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Abstract. The stationary points (SPs) of the potential energy landscapes 
(PELs) of multivariate random potentials (RPs) have found many applications 
in many areas of Physics, Chemistry and Mathematical Biology. However, there 
are few reliable methods available which can find all the SPs accurately. Hence, 
one has to rely on indirect methods such as Random Matrix theory. With 
a combination of the numerical polynomial homotopy continuation method 
and a certification method, we obtain all the certified SPs of the most general 
polynomial RP for each sample chosen from the Gaussian distribution with 
mean 0 and variance 1. While obtaining many novel results for the finite size 
case of the RP, we also discuss the implications of our results on mathematics 
of random systems and string theory landscapes.

Keywords: other numerical approaches, energy landscapes (theory), spin 
glasses (experiments), random matrix theory and extensions
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I. Introduction

The surface drawn by a potential, V(x), with ( )= …x x x, , N1 , is called the potential 
energy landscape (PEL) of the corresponding physical or chemical system [1, 2]. The sta-
tionary points (SPs) of a PEL, defined by the solutions of the equations ( )∂ ∂ =V x x/ 0i  
for = …i N1, , , provide important information about the physics and chemistry of the 
corresponding system. If the parameters or the coecients of V(x) are chosen from 
some random distribution, then V(x) is called a random potential (RP). In recent years 
more attempts to understand the statistical patterns behind SPs for random PELs 
have been made because of its applications in such diverse areas as string theory [3, 4], 
cosmology (see e.g. [5–12]), statistical mechanics [13–19], neural networks [20]. Similar 
problems appear in statistics [21] and in a pure mathematics context, e.g. in topology 
[22–24]. In fact, the mathematical question how many real solutions, on an average, does 
a random system of polynomial equations have is a classic problem. For random uni-
variate polynomials of degree D with coecients taking i.i.d. values from the Gaussian 
distribution with mean 0 and variance 1, called the Kac formulation, the mean number 

of real solutions is 
π

Dln
2

 for →∞D  [25, 26]. If the i-th coecient of a random poly-

nomial is allowed to take i.i.d. values from the Gaussian distribution with mean 0 and 

variance ( )D

i
, called the Kostlan formulation, then the mean number of real solutions 

Contents

I. Introduction 2

II. The most general polynomial random potential and  
numerical set up 4

III. Results and discussion 5

III.A. Average number of real SPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III.B. Average number of minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

III.C. Average number of minima at which V  >  0 (i.e. the de Sitter minima) . . 9

III.D. Average number of Index-sorted SPs . . . . . . . . . . . . . . . . . . . . . . 10

III.E. Histograms of the Hessian eigenvalues . . . . . . . . . . . . . . . . . . . . . . 11

III.F. Histograms of the lowest Hessian eigenvalues . . . . . . . . . . . . . . . . . 12

III.G. Real versus imaginary plots of V at complex solutions . . . . . . . . . . . . 12

III.H. Average timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

IV. Conclusions and outlook 14

Acknowledgment 17

References 17

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012


statistics of stationary points of random finite polynomial potentials

3doi:10.1088/1742-5468/2015/09/P09012

J. S
tat. M

ech. (2015) P
09012

is D as →∞D  [27, 28]. There have been various attempts to extend these results to 
the multivariate case [29–33].

However, progress in studying the statistics of the SPs of PELs has been slow due 
to conceptual as well as technical problems. First, from a computational viewpoint, 
the stationary equations are usually nonlinear. Hence, solving these equations is usu-
ally extremely dicult. One may use the Newton–Raphson method, its sophisticated 
variants, or many other numerical methods to solve these equations. These methods 
can find many SPs at best, as opposed to all of them. Theoretically, the most recent 
progress was based on successful applications of random matrix theory (RMT) for 
exploring the PELs of certain types of RPs. In this approach, the Hessian matrix 

( )= ∂ ∂ ∂H V x x x/i j i j,
2 , is treated as a random matrix. Then, standard RMT results can 

be employed to extract valuable information about the eigenvalue distribution of H. In 
recent years, there are many results available on the probability that random matrices 
of various types have indefinite spectrum, see e.g. [34–36]. However, constraining this 
analysis for the SPs rather than on arbitrary points of the N-dimensional space amounts 
to taking the stationary equations under consideration into the matrix approach. This 
can be successfully done only under assumptions of Gaussianity, and either conditions 
of statistical isotropy and translational invariance [13, 14, 16] (though this condition 
can be made milder in certain situations, see, section 4 in [37], for example) or isot-
ropy and restriction to a spherical surface [17, 18, 37]. The latter context is natural for 
studying various aspects of glassy transitions such as the number of minima and their 
complexity, mainly in the thermodynamic limit of high dimension as →∞N  where 
RMT produces the most explicit and universal results.

There are, however, a few issues with this approach as well. Many cases exist where 
N is actually a fundamental parameter in the physical description and may be finite. 
Indeed, many physical, chemical or biological systems have a finite number of fields, 
particles, neurons, etc which is represented as the number of variables N. Moreover, 
with the RMT approach, it is not yet possible to obtain further information about 
an individual SP. Computing the variance of the number of SPs using RMT is also 
quite dicult, and, as of yet, is still largely an unsolved problem5. We note that recent 
progress has been made in which the average number of SPs of each index (defined as 
the number of negative eigenvalues of the Hessian matrix evaluated at the given SP), 
for any finite N, is computed analytically [16–18, 37, 19]. The shortcoming of these 
approaches is that the theory only works for the Gaussian isotropic RPs with either 
spherical constraints or statistical translational invariance.

In this article, we provide a numerical scheme to overcome all the diculties to 
find the SPs of a completely generic RP. We use the numerical polynomial homotopy 
continuation method which finds all the isolated solutions of a multivariate system 
of polynomial equations with probability one [38–40]. To strengthen our results, we 
also use a certification approach which certifies if a given numerical approximate cor-
responds to an exact distinct root of the system. The certification approach is known 
as Smale’s α-theory and certifies that the numerical approximation is in the quadratic 
convergence region of a unique nonsingular solution of the system [41–45].

5 See, however, [73, 74] for recent progress on this problem.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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In the remainder of the paper, after specifying our RP, we describe the computa-
tional methods used in our work in section II. In section III, we present our results and 
discuss their implications. Finally, in section IV, we conclude.

II. The most general polynomial random potential and numerical set up

We consider a random multivariate potential with polynomial nonlinearity,

( )
∣ ∣⩽
∑=
α

α
α αV x a x x... ,

D
N1

N1

 (1)

where N is the number of scalar fields, D is the highest degree of the monomials, 

( ) Nα α α= ∈, ..., N
N

1  is a multi-integer, and ∣ ∣α α α= + +... N1 . αa  are random coecients 
which take i.i.d. values from the Gaussian distribution with mean 0 and variance 1, 
known as the Kac formulation for the multivariate case.

Finding all the SPs of V(x) boils down to simultaneously solving the system of equa-

tions 
( ) =∂
∂

0
V x

xi
, = …i N1, , , each of which is a polynomial equation of degree D  −  1. The 

classical Bézout theorem states that for generically chosen coecients, the number of 
complex (which include real) SPs, counting multiplicities, is the product of the degrees 
of each of the stationary equations, (D  −  1)N. Using this fact, we employ the numeri-
cal polynomial homotopy continuation (NPHC) method which guarantees that we will 
find all the complex numerical approximates of a system of multivariate polynomial 
(or, having polynomial-like nonlinearity) equations [38–40]. The NPHC method has 
been used to explore potential energy landscapes of various problems arising in physics 
and chemistry [46–55]. Here, one first creates an easier to solve system which has the 
same variables as the original system as well as the same number of solutions as the 
classical Bézout count; then, each solution of the new system is tracked to the original 
system with a single parameter to obtain all the numerical approximates of the original 
system. It is rigorously proven [56, 57] that by tracking the paths over complex space 
one can be guaranteed to find all the isolated complex solutions of the system using 
the NPHC method. The interested reader is referred to the early [38–40, 46–55, 58]  
for a detailed description of the method. For the NPHC method, we use the Bertini 
software [40, 59].

Though the NPHC method guarantees one will find all numerical solutions, skep-
tics may wonder if the numerical solutions are good enough. Smale and others defined 
a ‘good enough’ numerical solution of a system of polynomial equations as a point 
which is in the quadratic convergence region of a nearby exact solution of the system 
[41, 42]. Once the numerical solution is good enough in the above sense, it can then be 
approximated to arbitrary accuracy. Such a numerical solution is called a certified solu-
tion. Smale also showed how to certify a numerical solution using only data such as the 
Jacobian and higher derivatives at the numerical solution via α-theory. A nontrivial 

result of Smale is that if α, which is computed using the Jacobian and higher derivatives 

of the system of equations, at a given numerical solution is less than ( )−13 3 7 /4, then 

the numerical solution is within the quadratic convergence region of the nearby exact 

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012


statistics of stationary points of random finite polynomial potentials

5doi:10.1088/1742-5468/2015/09/P09012

J. S
tat. M

ech. (2015) P
09012

solution of the system. Hence, this approximate is a certified numerical solution. We use 
an implementation of α-theory provided in alphaCertified [43] in the present work 
(see [44, 45] for certification of the PELs). We call a solution a real finite solution if the 
imaginary part of each variable at the solution is 10−10, the maximum eigenvalue of the 
Hessian matrix at that solution is ⩽ 1013, and it is certified using alphaCertified.

In practice, for most computations, we restrict ourselves to = …N 2, , 11 and 
= …D 3, , 5 and the sample size for each pair of (N, D) is 1000. The limitation comes 

due to the combined computation of solving equations, certifying solutions and com-
puting Hessian eigenvalues.

III. Results and discussion

In this Section, we present our results from our numerical experiments. We first find 
all the isolated complex SPs of V(x) for each of the 1000 samples, and then compute 
various quantities from the SPs. We present the results for = …N 2 11 and = …D 3 5. 
We also discuss the results in a physical and mathematical context.

III.A. Average number of real SPs

The number of complex solutions of the stationary equations for generic coecients is 
always (D  −  1)N for our RP. A more interesting quantity is the mean number of real SPs 
which we plot as a function of N for dierent values of D in figure 1. For limited values 
of D, a similar plot was drawn in [60] for a dierent RP which was a Taylor expansion 
and coecients drawn from a uniform distribution. We observe that the mean number 

Figure 1. Mean number of SPs as a function of N for various values of D. Here, 

‘UB’ means the upper bound − +D2 1 N 1 /2( )( )  [61].

Figure 2. Relative variance of the number of SPs as a function of N for various 
values of D.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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of SPs grows rapidly as N increases. In figure 1, we compare our numerical calcula-
tion of the mean number of real SPs as a function of N with an analytically computed 

upper bound, ( )( )− +D2 1 N 1 /2, computed in [61] where the coecients were indepen-
dent Gaussians with mean zero and variance multinomial, called Kostlan–Shub–Smale 
formulation [28, 29]. While the numerical results are far below the upper bound, this 
should be expected since it is known that the mean number of real SPs for the Kostlan 
formulation is significantly higher than the Kac formulation [28].

As is true with most other analytical computations related to random systems, 
analytically computing the variance of the number of SPs is almost a prohibitively 
dicult task. Figure 2 shows that the behaviour of the relative variance (i.e. the ratio 
between the absolute variance and the square of the mean) which is an indicator of 
the narrow distribution. To further investigate the spread, we plot histograms of the 
number of real SPs in figures 3–5 which show that the peak in the histograms is indeed 
around the mean value of the number of SPs, i.e. a unimodal distribution. Away from 
the peak, the histograms spread out smoothly. However, our results suggest that 
these histograms are not always symmetric with respect to the peak but often exhibit 
right-skewedness.

Figure 3. Histogram of the numbers of SPs for D   =   3. N   =   5, 6 in the top row, 
N   =   7, 8 in the middle row, and N   =   9, 10 in the bottom row.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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III.B. Average number of minima

Since the potential may be unbounded from below (or above), we must clarify that by 
minima we simply mean SPs at which all the Hessian eigenvalues are positive definite. 
Though the mean number of real SPs increases exponentially with increasing N, the 
mean number of minima decays exponentially with increasing N as shown in various set 
ups in [7, 15, 61, 62], and as shown in figure 6 using our computation. We compare our 

results with an analytically computed upper bound [61], namely, ( ( ))( )− + −+
K e N Dln 1N2 ln 3

4
1

2 , 
where K is a positive constant. Since a prescription for computing K is not available in 
[61], we fix it to unity. The bound we compute numerically is well-below the analytically 
computed bound. In fact, the mean number of minima itself appears to qualitatively 

behave as e N Dln 1N2 ln 3
4

1
2( ( ))( )− + −+

. Our numerical results also indicate that as a function of 

D, while keeping N fixed, the mean number of minima appears to be a slowly increasing 
function. This is not surprising since in this case the total number of complex solutions 
themselves (D  −  1)N increases drastically. We do not have enough data in D to extract 
the precise behaviour of the increase. However, the aforementioned upper bound with 
now fixing N and varying D implies that the increase of mean number of minima should 

Figure 4. Histogram of the numbers of SPs for D   =   4. N   =   5, 6 in the top row, 
N   =   7, 8 in the middle row, and N   =   9, 10 in the bottom row.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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be much slower than the increase when D is fixed and N is varied because of the natu-
ral logarithm term. The absolute variance of the number of minima also exponentially 
decays as N increases indicating that the mean number of minima gives a good estimate 
for the actual number of minima in any realization of the ensemble. In figure 7, we plot 
the relative variance. Since the absolute variance and mean both are very small in this 
case, the plot should only provide the qualitative behaviour. We anticipate that our 

Figure 5. Histogram of the numbers of SPs for D   =   5. N   =   3, 4 in the top row, 
and N   =   5, 6 in the bottom row.

Figure 6. The solid lines are our computed mean number of minima and the 

dashed lines are an analytically computed upper bound − + −+
K e N Dln 1N2 ln 3

4
1

2( )( )( )
 [61]. 

In the absence of a prescription for computing the positive constant K, we fix it 
to unity.

Figure 7. Relative variance of the number of minima.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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numerical results will provide an incentive for analytical studies for the variance of the 
number of real SPs and minima.

III.C. Average number of minima at which V  >  0 (i.e. the de Sitter minima)

The number of minima at which V  >  0 may be viewed as de Sitter vacua if the potential 
is considered to mimic the statistical aspects of the string theory landscapes. Figures 8 
and 9 essentially exhibit the same qualitative behaviour as the number of minima. The  
implications of these results on the string theory landscapes may be important, i.e. the 
number of de Sitter vacua decreases exponentially with increasing the dimension of  
the moduli space, which is similar to the conclusion laid out in [60] (see also [7, 10]): 
the number of vacua of a RP with tunneling rates low enough to maintain metastabil-
ity exponentially decreases as a function of the moduli space dimension. Though in 
the latter work, the RP was a bit dierent than ours in that in the former the RP was 
a Taylor expansion of a generic function, with random coecients i.i.d. picked from 
uniform distributions from specific ranges. Remarkably, the overall conclusion remains 
the same even with our investigations with more general type of vacua (de Sitter vacua 

Figure 8. Mean number of de Sitter vacua.

Figure 9. Variances of the number of de Sitter vacua.

Figure 10. Mean number of SPs as a function of I/N, where I is the Hessian index 
which runs from 0 to N, for D   =   5 and various N. The corresponding plots for 
other values of D exhibit the same qualitative behaviour.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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without any further conditions on bubble nucleation rate or else). However, as we 
increase the degree of the potential (which would correspond to the truncation degree 
in the Taylor expanded version of [60]) the number of de Sitter vacua only rise linearly.

III.D. Average number of Index-sorted SPs

In figures 10, we further explore the properties of the real SPs by sorting them accord-
ing to their Hessian indices. Since for the RP, generic random samples do not possess 
singular solutions according to Sard’s theorem [63], the number of negative eigenvalues 
of the Hessian is indeed the correct Morse index of the given real solution. Because we 
have moderate size systems in N and D at our disposal, we can not predict the precise 
behaviour for general N and D. However, it is clear from our results that the plots 
for I versus number of real SPs of index I tend to be bell-shaped curves. Such a plot 
is observed for many other potentials such as the Lennard–Jones potential [64, 65], 
nearest-neighbour XY model [46, 47, 53, 66], spherical 3-spin model [67], the Kuramoto 
model [68], etc. In [65], such a behaviour of the number of real SPs with a given index 
for general potential was analytically derived. In short, in the landscape of RPs, there 

Figure 11. Histogram of eigenvalues, D   =   3.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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are a vast number of SPs with non-zero index compared to the number of minima, 
which has also been analytically observed in random set ups [61].

III.E. Histograms of the Hessian eigenvalues

In figures 11–13, we plot histograms of the Hessian eigenvalues where the x-ranges in 
the plots are chopped beyond ±40 to show the behaviour of the plots in the middle 
range. Such histograms of eigenvalues of RPs are widely studied, usually by consid-
ering the Hessian matrices of RPs as random symmetric matrices and then applying 
Wigner’s semicircle law or other results. Our results, however, are distinct in that 
they represent the histograms of Hessian eigenvalues computed at all the SPs for each 
sample. The clefts in the histograms are a departure from Wigner’s semicircle law. The 
reason behind the cleft can be explained using Sard’s theorem [63], which yields that 
our dense random system of stationary equations will not possess singular solutions for 
almost all values of coecients. This means that we are not likely to have zero eigen-
values, though there are indeed SPs having eigenvalues closer to zero, creating the cleft 
at the zero eigenvalue in the histograms. From the statistical physics point of view, as 

Figure 12. Histogram of eigenvalues, D   =   4.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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argued in [7], a possible reason of the cleft may be that the Hessian matrices may have 
a component that can be described by the Altland–Zirnbauer CI ensemble [69], though 
investigating this aspect further is beyond the scope of the present work.

III.F. Histograms of the lowest Hessian eigenvalues

The lowest eigenvalue of the Hessian matrix evaluated at a real SP is one of the most 
important physical quantities as it determines physics up to certain extent. Many 
interesting properties of the lowest eigenvalues of dierent potentials also have deep 
connection to catastrophe theory [70]. In figures 14–16, we plot histograms of the low-
est eigenvalues computed at all real SPs for all samples for various values of N and D. 
Our results yield that the tail of the lowest eigenvalues is long, though there are only 
a few events at the far end.

III.G. Real versus imaginary plots of V at complex solutions

In most applications we require the knowledge of real SPs, however, motivated by 
[54, 71], we plot the real versus imaginary parts of the potential at non-real SPs 
in figures 17, for D   =   4, which yield that there are many complex SPs at which 
the potential V itself is a real quantity. In many physical models, both coordinates 
and potential have to be strictly real quantities. Hence, the non-real solutions may 
appear just due to the complexification of the system in order to be able to use the 
complex algebraic geometry methods. However, in string phenomenology complex 
moduli do have physical meaning. We hope that our observations put forward in 
these figures may provide interesting avenues for further research to understand and 
interepret complexified fields.

Figure 13. Histogram of eigenvalues, D   =   5.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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III.H. Average timing

Although not directly attacked, our experiments are related to the 17th problem from 
the list of the eighteen unsolved problems for the 21st century that Smale laid down 
in [72] which we quote verbatim: ‘Can a zero of N complex polynomial equations in N 
unknowns be found approximately, on the average, in polynomial time with a uniform 
algorithm?’

In order to gain some insight into this dicult problem, we consider the average 
time the Bertini 1.4 software takes to find one solution and consider this value for fixed 
fixed D.

For D   =   3–5, we note that for the systems that we considered, the average time 
to track each path seems to grow exponentially in N as seen in figure 18. However, it 
is very important to note that the timings here include the run-time of the homotopy 
path-tracking algorithm as well as other nonessential functions. In addition, the timing 
information in figure 18 was obtained using a single core processor (a 2300 MhZ AMD 
processor) to avoid timing involved during parallel processes, though all the results 

Figure 14. Histogram of the lowest eigenvalues for D   =   3. Data for smaller 
eigenvalues than the shown in the histograms are chopped away for the 
presentational purposes.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09012
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presented in the previous subsections were carried out using a computing cluster of 64 
processors. Hence, figure 18 in no way gives a good estimate of the actual average time 
for path tracking, but just gives a very crude estimate in the hope to provide a rough 
guide for the practitioners.

IV. Conclusions and outlook

In this article, we find all the critical points, complex and real, of a polynomial poten-
tial whose coecients take i.i.d. values from the Gaussian distribution with mean 0 
and variance 1. With this set up, we extract statistical results on random potentials 
(RPs). We have employed the numerical polynomial homotopy continuation (NPHC) 
method which guarantees that we have found all the critical points. Since the NPHC 
is a numerical method, choosing specific values for the tolerances to classify when the 
solutions are real becomes a delicate issue when N and D are large enough. Hence, we 

Figure 15. Histogram of the lowest eigenvalues for D   =   4. Data for smaller 
eigenvalues than the shown in the histograms are chopped away for the 
presentational purposes.
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combine a certification procedure which provides a sucient condition as to when a 
given approximate solution converges to a distinct real finite solution using Smale’s 
α-theorem [41, 43]. Together with this fact and that the stationary equations of our 
RP always have (D  −  1)N complex critical points for generically chosen coecients, our 
numerical results can be treated as good as exact results.

Due to various involved computations (solving equations using the NPHC method, 
certifying and sorting them, and computing Hessian eigenvalues), and limited computa-
tional resources, we have restricted ourselves to the number of variables { }∈ …N 2, , 11  
and degree { }∈ …D 3, , 5 , and 1000 samples for each (N, D).

We have shown that the mean number of real SPs exponentially increases, whereas 
the mean number of minima exponentially decreases, with increasing N for various val-
ues of D. Our results also yield that the mean number of minima increases for fixed N 
while increasing D, though the increase is linear. With an additional constraint on the 
minima that the potential evaluated at minima is positive definite, we investigate the 
statistical aspects of the string theory landscape where our results may have important 
consequences in counting the string vacua. These results compare well with analyti-
cally computed upper bounds for these two average quantities [61]. One of the main 
achievements of this paper is a numerical computation of the relative variance of the 
number of real SPs and minima since it is prohibitively dicult to obtain analytical 
results for the variance. To further investigate the spread of the number of real SPs, 
we also plotted histograms of the number of real SPs which exhibit clear unimodality 
and right-skewedness.

By sorting the real SPs according to their Hessian indices, we show that the 
mean number of real SPs having index I   +   1 is significantly more than the those 
having index I. Extrapolating our results to higher N and D yields that the plot of 

Figure 16. Histogram of the lowest eigenvalues for D   =   5. Data for smaller 
eigenvalues than the shown in the histograms are chopped away for the 
presentational purposes.
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I/N versus mean number of SPs with index I tend to be a bell-shaped curve, which 
appears to be a common feature for many other potential energy landscapes such as 
the Lennard–Jones clusters [64, 65], XY model [46, 47, 53, 66, 68], spherical 3-spin 
mean-field model [67], etc. A milder version of this result, that the ratio between 
the number of SPs with index I  >  0 and the number of minima exponentially blows 
up when N increases, has gained attention recently in both mathematics and string 
theory [7, 61].

Yet another novel result of our investigation is histogram of the Hessian eigenval-
ues computed at all real SPs since it is a departure from the traditional eigenvalue 
histogram studies which consider Hessian matrices evaluated at arbitrary points and 
may arrive at Wigner’s semicircle law. Our histograms show clear bimodal symmet-
ric behaviour with the cleft near the zero eigenvalue pronounced as N increases. We 
explained this result using Sard’s theorem. We also observe that the histograms of low-
est eigenvalues are long-tailed.

Though usually physically interesting solutions are the real solutions, we observe 
in our numerical experiments that the potential may be real when evaluated at many 

Figure 17. Real versus Imaginary values of V at all non-real solutions, D   =   4.
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of the complex (i.e. non-real) solutions. Such a phenomenon is observed and discussed 
previously for dierent potentials [54, 71]. Since in string theory, complex moduli play 
a prominent role in determining the physics of the model, our results may prompt a 
dierent interpretation of the feasible SPs.

We also provided average timing information for our computation for finding solu-
tions using homotopy continuation method in figure 18. Though we do not claim to 
have directly worked on Smale’s 17th problem [72], nor to have an accurate timing 
estimate due to the overlaps with several other computations we anticipate that our 
crude estimates will guide future computations of the other practitioners of the homo-
topy continuation methods.
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