On rainbow- k-connectivity of random graphs ${ }^{\text {s }}$

Jing He, Hongyu Liang*
Institute for Interdisciplinary Information Sciences, FIT Building 4-609, Tsinghua University, Beijing 100084, China

A R T I CLE IN F O

Article history:

Received 23 December 2010
Received in revised form 11 January 2012
Accepted 31 January 2012
Available online 1 February 2012
Communicated by F.Y.L. Chin

Keywords:

Rainbow connectivity
Random graph
Graph algorithms
Sharp threshold function
Probabilistic method

Abstract

A path in an edge-colored graph is called a rainbow path if the edges on it have distinct colors. For $k \geqslant 1$, the rainbow- k-connectivity of a graph G, denoted by $r c_{k}(G)$, is the minimum number of colors required to color the edges of G in such a way that every two distinct vertices are connected by at least k internally vertex-disjoint rainbow paths. In this paper, we study rainbow- k-connectivity in the setting of random graphs. We show that for every fixed integer $d \geqslant 2$ and every $k \leqslant O(\log n), p=(\log n)^{1 / d} / n^{(d-1) / d}$ is a sharp threshold function for the property $r_{k}(G(n, p)) \leqslant d$. This substantially generalizes a result in [Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Comb. 15 (2008)], stating that $p=\sqrt{\log n / n}$ is a sharp threshold function for the property $r c_{1}(G(n, p)) \leqslant 2$. As a by-product, we obtain a polynomial-time algorithm that makes $G(n, p)$ rainbow-k-connected using at most one more than the optimal number of colors with probability $1-o(1)$, for all $k \leqslant O(\log n)$ and $p=n^{-\epsilon(1 \pm o(1))}$ for any constant $\epsilon \in[0,1)$. (C) 2012 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple, undirected and contain at least 2 vertices. We follow the notation and terminology of [3]. The following notion of rainbow-k-connectivity was proposed by Chartrand et al. [8,9] as a strengthening of the canonical connectivity concept in graphs. Given an edge-colored graph G, a path in G is called a rainbow path if its edges have distinct colors. For an integer $k \geqslant 1$, an edge-colored graph is called rainbow- k-connected if any two different vertices of G are connected by at least k internally vertex-disjoint rainbow paths. The rainbow- k-connectivity of G, denoted by $r c_{k}(G)$, is the minimum number of colors required to color the edges of G to make it rainbow- k-connected. Note that such coloring does not exist if G is not k-vertex-connected, in which case we simply let $r c_{k}(G)=\infty$. When $k=1$ it is

[^0]alternatively called rainbow-connectivity or rainbow connection number in literature, and is conventionally written as $r c(G)$ with the subscript k dropped.

Besides its theoretical interest as being a natural combinatorial concept, rainbow connectivity also finds applications in networking and secure message transmitting [6, $11,15]$. The following motivation is given in [6]: Suppose we want to route messages in a cellular network such that each link on the route between two vertices is assigned with a distinct channel. Then the minimum number of used channels is exactly the rainbow-connectivity of the underlying graph.

Some easy observations regarding rainbow-k-connectivity include that $r c_{k}(G)=1$ if and only if $k=1$ and G is a clique, that $r c(G) \leqslant n-1$ for all connected G, and that $r c(G)=n-1$ if and only if G is a tree, where n is the number of vertices in G. Chartrand et al. [8] determined the rainbow-connectivity of several special classes of graphs, including complete multipartite graphs. In [9] they investigated rainbow-k-connectivity in complete graphs and regular complete bipartite graphs. The extremal graph-theoretic aspect of rainbow-connectivity was studied by Caro et al. [5], who proved that $r c(G)=O_{\delta}(n \log \delta / \delta)$ with δ being the minimum degree of G. This tradeoff was later improved to
$r c(G)<20 n / \delta$ by Krivelevich and Yuster [13], and was recently shown to be $r c(G) \leqslant 3 n /(\delta+1)+3$ by Chandran et al. [7] which is essentially tight. Chakraborty et al. [6] studied the computational complexity perspective of this notion, proving among other results that given a graph G deciding whether $r c(G)=2$ is NP-complete.

Another important setting that has been extensively explored for studying various graph concepts is the ErdősRényi random graph model $G(n, p)$ [10], in which each of the $\binom{n}{2}$ pairs of vertices appears as an edge with probability p independently from other pairs. We say an event \mathcal{E} happens almost surely if the probability that it happens approaches 1 as $n \rightarrow \infty$, i.e., $\operatorname{Pr}[\mathcal{E}]=1-o_{n}(1)$. We will always assume that n is the variable that tends to infinity, and thus omit the subscript n from the asymptotic notations. For a graph property P, a function $p(n)$ is called a threshold function of P if:

- for every $r(n)=\omega(p(n)), G(n, r(n))$ almost surely satisfies P; and
- for every $r^{\prime}(n)=o(p(n)), G\left(n, r^{\prime}(n)\right)$ almost surely does not satisfy P.

Furthermore, $p(n)$ is called a sharp threshold function of P if there exist two positive constants c and C such that:

- for every $r(n) \geqslant C \cdot p(n), G(n, r(n))$ almost surely satisfies P; and
- for every $r^{\prime}(n) \leqslant c \cdot p(n), G\left(n, r^{\prime}(n)\right)$ almost surely does not satisfy P.

Clearly a sharp threshold function of a graph property is also a threshold function of it; yet the converse may not hold, e.g., the property of containing a triangle [2].

It is known that every non-trivial monotone graph property possesses a threshold function [4,12]. Obviously for every k, d, the property $r c_{k}(G) \leqslant d$ is monotone, and thus has a threshold. Caro et al. [5] proved that $p=$ $\sqrt{\log n / n}$ is a sharp threshold function for the property $r c_{1}(G(n, p)) \leqslant 2$. In this paper, we significantly extend their result by establishing sharp thresholds for the property $r c_{k}(G(n, p)) \leqslant d$ for all constants d and logarithmically increasing k. Our main theorem is as follows.

Theorem 1. Let $d \geqslant 2$ be a fixed integer and $k=k(n) \leqslant$ $O(\log n)$. Then $p=(\log n)^{1 / d} / n^{(d-1) / d}$ is a sharp threshold function for the property $r_{k}(G(n, p)) \leqslant d$.

We also investigate rainbow- k-connectivity from the algorithmic point of view. The NP-hardness of determining $r c(G)$ is shown by Chakraborty et al. [6]. We show that the problem (even the search version) becomes easy in random graphs, by designing an algorithm for coloring random graphs to make it rainbow- k-connected with nearoptimal number of colors.

Theorem 2. For any constant $\epsilon \in[0,1), p=n^{-\epsilon(1 \pm o(1))}$ and $k \leqslant O(\log n)$, there is a randomized polynomial-time algorithm that, with probability $1-o(1)$, makes $G(n, p)$ rainbow-k-connected using at most one more than the optimal number of
colors, where the probability is taken over both the randomness of $G(n, p)$ and that of the algorithm.

Our result is quite strong, since almost all natural edge probability functions p encountered in various scenarios satisfy $p=n^{-\epsilon(1 \pm o(1))}$ for some $\epsilon>0$. Note that $G\left(n, n^{-\epsilon}\right)$ is almost surely disconnected when $\epsilon>1$ [10], which makes the problem become trivial. We therefore ignore these cases.

In Section 2 we present the proof of Theorem 1, and in Section 3 we show the correctness of Theorem 2.

2. Threshold of rainbow- k-connectivity

This section is devoted to proving Theorem 1. Throughout the paper "In" denotes the natural logarithm, and "log" denotes the logarithm to the base 2 . Hereafter we assume $d \geqslant 2$ is a fixed integer, $c_{0} \geqslant 1$ a positive constant, and $k=k(n) \leqslant c_{0} \log n$ for all sufficiently large n. To establish a sharp threshold function for a graph property the proof should be two-fold. We first show the easy direction.

Theorem 3. $r c_{k}\left(G\left(n,(\ln n)^{1 / d} / n^{(d-1) / d}\right)\right) \geqslant d+1$ almost surely holds.

We need the following fact proved by Bollobás [1].

Lemma 1. (See restatement of part of Theorem 6 in [1].) Let c be a positive constant and $d \geqslant 2$ a fixed integer. Let $p^{\prime}=$ $\left(\ln \left(n^{2} / c\right)\right)^{1 / d} / n^{(d-1) / d}$. Then,
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left[G\left(n, p^{\prime}\right)\right.$ has diameter at most $\left.d\right]=e^{-c / 2}$.
Proof of Theorem 3. Fix an arbitrary $\epsilon>0$ and choose a constant $c>0$ so that $e^{-c / 2}<\epsilon / 2$. Let $p^{\prime}=\left(\ln \left(n^{2} / c\right)\right)^{1 / d} /$ $n^{(d-1) / d}$ and $p=(\ln n)^{1 / d} / n^{(d-1) / d}$. Clearly $p \leqslant p^{\prime}$ for all $n>c$.

By Lemma 1 and the definition of limits, there exists an $N_{1}>0$ such that for all $n>N_{1}, \operatorname{Pr}\left[G\left(n, p^{\prime}\right)\right.$ has diameter at most $d]<e^{-c / 2}+\epsilon / 2<\epsilon$, by our choice of c. Thus, for every $n>\max \left\{c, N_{1}\right\}$,

$$
\begin{aligned}
& \operatorname{Pr}[G(n, p) \text { has diameter at most } d] \\
& \quad \leqslant \operatorname{Pr}\left[G\left(n, p^{\prime}\right) \text { has diameter at most } d\right]<\epsilon .
\end{aligned}
$$

Due to the arbitrariness of ϵ, this implies that the probability of $G(n, p)$ having diameter at most d is $o(1)$. This completes the proof of Theorem 3, since the rainbow- k connectivity of a graph is at least as large as its diameter.

We are left with the other direction stated below. Fix $C=2^{20} \cdot c_{0}$.

Theorem 4. $r c_{k}\left(G\left(n, C(\log n)^{1 / d} / n^{(d-1) / d}\right)\right) \leqslant d$ almost surely holds.

The key component of our proof of Theorem 4 is the following theorem.

Theorem 5. With probability at least $1-n^{-\Omega(1)}$, every two different vertices of $G\left(n, C(\log n)^{1 / d} / n^{(d-1) / d}\right)$ are connected by at least $2^{10 d} c_{0} \log n$ internally vertex-disjoint paths of length exactly d.

Before demonstrating Theorem 5, we show how Theorem 4 follows from it.

Proof of Theorem 4. Let G be an instance of $G(n$, $\left.C(\log n)^{1 / d} / n^{(d-1) / d}\right)$ for which the condition in Theorem 5 holds; that is, every two different vertices of G have at least $c_{1} \log n$ internally vertex-disjoint paths of length d connecting them, where $c_{1}:=2^{10 d} c_{0}$. To establish Theorem 4 it suffices to prove that $r c_{k}(G) \leqslant d$ for every such G, since by Theorem 5 the condition holds with probability at least $1-n^{-\Omega(1)}=1-o(1)$.

Let $S=\{1,2, \ldots, d\}$ be a set of d distinct colors. We randomly color the edges of G with colors from S. Fix two distinct vertices u and v. Let P be a path of length d connecting u and v. The probability that P becomes a rainbow path under the random coloring is
$q:=d!/ d^{d} \geqslant(d / e)^{d} / d^{d} \geqslant 4^{-d}$,
by Stirling's formula. Since there are at least $c_{1} \log n$ such paths and they are all edge-disjoint, we can upper-bound the probability that at most $k-1$ of them become rainbow paths by

$$
\begin{aligned}
& \binom{c_{1} \log n}{k-1}(1-q)^{c_{1} \log n-(k-1)} \\
& \leqslant\binom{ c_{1} \log n}{c_{0} \log n}\left(1-4^{-d}\right)^{\left(c_{1}-c_{0}\right) \log n} \\
& \leqslant 2^{c_{1} \log n \cdot H\left(c_{0} / c_{1}\right)} \cdot 2^{-4^{-d}\left(c_{1}-c_{0}\right) \log n} \\
& =n^{-\left(4^{-d}\left(c_{1}-c_{0}\right)-c_{1} \cdot H\left(c_{0} / c_{1}\right)\right)}
\end{aligned}
$$

where the second inequality follows from the fact that
$\binom{m}{\alpha m} \leqslant 2^{m \cdot H(\alpha)}$
for all constants $\alpha \in(0,1)$ and sufficiently large m, H being the binary entropy function defined as
$H(\epsilon)=\epsilon \log (1 / \epsilon)+(1-\epsilon) \log (1 /(1-\epsilon))$,
and that

$$
1-x \leqslant e^{-x} \leqslant 2^{-x}, \quad \text { for all } x \geqslant 0
$$

It is easy to verify that $\log x \leqslant \sqrt{x}$ whenever $x \geqslant 100$. Also, since $1+x \leqslant e^{x} \leqslant 2^{2 x}$, we have $\log (1+x) \leqslant 2 x$ for all $x>-1$. Recalling that $c_{1}=2^{10 d} c_{0}>200 c_{0}$, we get

$$
\begin{aligned}
H\left(c_{0} / c_{1}\right)= & \left(c_{0} / c_{1}\right) \log \left(c_{1} / c_{0}\right) \\
& +\left(1-c_{0} / c_{1}\right) \log \left(1+c_{0} /\left(c_{1}-c_{0}\right)\right) \\
\leqslant & \left(c_{0} / c_{1}\right) \sqrt{c_{1} / c_{0}}+\left(1-c_{0} / c_{1}\right) \cdot 2 c_{0} /\left(c_{1}-c_{0}\right) \\
= & \sqrt{c_{0} / c_{1}}+2 c_{0} / c_{1} \leqslant 3 \sqrt{c_{0} / c_{1}}
\end{aligned}
$$

We thus have

$$
\begin{aligned}
& 4^{-d}\left(c_{1}-c_{0}\right)-c_{1} \cdot H\left(c_{0} / c_{1}\right) \\
& \quad \geqslant 4^{-d}\left(c_{1}-c_{0}\right)-3 \sqrt{c_{1} c_{0}} \\
& \quad=4^{-d} c_{1}\left(1-2^{-10 d}\right)-3 \sqrt{2^{-10 d} \cdot c_{1}^{2}} \\
& \quad \geqslant 2^{-2 d-1} c_{1}-2^{-5 d+2} c_{1} \\
& \quad \geqslant c_{1} \cdot 2^{-2 d-2} \\
& \quad=c_{0} \cdot 2^{10 d} \cdot 2^{-2 d-2}>100,
\end{aligned}
$$

since $c_{0} \geqslant 1$ and $d \geqslant 2$. Therefore, the probability that there exist at most $k-1$ rainbow paths between u and v is at most
$n^{-\left(4^{-d}\left(c_{1}-c_{0}\right)-c_{1} \cdot H\left(c_{0} / c_{1}\right)\right)}<n^{-100}$.
By the Union Bound, with probability at least
$1-\binom{n}{2} n^{-100} \geqslant 1-n^{-90}$,
every two distinct vertices of G have at least k internally vertex-disjoint rainbow paths connecting them. In particular, there exists a d-coloring of the edges of G under which G becomes k-rainbow-connected, implying that $r c_{k}(G) \leqslant d$. This concludes the proof of Theorem 4.

We now prove Theorem 5.
Proof of Theorem 5. Let $p=C(\log n)^{1 / d} / n^{(d-1) / d}$ where $C=2^{20} c_{0}$. Let V be the set of all vertices in $G(n, p)$. For every $S \subseteq V$ and $u \in S$, let $\mathcal{A}(S, u)$ be the event that u is adjacent to at least $p n / 10\left(=C n^{1 / d}(\log n)^{1 / d} / 10\right)$ distinct vertices in $V \backslash S$. The following lemma is needed for our proof.

Lemma 2. For every S, u such that $u \in S$ and $|S| \leqslant d$. $(p n / 10)^{d-1}$,

$$
\operatorname{Pr}[\mathcal{A}(S, u)] \geqslant 1-2^{-\Omega\left(n^{1 / d}\right)}
$$

Proof. Fix $S \subseteq V$ with $|S| \leqslant d \cdot(p n / 10)^{d-1}$, and $u \in S$. We have

$$
\begin{aligned}
|V \backslash S| & \geqslant n-d \cdot(p n / 10)^{d-1} \\
& =n-d \cdot(C / 10)^{d-1} n^{(d-1) / d}(\log n)^{(d-1) / d} \geqslant n / 2
\end{aligned}
$$

for all sufficiently large n. Take T to be any subset of $V \backslash S$ of cardinality $n / 2$. Let X be the random variable counting the number of neighbors of u inside T. It is obvious that X can be expressed as the sum of $n / 2$ independent random variables, each of which taking 1 with probability p and 0 with probability $1-p$. Thus $\mathbf{E}[X]=p n / 2$. By the Chernoff Hoeffding Bound (see e.g. Theorem 4.2 of [14]), we have

$$
\begin{aligned}
& \operatorname{Pr}[X<(1-4 / 5) p n / 2] \\
& \quad \leqslant \exp \left(-(1 / 2)(4 / 5)^{2}(p n / 2)\right)=2^{-\Omega\left(n^{1 / d}\right)}
\end{aligned}
$$

which gives precisely what we want.
We now continue the proof of Theorem 5. Fix $u, v \in$ $V, u \neq v$. Let $S_{0}=\{u\}$. A t-ary tree with a designated root
is a tree whose non-leaf vertices all have exactly t children. Consider the following process of "choosing" a (pn/10)-ary tree of depth $d-1$ rooted at u :

1. Let $i \leftarrow 1$ and $S_{i} \leftarrow \emptyset$.
2. For every vertex $w \in S_{i-1}$ (in an arbitrary order), choose $p n / 10$ distinct neighbors of w from the set $V \backslash\left(\{v\} \cup \bigcup_{j=0}^{i} S_{j}\right)$, and add them to S_{i}. (Note that S_{i} is updated every time after the processing of a vertex w, so that one vertex cannot be chosen and added to S_{i} more than once. This ensures that at the end of this step, $\left|S_{i}\right|=(p n / 10)^{i}$.)
3. Let $i \leftarrow i+1$. If $i \leqslant d-1$ then go to Step 2 , otherwise stop.

Of course the process may fail during Step 2, since with nonzero probability w will have no neighbor in $V \backslash(\{v\} \cup$ $\bigcup_{j=0}^{i} S_{j}$). (In fact, with nonzero probability the graph becomes empty.) However, noting that at any time during the process,
$\left|\{v\} \cup \bigcup_{j=0}^{i} S_{j}\right| \leqslant 1+\sum_{j=0}^{d-1}(p n / 10)^{j} \leqslant d \cdot(p n / 10)^{d-1}$,
for all sufficiently large n,
we can deduce from Lemma 2 that every execution of Step 2 fails with probability at most $2^{-\Omega\left(n^{1 / d}\right)}$. Since Step 2 can be conducted for at most $d \cdot(p n / 10)^{d-1}$ times, we obtain that, with probability at least
$1-d \cdot(p n / 10)^{d-1} \cdot 2^{-\Omega\left(n^{1 / d}\right)}=1-2^{-\Omega\left(n^{1 / d}\right)}$,
the process will successfully terminate. At the end of the process, the sets $S_{0}, S_{1}, \ldots, S_{d-1}$ naturally induces a ($p n / 10$)-ary tree T of depth $d-1$ rooted at u, with S_{i} being the collection of vertices in the i-th level. The number of leaves in T is exactly $\left|S_{d-1}\right|=(p n / 10)^{d-1}$.

Now we assume that T has been successfully constructed. Let Y be a random variable denoting the number of neighbors of v inside S_{d-1}. (Recall that $v \notin S_{d-1}$.) It is clear that
$\mathbf{E}[Y]=p \cdot\left|S_{d-1}\right|=p^{d} n^{d-1} / 10^{d-1}=10 \cdot(C / 10)^{d} \log n$.
As before, using the Chernoff-Hoeffding Bound, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[Y<(C / 10)^{d} \log n\right] \\
& \quad \leqslant \exp \left(-(1 / 2)(9 / 10)^{2}(C / 10)^{d} \cdot 10 \log n\right) \leqslant n^{-10},
\end{aligned}
$$

for our choice of C.
It is clear that each neighbor v^{\prime} of v inside S_{d-1} induces a length- d path between u and v (by simply combining the path from u to v^{\prime} in tree T and the edge $\left(v^{\prime}, v\right)$). The problem is that these paths may not be internally vertex-disjoint. We next address this issue.

For every $w \in S_{1}$, denote by T_{w} the subtree of T of depth $d-2$ rooted at w. Call these T_{w} vice-trees. Clearly every vice-tree contains $(p n / 10)^{d-2}$ leaves.

The reason for defining such vice-trees is that, by simple observations, any two leaves of T that belong to different vice-trees must correspond to edge-disjoint root-to-leaf paths in T. Thus, to establish a large number of
internally vertex-disjoint paths between u and v, it suffices to show that we can find many neighbors of v inside S_{d-1} that belong to distinct vice-trees.

For each vice-tree T_{w}, let \mathcal{B}_{w} be the event that v has at least $10 d$ neighbors inside the set of leaves of T_{w}. Noting that T_{w} has exactly $(p n / 10)^{d-2}$ leaves, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{B}_{w}\right] & \leqslant\binom{(p n / 10)^{d-2}}{10 d} p^{10 d} \\
& =\binom{\left(C n^{1 / d}(\log n)^{1 / d} / 10\right)^{d-2}}{10 d} \cdot\left(\frac{C(\log n)^{1 / d}}{n^{(d-1) / d}}\right)^{10 d} \\
& \leqslant\left(\left(C n^{1 / d}(\log n)^{1 / d} / 10\right)^{d-2} \cdot \frac{C(\log n)^{1 / d}}{n^{(d-1) / d}}\right)^{10 d} \\
& =C^{10 d}(C / 10)^{10 d(d-2)}(\log n)^{10(d-1)} n^{-10} \\
& \leqslant O\left(n^{-9}\right)
\end{aligned}
$$

By applying the Union Bound, we obtain
$\operatorname{Pr}\left[\bigvee_{w \in S_{1}} \mathcal{B}_{w}\right] \leqslant(p n / 10) \cdot O\left(n^{-9}\right) \leqslant O\left(n^{-7}\right)$.
Combined with previous results, we deduce that with probability at least
$1-2^{-\Omega\left(n^{1 / d}\right)}-n^{-10}-O\left(n^{-7}\right) \geqslant 1-O\left(n^{-6}\right)$,
the following three events simultaneously happen:

1. The tree T is successfully constructed.
2. v has at least $(C / 10)^{d} \log n$ neighbors that are leaves of T.
3. Every vice-tree T_{w} contains at most $10 d$ leaves that are neighbors of v.

When all these three events happen, we can choose $\left((C / 10)^{d} /(10 d)\right) \log n$ neighbors of v, every two of which come from different vice-trees. This immediately leads to $\left((C / 10)^{d} /(10 d)\right) \log n$ length- d internally vertex-disjoint paths between u and v, where, by our choice of $C=2^{20} c_{0}$,
$\left((C / 10)^{d} /(10 d)\right) \log n \geqslant 2^{10 d} c_{0} \log n$.
Using the Union Bound again gives us that, with probability at least
$1-\binom{n}{2} \cdot O\left(n^{-6}\right)=1-n^{-\Omega(1)}$,
every two distinct vertices have at least $2^{10 d} c_{0} \log n$ internally vertex-disjoint paths of length d connecting them. The proof of Theorem 5 is thus completed.

3. Rainbow-coloring random graphs

In this section we prove Theorem 2.

Proof of Theorem 2. First note that for every G with at least 2 vertices, $r c_{k}(G)=1$ if and only if $k=1$ and G is a clique, which can be easily checked. Thus, in the following we assume w.l.o.g. that $r_{k}(G(n, p)) \geqslant 2$.

It is easy to see that there exists a (unique) integer $d \geqslant 2$ such that $(d-2) /(d-1) \leqslant \epsilon<(d-1) / d$. We have $p=\omega\left((\log n)^{1 / d} / n^{(d-1) / d}\right)$, which, by Theorem 4, implies that $r_{k}(G(n, p)) \leqslant d$ almost surely holds. Moreover, a scrutiny into the proof of Theorem 5 tells us that for such p, a random coloring of $G(n, p)$ using d colors will make it rainbow- k-connected with probability $1-n^{-\Omega(1)}$. Thus, it suffices for us to show that with probability $1-o(1)$, $r c_{k}(G(n, p)) \geqslant d-1$. This is trivial for $d \leqslant 3$, since we have assumed that $r c_{k}(G(n, p)) \geqslant 2$. When $d \geqslant 4$, we have $p=$ $o\left((\log n)^{1 /(d-2)} / n^{(d-3) /(d-2)}\right)$. Due to Theorem 3, $G(n, p)$ with such p almost surely satisfies $r c_{k}(G(n, p)) \geqslant d-1$.

Hence, we have shown that with probability $1-o(1)$, a random coloring with d colors will make $G(n, p)$ rainbow-k-connected and the number of colors used is at most one more than the optimum, where the probability is taken over both the randomness of $G(n, p)$ and that of the algorithm. This completes the whole proof.

References

[1] B. Bollobás, The diameter of random graphs, Trans. Amer. Math. Soc. 267 (3) (1981).
[2] B. Bollobás, Random Graphs, Academic Press, 1985.
[3] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, vol. 184, Springer, Berlin, 1998.
[4] B. Bollobás, A. Thomason, Threshold functions, Combinatorica 7 (1986) 35-38.
[5] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Comb. 15 (2008).
[6] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, in: The 26th International Symposium on Theoretical Aspects of Computer Science (STACS), 2009.
[7] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory, doi:10.1002/jgt.20643, in press.
[8] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[9] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2) (2009).
[10] P. Erdös, A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 5 (1960) 17-61.
[11] A.B. Ericksen, A matter of security, Graduating Engineer \& Computer Careers (2007).
[12] E. Friedgut, G. Kalai, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124 (1996) 2993-3002.
[13] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (3) (2010) 185-191.
[14] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.
[15] I. Schiermeyer, Progress on rainbow connection, in: 9th Cologne Twente Workshop on Graphs and Combinatorial Optimization, 2010.

[^0]: th This work was supported in part by the National Basic Research Program of China Grants 2011CBA00300, 2011CBA00301, and the National Natural Science Foundation of China Grants 61033001, 61061130540, 61073174.

 * Corresponding author.

 E-mail addresses: he-j08@mails.tsinghua.edu.cn (J. He), lianghy08@mails.tsinghua.edu.cn (H. Liang).

