a SOTI with TRS
in Section S-3, introduce a spin quadrupole moment winding number in Section S-4, and finally present the relation
between the Z2 invariant and the spin quadrupole moment winding number in Section S-5.

S-1. THE WINDING NUMBER WITH A STANDARD DEVIATION

In this section, we show the fluctuations of the winding number of the quadrupole moment due to limited system
sizes by plotting their standard deviations in Fig. S1. Since the winding numbers can only take integer values for
distinct disorder realizations instead of exhibiting a Gaussian distribution, we also display the number of disorder
samples with WQ = 1 in 100 disorder realizations, illustrating the percentage of the total realizations that yields
WQ = 1.
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S-2. THE Ĉ4T̂ SYMMETRY ON AVERAGE

In this section, we will discuss the effect of the average Ĉ4T̂ symmetry on topological phase transitions. The main
conclusion is that in the presence of the average symmetry, the system undergoes a topological phase transition from
a trivial to a nontrivial higher-order topological phase through a bulk energy gap closing, while in the absence of the
average symmetry, it can occur through a surface energy gap closing.

Let us first consider the Hamiltonian (1) in the main text and define the Ĉ4T̂ symmetry on average. For an
individual disorder realization, the system Hamiltonian Ĥc clearly breaks the Ĉ4T̂ symmetry due to its random
geometry configuration, i.e., Ĉ4T̂ Ĥc(Ĉ4T̂ )−1 6= Ĥc. Specifically,

Ĉ4T̂ Ĥc(Ĉ4T̂ )−1 =
∑
r∈S

Mĉ†DĈ4
rτzσ0ĉDĈ4

r +
∑

d=r1−r
r1∈S,r1 6=r

t(|d|)ĉ†DĈ4
(r+d)Tc(DĈ4

d̂)ĉDĈ4
r

 (S1)

=
∑
r′∈S′

Mĉ†r′τzσ0ĉr′ +
∑

d′=r′1−r
′

r′1∈S
′,r′1 6=r′

t(|d′|)ĉ†r′+d′Tc(d̂
′)ĉr′

 , (S2)

where we have used the results implemented through the symmetry operation: Ĉ4T̂ ĉr(Ĉ4T̂ )−1 = iτ0σye
−iπ4 σz ĉDĈ4

r

and Ĉ4T̂ i(Ĉ4T̂ )−1 = −i. Here, S is a set consisting of position vectors of all sites in a configuration, and S′ = DĈ4
S ≡

{DĈ4
r : r ∈ S} is a set obtained by rotating all position vectors in S with DĈ4

r = (−y, x, z) that rotates a vector
r in a counterclockwise direction about z by 90 degrees. For a cubic lattice configuration, since S′ = S, we have
Ĉ4T̂ Ĥc(Ĉ4T̂ )−1 = Ĥc so that the system respects the Ĉ4T̂ symmetry. In contrast, for a typical sample with randomly
distributed sites, S′ 6= S and thus Ĉ4T̂ Ĥc(Ĉ4T̂ )−1 6= Ĥc, indicating that Ĥc as a single system does not respect the
Ĉ4T̂ symmetry. We now consider all systems in a statistical ensemble. If a Hamiltonian and its symmetry conjugate
partner appear in the ensemble with the same probability, then the ensemble respects a symmetry on average [52]. In
our case, if there is a configuration S in a statistical ensemble, then one can always find a configuration S′ = DĈ4

S

that appears with the same probability as S. This indicates that Ĥc and its Ĉ4T̂ conjugate partner Ĉ4T̂ Ĥc(Ĉ4T̂ )−1

exist in an ensemble with the same probability, and hence our system respects the Ĉ4T̂ symmetry on average.
With this average symmetry, we argue that a single system in an ensemble must close its bulk energy gap in order to

change its higher-order topological property. Specifically, consider a subsystem Ĥ1 with its z coordinate in the interval
[z0, z0 + ∆z] in a large system as shown in Fig. S2. If we view Ĥ1 as a single system with spatial configuration S1,
then chiral hinges states in Ĥ1 are not protected by a bulk energy gap since Ĥ1 does not respect the Ĉ4T̂ symmetry.
Instead, they can appear through a surface energy gap closing in Ĥ1 associated with the change of the winding number
of the quadrupole moment. Without loss of generality, we suppose that the energy gap on the x-normal surface closes.
Consider a very large system (e.g., infinitely long along z), we expect that the spatial configuration S2 = DĈ4

S1 +αez

obtained by rotating S1 about z by 90 degrees and shifting its z coordinate by α should always exist. Let Ĥ2 be
another subsystem with the spatial configuration S2 as shown in Fig. S2. Clearly, Ĥ2 is the Ĉ4T̂ conjugate partner
of Ĥ1 with all its z coordinates shifting by α, which does not have any effects. Since the energy gap on the x-normal
surface for Ĥ1 closes, the energy gap on the y-normal surface for Ĥ2 must close. This indicates that as a whole system
including both Ĥ1 and Ĥ2, the system must close its energy gap on both x-normal and y-normal surfaces, suggesting
that its bulk energy gap should vanish. Therefore, we conclude that the chiral hinge modes are protected by a bulk
energy gap if a system respects a Ĉ4T̂ symmetry on average. Indeed, for a system with the average symmetry, we
observe the bulk energy gap closing when the system changes from a topologically trivial phase to a nontrivial one in
Fig. 2(b) in the main text.

But this does not mean that chiral hinge states cannot exist in an amorphous system when the average Ĉ4T̂
symmetry is broken. In fact, we find their existence in the absence of the average symmetry. To lift the average
Ĉ4T̂ symmetry, we consider a position ensemble Ξ comprised of all allowable spatial configurations of atom sites. For
∀S ∈ Ξ, if another element S′ = DĈ4

S appears with the same probability as S in Ξ, then we say that the ensemble
respects a statistical C4 symmetry. To break the symmetry, we enforce a constraint that y coordinates are not as
random as x coordinates. As a result, S and S′ do not appear in Ξ with equal probabilities so that Ĥc and its Ĉ4T̂
conjugate partner Ĉ4T̂ Ĥc(Ĉ4T̂ )−1 do not emerge with the same probability, lifting the Ĉ4T̂ symmetry on average.

To be concrete, we obtain atom position configurations by taking r = [R + (Wx∆x,Wy∆y,Wz∆z)] mod L where
R is the site position vector in a cubic lattice with system size of L, and ∆x, ∆y and ∆z are randomly sampled
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FIG. S2. (Color online) Illustration of a system including two subsystems Ĥ1 and Ĥ2 corresponding to spatial configurations
of S1 and S2, respectively.

from the uniform distribution in the interval [−0.5, 0.5]. To lift the average Ĉ4T̂ symmetry, we set Wy = Wz = L
and Wx = 0.6, 0.7, 1.0. For all these system parameters, we find the existence of amorphous SOTIs illustrated by
sample averaged longitudinal conductances and winding numbers of the quadrupole moment (see Fig. S3). One can
also see that the topological regions become smaller when the break of the symmetry becomes stronger, which is
also illustrated by the shifting of the position of the minimum energy gap toward the right side as Wy decreases.
Interestingly, the figure also suggests that when the symmetry is slightly broken for Wy = 1, the topological property
changes through a bulk energy gap closing, while when the break becomes stronger for Wy = 0.7, 0.6, the topological
phase changes through a surface energy gap closing. We therefore conclude that without the Ĉ4T̂ symmetry on
average, the topological phase may change either through a bulk energy gap closing or through a surface energy gap
closing depending on the destruction level of the symmetry.

S-3. A Z2 TOPOLOGICAL INVARIANT FOR SOTIS WITH TRS

A. Theoretical deduction

In this subsection, we give a detailed derivation of a Z2 topological invariant based on the quadrupole moment
for a noninteracting helical SOTI with TRS in 3D, which has been introduced in the main text. To be concrete, we
consider a Hamiltonian Ĥh for free electrons with TRS T̂ satisfying

T̂ ĤhT̂
−1 = Ĥh (S3)

and T̂ 2 = −1 so that the system belongs to the class AII according to Altland-Zirnbauer (AZ) classification [53, 54].
For a disordered system, we introduce a flux Φz twisting the boundary conditions along z by adding Peierls phase

factors to hopping amplitudes in the Hamiltonian Ĥh. Under the time-reversal transformation T̂ , Ĥh(Φz) transforms
as

T̂ Ĥh(Φz)T̂
−1 = Ĥh(−Φz), (S4)

where the time-reversal operator reverses the sign of the flux Φz due to the complex conjugation acting on Peierls
phase factors in Ĥh(Φz). We remark that the following derivations for the topological invariant can also be applied to
periodic systems with translational symmetries where the flux Φz is replaced with quasi-momentum kz in momentum
space. Since we focus on the noninteracting case, for clarity, we write the Hamiltonian as

Ĥ = Ψ̂†[Hh]Ψ̂, (S5)

where Ψ̂† is a row vector comprised of ĉrα, and [Hh] is the matrix representation of the first quantization Hamiltonian
Hh. In the first quantization form, the Hamiltonian transforms through the time-reversal operation as

THh(Φz)T
−1 = Hh(−Φz), (S6)

where T = −iσyκ with κ being the complex conjugate operator.
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FIG. S3. (Color online) (a1)-(c1) Configuration averaged two-terminal longitudinal conductances G (system size L = 30) and
winding numbers of the quadrupole moment WQ (system size L = 16) with respect to the mass M . The black lines show the
results for a cubic lattice configuration. (a2)-(c2) Configuration averaged bulk and surface energy gaps (system size L = 15)
with respect to the massM . The black, blue and red lines correspond to a system with periodic boundaries along all directions,
a system with open boundaries along x and periodic boundaries along other directions, and a system with open boundaries
along y and periodic boundaries along other directions, respectively. (a3)-(c3) The number of samples with WQ = 1 in 100
disorder realizations versus the mass M . Here, in (a1)-(a3) Wy = 1, in (b1)-(b3) Wy = 0.7, and in (c1)-(c3) Wy = 0.6.

We now define a Φz-dependent matrix A(Φz), which is related to the quadrupole moment as

[A(Φz)]mn = 〈ψm(−Φz)|ÛQT |ψn(Φz)〉, (S7)

where ÛQ = ei2πx̂ŷ/(LxLy) with x̂ (ŷ) denoting the x-position (y-position) operator for a single electron, and |ψn(Φz)〉
is the nth occupied single-particle eigenstate of the Hamiltonian Hh(Φz). For each Φz, A(Φz) is an Nocc×Nocc matrix
with Nocc being the total number of occupied states. In the following, we will prove the following two properties that
A(Φz) satisfies:

A(Φz) = A(Φz + 2π), (S8)

A(Φz) = −[A(−Φz)]
T , (S9)

where [A(Φz)]
T denotes the transpose of the matrix A(Φz).
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To prove the 2π-periodicity of A(Φz) about the flux Φz, we rely on a fact that Hh(Φz + 2π) and Hh(Φz) are related
by a unitary transformation

Hh(Φz + 2π) = ei2πẑ/LzHh(Φz)e
−i2πẑ/Lz . (S10)

We thus can choose the eigenstates {|ψn(Φz + 2π)〉} of Hh(Φz + 2π) to be |ψn(Φz + 2π)〉 = ei2πẑ/Lz |ψn(Φz)〉. As a
result, we have

[A(Φz + 2π)]mn = 〈ψm(−Φz − 2π)|ÛQT |ψn(Φz + 2π)〉
= 〈ψm(−Φz)|ei2πẑ/Lz ÛQTei2πẑ/Lz |ψn(Φz)〉
= 〈ψm(−Φz)|ÛQTe−i2πẑ/Lzei2πẑ/Lz |ψn(Φz)〉
= 〈ψm(−Φz)|ÛQT |ψn(Φz)〉
= [A(Φz)]mn, (S11)

where we have used the anti-unitary property of the time-reversal operator T in the derivation. We thus obtain the
relation that A(Φz) = A(Φz + 2π).

To prove the antisymmetric property of A(Φz), we rely on the anti-unitary property of T and T 2 = −1. Specifically,

[A(Φz)]mn = 〈ψm(−Φz)|ÛQT |ψn(Φz)〉
= 〈Tψm(−Φz)|TÛQT |ψn(Φz)〉∗

= 〈Tψm(−Φz)|Û∗QTT |ψn(Φz)〉∗

= −〈Tψm(−Φz)|Û†Q|ψn(Φz)〉∗

= −〈ψn(Φz)|ÛQT |ψm(−Φz)〉
= −[A(−Φz)]nm. (S12)

We thus obtain the relation that A(Φz) = −[A(−Φz)]
T . With the aid of A(Φz) = A(Φz + 2π), we further obtain that

the matrix A(Φz) is antisymmetric at two time-reversal symmetric points Φz = 0 and Φz = π.
We now proceed to construct a Hermitian Hamiltonian matrix based on A(Φz) as

HA(Φz) =

(
0 A(Φz)

[A(Φz)]
† 0

)
. (S13)

Here, we assume that the matrix A(Φz) is invertible so that HA(Φz) has a gap at zero energy. Since HA(Φz) is 2π-
periodic about Φz, we can view HA(Φz) as a one-dimensional (1D) gapped Hamiltonian in momentum space with Φz
being the quasi-momentum. HA thus respects the chiral symmetry, the time-reversal symmetry and the particle-hole
symmetry, since it satisfies the following symmetry constraints,

SAHA(Φz)S
−1
A = −HA(Φz), (S14)

TAHA(Φz)T
−1
A = HA(−Φz), (S15)

PAHA(Φz)P
−1
A = −HA(−Φz), (S16)

where SA =

(
INocc 0

0 −INocc

)
with INocc being an Nocc × Nocc identity matrix, the time-reversal operator TA =(

0 −INocc
INocc 0

)
κ with T 2

A = −1, and the particle-hole operator PA =

(
0 INocc

INocc 0

)
κ with P 2

A = 1. Due to the

above symmetry constraints, HA(Φz) belongs to the class DIII for 1D free electron systems and the bulk topology is
Z2 classified according to the AZ classification [54]. We thus use the Z2 topological invariant of HA(Φz) to classify a
generic 3D SOTI with TRS discussed in the main text.

For a 1D system in the class DIII [55], the Z2 invariant νQ ∈ {0, 1} is given by

(−1)νQ =
Pf[A(π)]

Pf[A(0)]
× exp

{
−1

2

∫ π

0

dΦz
∂

∂Φz
log det[A(Φz)]

}
=

Pf[A(π)]

Pf[A(0)]

√
det[A(0)]

det[A(π)]
, (S17)
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where Pf[C] denotes the Pfaffian of an antisymmetric matrix C, which is well defined for A(0) and A(π). Since
det[A] = Pf[A]2, (−1)νQ = ±1 so that νQ is quantized to be 0 or 1. Note that it is required that the phase of
det[A(Φz)] changes continuously as Φz varies from 0 to π.

To numerically evaluate the matrices A(Φz) and the Z2 invariant, we also need to determine the gauge of the
occupied eigenstates. To fix the gauge, we evaluate the sewing matrix B(Φz) for the time-reversal operator T defined
as

[B(Φz)]mn = 〈ψm(−Φz)|T |ψn(Φz)〉, (S18)

where m and n run over the indices of occupied eigenstates. Similarly to A(Φz), the unitary matrix B(Φz) is also
antisymmetric at both Φz = 0 and Φz = π. Numerically, we enforce the constraint on the eigenstates {|ψn(Φz = 0/π)〉}
such that both B(0) and B(π) take the form of

B(Φz = 0/π) = INocc/2 ⊗ iσy, (S19)

where iσy is the sewing matrix between each Kramers pair of the occupied eigenstates at either Φz = 0 or Φz = π.
Because the first-order topology of the system is trivial, there is no obstruction to satisfy the constraint. In fact,
we can also choose the basis of {|ψn(Φz)〉} = {|ψ1(Φz)〉, |ψ2(Φz)〉, · · · , |ψNocc(Φz)〉} and the basis of {|ψn(−Φz)〉} =
{T |ψ2(Φz)〉,−T |ψ1(Φz)〉, · · · , T |ψNocc(Φz)〉,−T |ψNocc−1(Φz)〉} so that

B(Φz) = INocc/2 ⊗ iσy. (S20)

We can also deduce the relation that

A(Φz) = UQ(−Φz)B(Φz), (S21)

based on Eq. (S7), the result

T |ψn(Φz)〉 =
∑
m

Bmn(Φz)|ψm(−Φz)〉, (S22)

and the definition for the matrix

[UQ(Φz)]mn = 〈ψm(Φz)|ÛQ|ψn(Φz)〉. (S23)

With the above gauge constraint and Eq. (S21), we obtain det(A(Φz)) = det(UQ(−Φz)) = det(UQ(Φz)), leading to√
det[A(0)]

det[A(π)]
= exp

{
−1

2

∫ π

0

dΦz
∂

∂Φz
log det(UQ(Φz))

}
(S24)

= exp

{
− i

2

∫ Φz=π

Φz=0

dθ

}√
r(Φz = 0)

r(Φz = π)
, (S25)

where we have used det(UQ(Φz)) = r(Φz)e
iθ(Φz) with r(Φz) > 0 and the result

UQ(−Φz) = B(Φz)U
T
Q(Φz)B

†(Φz). (S26)

Recall the definition of the quadrupole moment

Qxy(Φz) =
1

2π
Im log det(UQ(Φz)) =

θ(Φz)

2π
. (S27)

Based on it, we can further simplify Eq. (S24) to√
det[A(0)]

det[A(π)]
= exp

{
−iπ

∫ Φz=π

Φz=0

dQxy(Φz)

}√
r(Φz = 0)

r(Φz = π)
(S28)

= exp {−iπ[Qxy(Φz = π)−Qxy(Φz = 0)]}

√
r(Φz = 0)

r(Φz = π)
, (S29)
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FIG. S4. (Color online) (a) Illustration of constant quadrupole moments with respect to Φz when M = −4 for 50 disorder
realizations. (b) Configuration averaged Z2 invariants νQ (blue line) and spin quadrupole moment winding numbers WQS (red
line) with standard deviations. The black line depicts the Z2 invariant and the spin quadrupole moment winding number WQS

in a cubic lattice geometry, which gives identical results for both invariants. (c) Plot of the number of disorder samples with
νQ = 1 in 100 disorder realizations with respect to M . In (b)-(c), the system parameters are the same as in Fig. (4) in the
main text. (d) Configuration averaged longitudinal conductances (black line) and Z2 invariants νQ (blue line) with standard
deviations versus the structural disorder strength W for Hamiltonian (4) in the main text with M = −6. The black and blue
lines correspond to a system with size L = 30 and L = 12, respectively. (e) Plot of the number of disorder samples with νQ = 1
in 100 disorder realizations for the blue line in (d). (f) |4−G| versus system size L, showing |4−G| ∝ L−3.23, indicating that
G approaches 4e2/h in the thermodynamic limit. Here, M = −6 and W = 4.

where Qxy(Φz = π) should be continuously connected to Qxy(Φz = 0). While we obtain the result based on a specific
gauge, the quadrupole moment Qxy(Φz) is gauge independent up to an integer (i.e., the difference between values of
the quadrupole moments for two different gauges at a fixed Φz can only be an integer), meaning that Qxy(Φz) can

be easily made continuous with respect to Φz. Since the term
√

r(Φz=0)
r(Φz=π) only contributes a positive factor, we can

discard it and simplify the formulation of the Z2 index to

(−1)νQ = sgn
{
Pf[A(π)]

Pf[A(0)]
exp

[
−iπ

∫ π

0

dΦz
∂Qxy
∂Φz

]}
, (S30)

= sgn
{
Pf[A(π)]

Pf[A(0)]
exp {−iπ[Qxy(Φz = π)−Qxy(Φz = 0)]}

}
, (S31)

where the matrices A(0) and A(π) are obtained by choosing the gauge required in Eq. (S19).
In our case, we find that Qxy(Φz) = Qxy(Φz = 0) for all Φz and the Z2 invariant only depends on the Pfaffian as

shown in Fig. S4(a).

B. More numerical results

In Fig. 4 in the main text, we have plotted the Z2 invariants for both cubic and amorphous systems, which are
in good agreement with the conductance results. Here, to show the fluctuations, we further give the plot of the
invariant with a standard deviation and the number of configurations with νQ = 1 in Fig. S4. We also remark that
the topological phase transition corresponds to a bulk energy gap closing since we here only consider a system with an
average Ĉ4 symmetry for simplicity. Without the average symmetry, one can still use the Z2 invariant to characterize
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the SOTI with TRS. In addition, we plot the longitudinal conductance and the Z2 invariant with respect to the
structural disorder strength W , showing their abrupt change from zero to nonzero values; it indicates the structural
disorder driven SOTI with TRS. Yet, we see strong fluctuations. There are two reasons for their occurrence. One
reason is that the system size that we consider is too small. The other is that the system parameter is close to the
critical point so that its energy gap is very small. To further illustrate the finite-size effects, we plot the configuration
averaged conductance as a function of system sizes, showing |4−G| ∝ L−3.23, which indicates that G should approach
the quantized conductance of 4e2/h in the thermodynamic limit.

S-4. A SPIN QUADRUPOLE MOMENT WINDING NUMBER

In this section, we generalize the quadrupole moment winding number defined in the main text to a spin quadrupole
moment winding number for a system with the conservation of a spin (or pseudospin) degree of freedom.

A. Without time-reversal symmetry

For these systems, we can decompose the total Hamiltonian into two subspaces corresponding to different eigenvalues
of the conserved spin component, e.g., the pseudospin denoted by sy in the Hamiltonian Ĥh with t3 = 0 in the main
text. Then in each spin eigenspace, we can define the winding number of the quadrupole moment as

W
(s)
Q =

∫ 2π

0

dΦz
∂Q

(s)
xy (Φz)

∂Φz
, (S32)

where Q(s)
xy (Φz) is the quadrupole moment of occupied states in the subspace with the eigenvalue of sy being s for the

Hamiltonian under the flux Ĥ(Φz). Q
(s)
xy is calculated through [59, 60]

Q(s)
xy (Φz) =

1

2π
Im log〈Ψ(s)

G (Φz)|ei2πq̂xy |Ψ(s)
G (Φz)〉, (S33)

where q̂xy =
∑

r xyn̂(r)/(LxLy) with n̂(r) being the electron number operator at site r, and |Ψ(s)
G (Φz)〉 is the many-

body ground state of the subspace Hamiltonian Ĥ(s)(Φz) with the spin (or pseudospin) eigenvalue s.
For noninteracting electrons, the many-body ground state |ΨG〉 can be represented as the Slater determinant of

occupied single-particle states so that the quadrupole moment can be formulated by Eq. (S27). For the quadrupole
moment in a spin (or pseudospin) eigenspace with eigenvalue of s, we can recast it into the form of

Q(s)
xy (Φz) =

1

2π
Im log detU

(s)
Q (Φz), (S34)

where the matrix U (s)
Q (Φz) is defined as

[U
(s)
Q (Φz)]mn = 〈ψ(s)

m (Φz)|ÛQ|ψ(s)
n (Φz)〉 (S35)

with |ψ(s)
n (Φz)〉 denoting the nth occupied single-particle eigenstate in the subspace with the spin (or pseudospin)

eigenvalue s.
In this case, the system is classified as Z× Z as there are two winding numbers associated with each subspace.

B. With time-reversal symmetry

If the system has the time-reversal symmetry with T 2 = −1 in addition to a conserved half spin (or pseudospin)
degree of freedom, e.g., sy, which is antisymmetric with the time-reversal operator, we can prove that the spin
quadrupole moment winding numbers for two spin (or pseudospin) subspaces related by the time-reversal operator T̂
are opposite in sign, i.e., W (s)

Q = −W (−s)
Q with the spin index s = ±1. In this case, the system is classified as Z.

To be concrete, because of the time-reversal symmetry, we can always choose a gauge such that T |ψ(s)
n (Φz)〉 =

|ψ(−s)
n (−Φz)〉, leading to

U
(s)
Q (Φz) = [U

(−s)
Q (−Φz)]

T , (S36)
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which is derived through

[U
(s)
Q (Φz)]mn = 〈ψ(s)

m (Φz)|T−1(ÛQ)∗T |ψ(s)
n (Φz)〉 (S37)

= 〈Tψ(s)
m (Φz)|(ÛQ)∗|Tψ(s)

n (Φz)〉∗ (S38)

= 〈Tψ(s)
n (Φz)|ÛQ|Tψ(s)

m (Φz)〉 (S39)

= 〈ψ(−s)
n (−Φz)|ÛQ|ψ(−s)

m (−Φz)〉 (S40)

= [U
(−s)
Q (−Φz)]nm. (S41)

We thus have det(U
(s)
Q (Φz)) = det(U

(−s)
Q (−Φz)), yielding

Q(s)
xy (Φz) = Q(−s)

xy (−Φz). (S42)

The above relation also guarantees the degeneracy of the quadrupole moments in two subspaces at Φz = 0, π.
We can further prove that

W
(s)
Q = −W (−s)

Q (S43)

by

W
(s)
Q =

∫ 2π

0

dΦz
∂Q

(s)
xy (Φz)

∂Φz

=

∫ 2π

0

dΦz
∂Q

(−s)
xy (−Φz)

∂Φz

= −
∫ 0

−2π

dΦz
∂Q

(−s)
xy (Φz)

∂Φz

= −W (−s)
Q , (S44)

where we have used the property that Q(s)
xy (Φz + 2π) = Q

(s)
xy (Φz) because H(s)(Φz + 2π) and H(s)(Φz) are related by

a unitary transformation so that their quadrupole moments are equal.
We now define a spin winding number of the quadrupole moment as

WQS =
1

2

(
W

(s=1)
Q −W (s=−1)

Q

)
(S45)

= W
(s=1)
Q . (S46)

In Figs. S5(a) and (b), we plot the spin quadrupole moments Q(s)
xy with respect to the flux for the time-reversal

symmetric Hamiltonian Ĥh with spin conservation (t3 = 0) in the main text. Here, we consider two configurations
of amorphous lattices of size L = 20 in different regimes. We can see that for M = −4, the quadrupole moments
in different pseudospin eigenspaces wind in opposite directions and have a nontrivial spin winding number, i.e.,
WQS = 1, which characterizes the time-reversal symmetric SOTI phase with sy symmetry. In contrast, whenM = −8,
W

(s=1)
Q = W

(s=−1)
Q = 0, indicating a trivial insulating state.

When the pseudospin symmetry is broken, the classification becomes Z2, and the Z2 topological index can be
numerically evaluated based on Eq. (S31). In fact, we find that when the pseudospin symmetry is not strongly
broken, we can still evaluate the spin quadrupole moment winding number.

Specifically, we define a projected spin operator as

P̂s(Φz) = P̂ (Φz)syP̂ (Φz), (S47)

where P̂ =
∑Nocc
n=1 |ψn(Φz)〉〈ψn(Φz)| is the projection operator to the occupied subspace. When t3 = 0, sy is conserved,

and thus the nonzero eigenvalues of P̂s are equal to either 1 or −1. In the presence of terms breaking the pseudospin
symmetry, if the breaking is not strong, it is possible that the nonzero eigenvalues of P̂s(Φz) can still be divided into
upper and lower bands around ±1 with respect to Φz; these two bands are separated by a finite gap. Let {|φ(±)

n 〉} be
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FIG. S5. (Color online) The winding of spin quadrupole moments with respect to a flux for the time-reversal symmetric
Hamiltonian Ĥh with spin conservation (t3 = 0) in amorphous systems. (a) A nontrivial winding for a typical configuration
with M = −4 in the topologically nontrivial regime. (b) A trivial winding for a typical configuration with M = −8 in the
topologically trivial regime.

a pair of sets consisting of the corresponding eigenstates for each band (note that the eigenstates should not contain
any contribution from the unoccupied bands). In this case, we can use

[Ũ
(s)
Q (Φz)]mn = 〈φ(s)

m (Φz)|ÛQ|φ(s)
n (Φz)〉 (S48)

with s = ± to calculate the winding number W̃ (s)
Q of the quadrupole moment for each band as well as their spin

winding number based on the following equation

W̃QS =
1

2

(
W̃

(s=1)
Q − W̃ (s=−1)

Q

)
mod 2. (S49)

In Fig. S4(b), we plot the spin winding number for both regular and amorphous lattices for a system with t3 = 1
breaking the pseudospin symmetry, showing excellent agreement with the result of the Z2 topological index and the
longitudinal conductance.

S-5. THE RELATION BETWEEN THE Z2 INVARIANT AND THE SPIN QUADRUPOLE MOMENT
WINDING NUMBER

In this section, we discuss the relation between the Z2 invariant νQ and the spin quadrupole moment winding WQS

for a system with both the TRS and the spin (or pseudospin) conservation, which is analogous to the relation between
a Z2 invariant and a spin Chern number for a two-dimensional quantum spin Hall insulator [56].

Consider a system with both TRS with T 2 = −1 and a spin (or pseudospin) symmetry, say, sy in Hamiltonian
(4) when t3 = 0 in the main text. We now write the matrix A(Φz) (S7) in the basis of spin-up (or pseudospin-up)
{|ψ(1)

n (Φz)〉} and spin-down (or pseudospin-down) {|ψ(−1)
n (Φz)〉} eigenstates of the conserved spin as

A(Φz) =

(
A(1,−1)(Φz) A(1,−1)(Φz)
A(−1,1)(Φz) A(−1,−1)(Φz)

)
, (S50)

where

[A(s1,s2)(Φz)]mn = 〈ψ(s1)
m (−Φz)|ÛQT |ψ(s2)

n (Φz)〉. (S51)

Since the time-reversal operator T transforms spin-up to spin-down (and vise versa), we can choose the gauge of
eigenstates such that |ψ(±)

n (−Φz)〉 = ±T |ψ(∓)
n (Φz)〉. Using this gauge and considering the fact that ÛQ only acts on

spatial degrees of freedom, the matrix A(Φz) takes the form of

A(Φz) =

(
0 U

(+1)
Q (−Φz)

−U (−1)
Q (−Φz) 0

)
, (S52)
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where

[U
(+1)
Q (Φz)]mn = 〈ψ(+1)

m (Φz)|ÛQ|ψ(+1)
n (Φz)〉 (S53)

= 〈T̂ψ(−1)
m (−Φz)|ÛQ|T̂ψ(−1)

n (−Φz)〉 (S54)

= 〈ψ(−1)
m (−Φz)|ÛQ|ψ(−1)

n (−Φz)〉∗ (S55)

= 〈ψ(−1)
n (−Φz)|ÛQ|ψ(−1)

m (−Φz)〉 (S56)

= [U
(−1)
Q (−Φz)]nm (S57)

so that U (+1)
Q (Φz) = [U

(−1)
Q (−Φz)]

T leading to the antisymmetric matrix A(Φz) at Φz = 0, π.
We now evaluate the Z2 topological invariant (S17)

(−1)νQ =
Pf[A(π)]

Pf[A(0)]
× exp

{
−1

2

∫ π

0

dΦz
∂

∂Φz
log det[A(Φz)]

}
=

detU
(+1)
Q (π)

detU
(+1)
Q (0)

× exp

{
−1

2

∫ π

0

dΦz
∂

∂Φz

(
log det[U

(+1)
Q (−Φz)] + log det[U

(−1)
Q (−Φz)]

)}
= exp

{
1

2

∫ π

0

dΦz
∂

∂Φz

(
2 log det[U

(+1)
Q (Φz)]− log det[U

(+1)
Q (−Φz)]− log det[U

(−1)
Q (−Φz)]

)}
= exp

{
1

2

∫ π

0

dΦz
∂

∂Φz

(
log det[U

(+1)
Q (Φz)]− log det[U

(+1)
Q (−Φz)]

)}
= exp

{
1

2

∫ π

−π
dΦz

∂

∂Φz
log det[U

(+1)
Q (Φz)]

}
= exp

{
−1

2

∫ π

−π
dΦz

∂

∂Φz
log det[U

(−1)
Q (Φz)]

}
= exp

{
iπW

(+)
Q

}
= exp

{
−iπW (−)

Q

}
= exp

{
iπ

1

2

(
W

(+)
Q −W (−)

Q

)}
= exp (iπWQS) , (S58)

where we have used the property that for an antisymmetric matrix A =

(
0 M
−MT 0

)
, Pf(A) = (−1)n(n−1)/2 det(M)

with n being the dimension of the matrix M . We hence conclude that the Z2 topological index νQ gives the parity of
the spin quadrupole moment winding numberWQS for a system with both TRS and a spin (or pseudospin) symmetry.
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