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A path in an edge-colored graph is called a rainbow path if the edges on it have distinct
colors. For k � 1, the rainbow-k-connectivity of a graph G , denoted by rck(G), is the
minimum number of colors required to color the edges of G in such a way that every
two distinct vertices are connected by at least k internally vertex-disjoint rainbow paths.
In this paper, we study rainbow-k-connectivity in the setting of random graphs. We show
that for every fixed integer d � 2 and every k � O (log n), p = (log n)1/d/n(d−1)/d is a
sharp threshold function for the property rck(G(n, p)) � d. This substantially generalizes
a result in [Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J.
Comb. 15 (2008)], stating that p = √

log n/n is a sharp threshold function for the property
rc1(G(n, p)) � 2. As a by-product, we obtain a polynomial-time algorithm that makes
G(n, p) rainbow-k-connected using at most one more than the optimal number of colors
with probability 1−o(1), for all k � O (logn) and p = n−ε(1±o(1)) for any constant ε ∈ [0,1).

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

All graphs considered in this paper are finite, simple,
undirected and contain at least 2 vertices. We follow the
notation and terminology of [3]. The following notion of
rainbow-k-connectivity was proposed by Chartrand et al.
[8,9] as a strengthening of the canonical connectivity con-
cept in graphs. Given an edge-colored graph G , a path in
G is called a rainbow path if its edges have distinct col-
ors. For an integer k � 1, an edge-colored graph is called
rainbow-k-connected if any two different vertices of G are
connected by at least k internally vertex-disjoint rainbow
paths. The rainbow-k-connectivity of G , denoted by rck(G),
is the minimum number of colors required to color the
edges of G to make it rainbow-k-connected. Note that such
coloring does not exist if G is not k-vertex-connected, in
which case we simply let rck(G) = ∞. When k = 1 it is
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alternatively called rainbow-connectivity or rainbow connec-
tion number in literature, and is conventionally written as
rc(G) with the subscript k dropped.

Besides its theoretical interest as being a natural com-
binatorial concept, rainbow connectivity also finds appli-
cations in networking and secure message transmitting [6,
11,15]. The following motivation is given in [6]: Suppose
we want to route messages in a cellular network such that
each link on the route between two vertices is assigned
with a distinct channel. Then the minimum number of
used channels is exactly the rainbow-connectivity of the
underlying graph.

Some easy observations regarding rainbow-k-connec-
tivity include that rck(G) = 1 if and only if k = 1 and G
is a clique, that rc(G) � n − 1 for all connected G , and that
rc(G) = n−1 if and only if G is a tree, where n is the num-
ber of vertices in G . Chartrand et al. [8] determined the
rainbow-connectivity of several special classes of graphs,
including complete multipartite graphs. In [9] they investi-
gated rainbow-k-connectivity in complete graphs and regu-
lar complete bipartite graphs. The extremal graph-theoretic
aspect of rainbow-connectivity was studied by Caro et al.
[5], who proved that rc(G) = O δ(n log δ/δ) with δ being the
minimum degree of G . This tradeoff was later improved to
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rc(G) < 20n/δ by Krivelevich and Yuster [13], and was re-
cently shown to be rc(G) � 3n/(δ + 1) + 3 by Chandran
et al. [7] which is essentially tight. Chakraborty et al. [6]
studied the computational complexity perspective of this
notion, proving among other results that given a graph G
deciding whether rc(G) = 2 is NP-complete.

Another important setting that has been extensively ex-
plored for studying various graph concepts is the Erdős–
Rényi random graph model G(n, p) [10], in which each of
the

(n
2

)
pairs of vertices appears as an edge with proba-

bility p independently from other pairs. We say an event
E happens almost surely if the probability that it happens
approaches 1 as n → ∞, i.e., Pr[E] = 1 − on(1). We will al-
ways assume that n is the variable that tends to infinity,
and thus omit the subscript n from the asymptotic nota-
tions. For a graph property P , a function p(n) is called a
threshold function of P if:

• for every r(n) = ω(p(n)), G(n, r(n)) almost surely sat-
isfies P ; and

• for every r′(n) = o(p(n)), G(n, r′(n)) almost surely
does not satisfy P .

Furthermore, p(n) is called a sharp threshold function of P
if there exist two positive constants c and C such that:

• for every r(n) � C · p(n), G(n, r(n)) almost surely satis-
fies P ; and

• for every r′(n) � c · p(n), G(n, r′(n)) almost surely does
not satisfy P .

Clearly a sharp threshold function of a graph property is
also a threshold function of it; yet the converse may not
hold, e.g., the property of containing a triangle [2].

It is known that every non-trivial monotone graph
property possesses a threshold function [4,12]. Obviously
for every k,d, the property rck(G) � d is monotone, and
thus has a threshold. Caro et al. [5] proved that p =√

log n/n is a sharp threshold function for the property
rc1(G(n, p)) � 2. In this paper, we significantly extend their
result by establishing sharp thresholds for the property
rck(G(n, p)) � d for all constants d and logarithmically in-
creasing k. Our main theorem is as follows.

Theorem 1. Let d � 2 be a fixed integer and k = k(n) �
O (log n). Then p = (log n)1/d/n(d−1)/d is a sharp threshold
function for the property rck(G(n, p)) � d.

We also investigate rainbow-k-connectivity from the al-
gorithmic point of view. The NP-hardness of determining
rc(G) is shown by Chakraborty et al. [6]. We show that
the problem (even the search version) becomes easy in
random graphs, by designing an algorithm for coloring ran-
dom graphs to make it rainbow-k-connected with near-
optimal number of colors.

Theorem 2. For any constant ε ∈ [0,1), p = n−ε(1±o(1)) and
k � O (log n), there is a randomized polynomial-time algo-
rithm that, with probability 1 − o(1), makes G(n, p) rainbow-
k-connected using at most one more than the optimal number of
colors, where the probability is taken over both the randomness
of G(n, p) and that of the algorithm.

Our result is quite strong, since almost all natural edge
probability functions p encountered in various scenarios
satisfy p = n−ε(1±o(1)) for some ε > 0. Note that G(n,n−ε)

is almost surely disconnected when ε > 1 [10], which
makes the problem become trivial. We therefore ignore
these cases.

In Section 2 we present the proof of Theorem 1, and in
Section 3 we show the correctness of Theorem 2.

2. Threshold of rainbow-k-connectivity

This section is devoted to proving Theorem 1. Through-
out the paper “ln” denotes the natural logarithm, and “log”
denotes the logarithm to the base 2. Hereafter we assume
d � 2 is a fixed integer, c0 � 1 a positive constant, and
k = k(n) � c0 log n for all sufficiently large n. To establish
a sharp threshold function for a graph property the proof
should be two-fold. We first show the easy direction.

Theorem 3. rck(G(n, (ln n)1/d/n(d−1)/d)) � d+1 almost surely
holds.

We need the following fact proved by Bollobás [1].

Lemma 1. (See restatement of part of Theorem 6 in [1].) Let
c be a positive constant and d � 2 a fixed integer. Let p′ =
(ln(n2/c))1/d/n(d−1)/d. Then,

lim
n→∞ Pr

[
G
(
n, p′) has diameter at most d

] = e−c/2.

Proof of Theorem 3. Fix an arbitrary ε > 0 and choose a
constant c > 0 so that e−c/2 < ε/2. Let p′ = (ln(n2/c))1/d/

n(d−1)/d and p = (ln n)1/d/n(d−1)/d . Clearly p � p′ for all
n > c.

By Lemma 1 and the definition of limits, there exists an
N1 > 0 such that for all n > N1, Pr[G(n, p′) has diameter
at most d] < e−c/2 + ε/2 < ε, by our choice of c. Thus, for
every n > max{c, N1},

Pr
[
G(n, p) has diameter at most d

]
� Pr

[
G
(
n, p′) has diameter at most d

]
< ε.

Due to the arbitrariness of ε , this implies that the prob-
ability of G(n, p) having diameter at most d is o(1). This
completes the proof of Theorem 3, since the rainbow-k-
connectivity of a graph is at least as large as its diame-
ter. �

We are left with the other direction stated below. Fix
C = 220 · c0.

Theorem 4. rck(G(n, C(log n)1/d/n(d−1)/d)) � d almost surely
holds.

The key component of our proof of Theorem 4 is the
following theorem.
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Theorem 5. With probability at least 1−n−Ω(1) , every two dif-
ferent vertices of G(n, C(log n)1/d/n(d−1)/d) are connected by at
least 210dc0 log n internally vertex-disjoint paths of length ex-
actly d.

Before demonstrating Theorem 5, we show how Theo-
rem 4 follows from it.

Proof of Theorem 4. Let G be an instance of G(n,

C(log n)1/d/n(d−1)/d) for which the condition in Theorem 5
holds; that is, every two different vertices of G have at
least c1 log n internally vertex-disjoint paths of length d
connecting them, where c1 := 210dc0. To establish Theo-
rem 4 it suffices to prove that rck(G) � d for every such G ,
since by Theorem 5 the condition holds with probability at
least 1 − n−Ω(1) = 1 − o(1).

Let S = {1,2, . . . ,d} be a set of d distinct colors. We
randomly color the edges of G with colors from S . Fix two
distinct vertices u and v . Let P be a path of length d con-
necting u and v . The probability that P becomes a rainbow
path under the random coloring is

q := d!/dd � (d/e)d/dd � 4−d,

by Stirling’s formula. Since there are at least c1 log n such
paths and they are all edge-disjoint, we can upper-bound
the probability that at most k −1 of them become rainbow
paths by
(

c1 logn

k − 1

)
(1 − q)c1 log n−(k−1)

�
(

c1 logn

c0 log n

)(
1 − 4−d)(c1−c0) logn

� 2c1 log n·H(c0/c1) · 2−4−d(c1−c0) logn

= n−(4−d(c1−c0)−c1·H(c0/c1)),

where the second inequality follows from the fact that(
m

αm

)
� 2m·H(α)

for all constants α ∈ (0,1) and sufficiently large m, H be-
ing the binary entropy function defined as

H(ε) = ε log(1/ε) + (1 − ε) log
(
1/(1 − ε)

)
,

and that

1 − x � e−x � 2−x, for all x � 0.

It is easy to verify that log x �
√

x whenever x � 100.
Also, since 1 + x � ex � 22x , we have log(1 + x) � 2x for all
x > −1. Recalling that c1 = 210dc0 > 200c0, we get

H(c0/c1) = (c0/c1) log(c1/c0)

+ (1 − c0/c1) log
(
1 + c0/(c1 − c0)

)
� (c0/c1)

√
c1/c0 + (1 − c0/c1) · 2c0/(c1 − c0)

= √
c0/c1 + 2c0/c1 � 3

√
c0/c1.

We thus have
4−d(c1 − c0) − c1 · H(c0/c1)

� 4−d(c1 − c0) − 3
√

c1c0

= 4−dc1
(
1 − 2−10d) − 3

√
2−10d · c2

1

� 2−2d−1c1 − 2−5d+2c1

� c1 · 2−2d−2

= c0 · 210d · 2−2d−2 > 100,

since c0 � 1 and d � 2. Therefore, the probability that there
exist at most k − 1 rainbow paths between u and v is at
most

n−(4−d(c1−c0)−c1·H(c0/c1)) < n−100.

By the Union Bound, with probability at least

1 −
(

n

2

)
n−100 � 1 − n−90,

every two distinct vertices of G have at least k internally
vertex-disjoint rainbow paths connecting them. In particu-
lar, there exists a d-coloring of the edges of G under which
G becomes k-rainbow-connected, implying that rck(G) � d.
This concludes the proof of Theorem 4. �

We now prove Theorem 5.

Proof of Theorem 5. Let p = C(log n)1/d/n(d−1)/d where
C = 220c0. Let V be the set of all vertices in G(n, p). For
every S ⊆ V and u ∈ S , let A(S, u) be the event that u is
adjacent to at least pn/10 (= Cn1/d(log n)1/d/10) distinct
vertices in V \ S . The following lemma is needed for our
proof.

Lemma 2. For every S, u such that u ∈ S and |S| � d ·
(pn/10)d−1 ,

Pr
[
A(S, u)

]
� 1 − 2−Ω(n1/d).

Proof. Fix S ⊆ V with |S| � d · (pn/10)d−1, and u ∈ S . We
have

|V \ S|� n − d · (pn/10)d−1

= n − d · (C/10)d−1n(d−1)/d(logn)(d−1)/d � n/2,

for all sufficiently large n. Take T to be any subset of V \ S
of cardinality n/2. Let X be the random variable counting
the number of neighbors of u inside T . It is obvious that X
can be expressed as the sum of n/2 independent random
variables, each of which taking 1 with probability p and 0
with probability 1− p. Thus E[X] = pn/2. By the Chernoff–
Hoeffding Bound (see e.g. Theorem 4.2 of [14]), we have

Pr
[

X < (1 − 4/5)pn/2
]

� exp
(−(1/2)(4/5)2(pn/2)

) = 2−Ω(n1/d),

which gives precisely what we want. �
We now continue the proof of Theorem 5. Fix u, v ∈

V , u 	= v . Let S0 = {u}. A t-ary tree with a designated root
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is a tree whose non-leaf vertices all have exactly t children.
Consider the following process of “choosing” a (pn/10)-ary
tree of depth d − 1 rooted at u:

1. Let i ← 1 and Si ← ∅.
2. For every vertex w ∈ Si−1 (in an arbitrary order),

choose pn/10 distinct neighbors of w from the set
V \ ({v} ∪ ⋃i

j=0 S j), and add them to Si . (Note that
Si is updated every time after the processing of a ver-
tex w , so that one vertex cannot be chosen and added
to Si more than once. This ensures that at the end of
this step, |Si | = (pn/10)i .)

3. Let i ← i + 1. If i � d − 1 then go to Step 2, otherwise
stop.

Of course the process may fail during Step 2, since with
nonzero probability w will have no neighbor in V \ ({v} ∪⋃i

j=0 S j). (In fact, with nonzero probability the graph be-
comes empty.) However, noting that at any time during the
process,∣∣∣∣∣{v} ∪

i⋃
j=0

S j

∣∣∣∣∣ � 1 +
d−1∑
j=0

(pn/10) j � d · (pn/10)d−1,

for all sufficiently large n,

we can deduce from Lemma 2 that every execution of
Step 2 fails with probability at most 2−Ω(n1/d). Since Step
2 can be conducted for at most d · (pn/10)d−1 times, we
obtain that, with probability at least

1 − d · (pn/10)d−1 · 2−Ω(n1/d) = 1 − 2−Ω(n1/d),

the process will successfully terminate. At the end of
the process, the sets S0, S1, . . . , Sd−1 naturally induces a
(pn/10)-ary tree T of depth d − 1 rooted at u, with Si be-
ing the collection of vertices in the i-th level. The number
of leaves in T is exactly |Sd−1| = (pn/10)d−1.

Now we assume that T has been successfully con-
structed. Let Y be a random variable denoting the number
of neighbors of v inside Sd−1. (Recall that v /∈ Sd−1.) It is
clear that

E[Y ] = p · |Sd−1| = pdnd−1/10d−1 = 10 · (C/10)d logn.

As before, using the Chernoff–Hoeffding Bound, we have

Pr
[
Y < (C/10)d logn

]
� exp

(−(1/2)(9/10)2(C/10)d · 10 logn
)
� n−10,

for our choice of C .
It is clear that each neighbor v ′ of v inside Sd−1 in-

duces a length-d path between u and v (by simply com-
bining the path from u to v ′ in tree T and the edge
(v ′, v)). The problem is that these paths may not be in-
ternally vertex-disjoint. We next address this issue.

For every w ∈ S1, denote by T w the subtree of T of
depth d − 2 rooted at w . Call these T w vice-trees. Clearly
every vice-tree contains (pn/10)d−2 leaves.

The reason for defining such vice-trees is that, by sim-
ple observations, any two leaves of T that belong to dif-
ferent vice-trees must correspond to edge-disjoint root-
to-leaf paths in T . Thus, to establish a large number of
internally vertex-disjoint paths between u and v , it suf-
fices to show that we can find many neighbors of v inside
Sd−1 that belong to distinct vice-trees.

For each vice-tree T w , let Bw be the event that v has at
least 10d neighbors inside the set of leaves of T w . Noting
that T w has exactly (pn/10)d−2 leaves, we have

Pr[Bw ] �
(

(pn/10)d−2

10d

)
p10d

=
(

(Cn1/d(logn)1/d/10)d−2

10d

)
·
(

C(log n)1/d

n(d−1)/d

)10d

�
((

Cn1/d(log n)1/d/10
)d−2 · C(log n)1/d

n(d−1)/d

)10d

= C10d(C/10)10d(d−2)(logn)10(d−1)n−10

� O
(
n−9).

By applying the Union Bound, we obtain

Pr
[ ∨

w∈S1

Bw

]
� (pn/10) · O

(
n−9)� O

(
n−7).

Combined with previous results, we deduce that with
probability at least

1 − 2−Ω(n1/d) − n−10 − O
(
n−7)� 1 − O

(
n−6),

the following three events simultaneously happen:

1. The tree T is successfully constructed.
2. v has at least (C/10)d log n neighbors that are leaves

of T .
3. Every vice-tree T w contains at most 10d leaves that

are neighbors of v .

When all these three events happen, we can choose
((C/10)d/(10d)) log n neighbors of v , every two of which
come from different vice-trees. This immediately leads
to ((C/10)d/(10d)) log n length-d internally vertex-disjoint
paths between u and v , where, by our choice of C = 220c0,(
(C/10)d/(10d)

)
logn � 210dc0 logn.

Using the Union Bound again gives us that, with prob-
ability at least

1 −
(

n

2

)
· O

(
n−6) = 1 − n−Ω(1),

every two distinct vertices have at least 210dc0 log n inter-
nally vertex-disjoint paths of length d connecting them.
The proof of Theorem 5 is thus completed. �
3. Rainbow-coloring random graphs

In this section we prove Theorem 2.

Proof of Theorem 2. First note that for every G with at
least 2 vertices, rck(G) = 1 if and only if k = 1 and G is a
clique, which can be easily checked. Thus, in the following
we assume w.l.o.g. that rck(G(n, p)) � 2.
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It is easy to see that there exists a (unique) inte-
ger d � 2 such that (d − 2)/(d − 1) � ε < (d − 1)/d. We
have p = ω((log n)1/d/n(d−1)/d), which, by Theorem 4, im-
plies that rck(G(n, p)) � d almost surely holds. Moreover,
a scrutiny into the proof of Theorem 5 tells us that for such
p, a random coloring of G(n, p) using d colors will make
it rainbow-k-connected with probability 1 − n−Ω(1) . Thus,
it suffices for us to show that with probability 1 − o(1),
rck(G(n, p)) � d − 1. This is trivial for d � 3, since we have
assumed that rck(G(n, p)) � 2. When d � 4, we have p =
o((logn)1/(d−2)/n(d−3)/(d−2)). Due to Theorem 3, G(n, p)

with such p almost surely satisfies rck(G(n, p)) � d − 1.
Hence, we have shown that with probability 1 − o(1),

a random coloring with d colors will make G(n, p) rainbow-
k-connected and the number of colors used is at most one
more than the optimum, where the probability is taken
over both the randomness of G(n, p) and that of the algo-
rithm. This completes the whole proof. �
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