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Abstract. Combinatorial (or rule-based) methods for inferring haplotypes from
genotypes on a pedigree have been studied extensively in the recent literature.
These methods generally try to reconstruct the haplotypes of each individual so
that the total number of recombinants is minimized in the pedigree. The problem
is NP-hard, although it is known that the number of recombinants in a practical
dataset is usually very small. In this paper, we consider the question of how to
efficiently infer haplotypes on a large pedigree when the number of recombinants
is bounded by a small constant, i.e. the so called k-recombinant haplotype config-
uration (k-RHC) problem. We introduce a simple probabilistic model for k-RHC
where the prior haplotype probability of a founder and the haplotype transmission
probability from a parent to a child are all assumed to follow the uniform distri-
bution and k random recombinants are assumed to have taken place uniformly
and independently in the pedigree. We present an O(mn logk+1 n) time algorithm
for k-RHC on tree pedigrees without mating loops, where m is the number of loci
and n is the size of the input pedigree, and prove that when 90 log n < m < n3,
the algorithm can correctly find a feasible haplotype configuration that obeys the
Mendelian law of inheritance and requires no more than k recombinants with

probability 1−O(k2 log2 n
mn +

1
n2 ). The algorithm is efficient when k is of a moderate

value and could thus be used to infer haplotypes from genotypes on large tree
pedigrees efficiently in practice. We have implemented the algorithm as a C++
program named Tree-k-RHC. The implementation incorporates several ideas for
dealing with missing data and data with a large number of recombinants effec-
tively. Our experimental results on both simulated and real datasets show that
Tree-k-RHC can reconstruct haplotypes with a high accuracy and is much faster
than the best combinatorial method in the literature.

Keywords: computational biology, haplotype inference, pedigree, recombina-
tion, combinatorial algorithm, probabilistic model.

1 Introduction

As more progress has been made in science and technology, scientists believe that ge-
netic factors should play a significant role in preventing, diagnosing and treating im-
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portant human diseases such as diabetes, cancer, stroke, heart disease, depression, and
asthma. With the discovery of genetic markers such as microsatellite DNA sequences
and single nucleotide polymorphisms (SNPs), it is now possible to provide a unique ge-
netic map to establish connections between diseases and specific genetic variations. One
of the main objectives of the International HapMap Project launched in October 2002
[27] is to discover the haplotype structure of human beings and examine the common
haplotypes in different populations. This information will greatly facilitate the map-
ping of many important disease-susceptibility genes. However, the diploid structure of
humans makes it very expensive to collect haplotype data directly. Instead, genotype
data are collected routinely. Since haplotype data are required (or at least desirable) in
many genetic analysis including linkage disequilibrium analysis and disease association
mapping, efficient and accurate computational methods for the inference of haplotypes
from genotypes, which is also commonly referred to as phasing, have been extensively
studied in the literature. A recent survey on these methods can be found in [19].

The existing haplotyping algorithms can be classified as either statistical or combi-
natorial (or rule-based). Both paradigms can be applied to pedigree data, population
data, or pooled samples. In this paper, we are interested in pedigree data and the com-
binatorial paradigm. Although many (statistical or combinatorial) algorithms have been
proposed for haplotype inference on pedigrees in the literature [19], they are mostly
effective for pedigrees of small to moderate sizes. For example, it took the exact al-
gorithm based on integer linear programming (ILP) in PedPhase 5 hours to solve a
pedigree with 29 individuals and 51 SNP loci [17,18] on a standard PC. The same
data took the popular program SimWalk2 [26] based on a statistical approach 6 days.
The well-known Lander-Green algorithm [15] based on the maximum likelihood (ML)
framework and its subsequent improvements [1,12,14] run in time linear in the number
of loci but exponential in the pedigree size [2,19]. These algorithms are thus limited to
relatively small pedigrees.

With the advance in sequencing technology, larger and larger pedigrees are being
genotyped and scientists are becoming increasingly interested in haplotype inference
on large pedigrees. For example, in [2,4], the inference was performed on pedigrees
of sizes 368 and 1149, respectively. The existing haplotype inference methods either
are very slow (e.g. those based on ML or ILP) or have less than desirable accuracies
(e.g. the block extension heuristic algorithm in PedPhase) when the input pedigree gets
large. In fact, the question of how to efficiently and accurately infer haplotypes from
genotypes on large pedigrees is one of the challenges raised at the recently held 2008
Haplotype Conference [13].

In general, combinatorial methods for haplotype inference are faster (or intended
to be faster) than statistical methods that attempt to maximize the likelihood of the
haplotype solution [19]. To our knowledge, all combinatorial algorithms for haplotyp-
ing pedigree data aim at solving the minimum-recombinant haplotype configuration
(MRHC) problem [16,17,18,25] where the goal is to find a haplotype solution requiring
the minimum number of recombinants. The problem is sensible since it is known that
recombinants are rare in a typical human pedigree [11]. This is especially true when the
marker loci considered are from a same haplotype block. For instance, the analysis per-
formed in [17,18] on a HapMap data shows that the average number of recombinants
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per haplotype block of each chromosome on a (relatively small) pedigree is in fact
close to 0 (although not exactly 0). Thus, a minimum-recombinant solution is likely to
be the true solution. Unfortunately, MRHC is NP-hard [16]. It remains NP-hard even
if the input pedigree is a tree without mating loops [7,21]. The ILP-based exact algo-
rithm for MRHC in PedPhase [19] works well for small pedigrees but its worst case
running time is exponential in both the number of loci and pedigree size. The heuristic
algorithm in [25] runs for days on a PC even for medium-sized datasets. Hence, recent
work on MRHC has been focused on the special case where the number of recombi-
nants is zero, the so called zero-recombinant haplotype configuration (ZRHC) problem
[5,16,20,22,23,28,30,31]. In particular, Li and Jiang [16] formulated ZRHC as a system
of linear equations over the field F(2) and devised an O(m3n3) time algorithm using
Gaussian elimination, where m is the number of loci and n is the size of the input pedi-
gree. Xiao et al. [30,31] improved the running time to O(mn2 + n3 log2 n log log n) by
using a compact system of linear equations, taking advantage of some special properties
of a pedigree graph, and the low-stretch spanning tree technique. The recent results in
[5,20,22] presented linear (i.e. O(mn)) time algorithms for ZRHC on tree pedigrees us-
ing different techniques. Note that tree pedigrees are very common in human pedigrees
[2]. They also play important roles in the analysis of general complex pedigrees [3,29].

Since the number of recombinants in a real pedigree is usually very small, a plausible
approach to solving MRHC that could potentially be very efficient in practice is to try
to infer a haplotype configuration that requires at most k recombinants in the input pedi-
gree, where k is some fixed small constant k. We will refer to this parameterized problem
as the k-recombinant haplotype configuration (k-RHC) problem. Although ZRHC (or
0-RHC) seems easy to solve [5,20,22,30,31], the general k-RHC problem remains very
hard to tackle. Observe that, we could obtain a trivial algorithm for k-RHC with time
complexity O((mn)k(mn2 + n3 log2 n log log n)) by using the algorithm in [30,31] for
ZRHC and exhaustively enumerating the possible locations of the k recombinants. This
is because the k-RHC instance can be easily transformed into a ZRHC instance once
the recombinant locations are known. Similarly, one could obtain a trivial algorithm
for k-RHC on tree pedigrees with time complexity O((mn)k+1) by using the linear time
algorithms in [5,20,22] for tree ZRHC. We note in passing that the dynamic program-
ming algorithm in [6] solves MRHC on tree pedigrees in O(nm3k+12m) time when each
parent-child pair is allowed to have at most k recombinants. This algorithm is inefficient
when the number of loci exceeds 30 even if k is very small.

In this paper, we present an algorithm for k-RHC that is efficient in the average
sense. More precisely, we consider a simple probabilistic model for k-RHC where the
haplotypes of the founders (i.e. individuals without parents in the input pedigree) are
generated randomly from a uniform distribution, a uniform random haplotype of each
parent is passed to a child, and k uniform random recombinants are assumed to have
taken place independently in the pedigree. This model is a special case of the general
probabilistic model in the genetics literature (see e.g. [24]) where the prior founder
haplotype probabilities and haplotype transmission probabilities could follow arbitrary
distributions. In other words, our model is a primitive Mendelian model. We present
an O(mn logk+1 n) time algorithm for k-RHC on tree pedigrees, and prove that when
90 log n < m < n3, the algorithm can correctly find a feasible haplotype configuration
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that obeys the Mendelian law of inheritance and requires no more than k recombinants

with probability 1 − O(k2 log2 n
mn +

1
n2 ). (Note that this result does not imply that k-RHC

is fixed-parameter tractable as defined in [8].) The algorithm is fast when k is of a mod-
erate value and could thus be used to infer haplotypes from genotypes on large tree
pedigrees in practice. We have implemented the algorithm as a C++ program named
Tree-k-RHC. The implementation incorporates several effective ideas for dealing with
missing data and data with an expectedly large number of recombinants. Our prelim-
inary experimental results on both simulated and real datasets show that Tree-k-RHC
can reconstruct haplotypes with a high accuracy and speed. In fact, it runs more than
20 times faster than the ILP-based exact algorithm in PedPahse [17,18] and is more
accurate than the heuristic algorithm in PedPhase [16]. We expect that the speed up
will grow quickly with m and n as the worst-case time complexity of the ILP-based
algorithm is at least (mn)k.

The crux of our algorithm is to formulate k-RHC as an ILP based on the system of
linear equations developed in [30,31] (also in [22]). For each instance generated by the
probabilistic model, we try to identify small areas of the pedigree where a recombinant
might have occurred by comparing the linear (equality) constraints in the ILP. Once the
locations of all k recombinants are determined (or enumerated), the instance is trans-
formed to a tree ZRHC instance and solved in linear time by using one of the algorithms
in [5,20,22].

The rest of the paper is organized as follows. In Section 2, we present an ILP formu-
lation of k-RHC based on the system of linear equations introduced in [30,31]. Section
3 reviews some graph data structures and constraint generation techniques from [30,31]
that can be used to make the ILP more compact. We present the efficient algorithm for
k-RHC on tree pedigrees and analyze its success probability in Section 4. Due to the
page limit, we will omit all the technical proofs, figures, tables, and pseudocodes as well
discussions on the implementation of the algorithm and our experimental results in this
extended abstract and present them in the full paper which will soon be submitted to a
journal.

2 An Integer Linear Program for k-RHC

In this section, we formulate k-RHC as an ILP based on the system of linear equations
in [30,31] for solving ZRHC. All the definitions are the same as in [30,31] except for
the definition of the h-variables. Throughout this paper, n denotes the number of the in-
dividuals (or members) in the input pedigree and m the number of marker loci. Without
loss of generality, suppose that each allele in the given genotypes is numbered numer-
ically as 1 or 2 (i.e. the markers are assumed to be bi-allelic, which makes the hardest
case for MRHC [16]), and the pedigree is free of genotype errors (i.e. the two alleles
at each locus of a child can always be obtained from its respective parents). Hence, we
can represent the genotype of member j as a ternary vector g j as follows: g j[i] = 0
if locus i of member j is homozygous with both alleles being 1’s, g j[i] = 1 if the lo-
cus is homozygous with both alleles being 2’s, and g j[i] = 2 otherwise (i.e. the locus
is heterozygous). For any heterozygous locus i of member j, we use a binary variable
p j[i] to denote the phase at the locus as follows: p j[i] = 0 if allele 1 is paternal, and
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p j[i] = 1 otherwise. When the locus is homozygous, the variable is set to g j[i] for some
technical reasons (so that the equations below involving p j[i] will hold). Hence, the
vector pj describes the paternal and maternal haplotypes of member j. Observe that the
vectors p1, . . . , pn represent a complete haplotype configuration of the pedigree. Also,
for technical reasons, define a vector w j for each member j such that wj[i] = 0 if its i-th
locus is homozygous and wj[i] = 1 otherwise.

Suppose that member jr is a parent of member j. We introduce an auxiliary binary
variable h jr , j[i] to indicate which allele of jr is passed to j at locus i. If jr gives its
paternal allele to j at locus i, then h jr , j[i] = 0; otherwise h jr , j[i] = 1. Suppose that j is
a non-founder member with its father and mother being j1 and j2, respectively. We can
define two linear (constraint) equations over the field F(2) to describe the inheritance
of paternal and maternal haplotypes at j on locus i respectively:{

p j1[i] + h j1, j[i] · wj1 [i] = p j[i]
p j2[i] + h j2, j[i] · wj2 [i] = p j[i] + wj[i]

(1)

Denoting d j1, j = 0 and d j2, j = w j, the above equations can be unified into a single
equation as:

p jr [i] + h jr , j[i] · w jr [i] = pj[i] + d jr , j[i] (r = 1, 2) (2)

If there are no recombinants in the pedigree, h jr, j[i] = c (which is some constant) for all
i. Conversely, if h jr , j[i] � h jr, j[i + 1], there must be a recombinant from member jr to
member j between locus i and locus i+1. Formally, we can express the k-RHC problem
as an ILP: ∑

for all parent-child pairs ( jr, j)

∑m−1
i=1

∣∣∣h jr , j[i] − h jr , j[i + 1]
∣∣∣ ≤ k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pl[i] + hl, j[i] · wl[i] = p j[i] + dl, j[i] 1 ≤ i ≤ m, 1 ≤ j, l ≤ n, l is a parent of j
p j[i] = g j[i] 1 ≤ i ≤ m, 1 ≤ j ≤ n, g j[i] � 2
wj[i] = 1 1 ≤ i ≤ m, 1 ≤ j ≤ n, g j[i] = 2
wj[i] = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n, g j[i] � 2
dl, j[i] = wj[i] 1 ≤ i ≤ m, 1 ≤ j, l ≤ n, l is the mother of j
dl, j[i] = 0 1 ≤ i ≤ m, 1 ≤ j, l ≤ n, l is the father of j

(3)
where g j[i],wj[i], dl, j[i] are all constants depending on the input genotypes, and p j[i],
hl, j[i] are the unknowns. Again, the equality constraints are defined over F(2) whereas
the (only) inequality constraint is defined over all integers. Note that, the number of
p-variables is exactly mn and the number of h-variables is at most 2mn. This ILP is
different from the ILP for MRHC used in [17,18] which is not based on the system of
linear equations. Observe that for any member j, if j or any of its parents are homozy-
gous at locus i, then p j[i] is fixed based on Equation 3. Such p-variables are called
pre-determined.

3 Some Graph Structures and a Compact ILP in h-Variables

As in [30,31], the above ILP can be transformed to one concerning only the h-variables.
This is not surprising because the h-variables completely describes the inheritance re-
lationship in the pedigree, including the locations of recombinants. In this section, we
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review some useful graph structures and the generation of a sufficient set of equality
constraints on h-variables introduced in [30,31]. Again, all the definitions are the same
as in [30,31] except for the definition of the h-variables.

3.1 The Pedigree Graph and Locus Graphs

In [30,31], the input pedigree is transformed into a pedigree graph by connecting each
parent directly to his children. Although the edges in the pedigree graph representing
the inheritance relationship between a parent and a child are directed, we consider them
as undirected when dealing with linear constraints. Thus, these edges will sometimes
be thought of as directed but other times as undirected according to the context. Clearly,
such a pedigree graph G = (V, E) may be cyclic due to mating loops or multiple children
shared by a pair of parents. Let T (G) be any spanning tree on G. T (G) partitions the
edge set E into two subsets: the tree edges and the non-tree edges (or cross edges). Let
EX denote the set of cross edges. Since |E| ≤ 2n and the number of edges in T (G) is
n − 1, we have |EX| ≤ n + 1.

For any fixed locus i, the value wl[i] can be viewed as the weight of each edge
(l, j) ∈ E, where l is a parent of j. We construct the i-th locus graph Gi as the sub-
graph of G induced by the edges with weight 1. Formally, Gi = (V, Ei), where Ei =

{(l, j)| l is a parent of j,wl[i] = 1}. The i-th locus graph Gi induces a subgraph of the
spanning tree T (G). Since the subgraph is a forest, it will be referred to as the i-th
locus forest and denoted by T (Gi). The locus graphs can be used to identify some im-
plicit constraints on the h-variables as follows. First, for any edge (l, j) ∈ E, define
hl, j[i] = h j,l[i] and dl, j = d j,l.

Lemma 1. [30,31] For any path P = j0, . . . , jt in locus graph Gi connecting vertices
j0 and jt, we have

p j0 [i] + p jt [i] +
t−1∑
r=0

h jr , jr+1 [i] + d jr, jr+1 [i] = 0 (4)

Corollary 1. [30,31] For any cycle C = j0, . . . , jt, j0 in Gi, there exists a binary
constant b defined as b =

∑t
r=0 d jr , jr+1 mod t+1 [i] such that

∑t
r=0 h jr, jr+1 mod t+1 [i] = b.

Corollary 2. [30,31] Suppose that P = j0, . . . , jt is a path in Gi connecting vertices
j0 and jt, and the variables p j0[i] and p jt [i] are pre-determined. There exists a binary
constant b defined as b = p j0[i] + p jt [i] +

∑t−1
r=0 d jr, jr+1 [i] such that

∑t−1
r=0 h jr , jr+1 [i] = b.

3.2 Linear Equality Constraints on the h-Variables

As in [30,31], we generate a sufficient set of linear equality constraints on the h-variables
by considering each edge in a locus graph. Such a set of constraints will guarantee a
feasible solution to the ILP in Equation 3. Note that since the edges broken in a locus
graph involve pre-determined p-variables, we do not have to introduce constraints to
cover them. The constraints can be classified into two categories with respect to the
spanning tree T (G): constraints for cross edges and constraints for tree edges.
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Cross Edge Constraints. Adding a cross edge e to the spanning tree T (G) yields a
cycle C in the pedigree graph G. Suppose the edge e exists in the i-th locus graph Gi,
and consider two cases of the cycle C with respect to Gi.

Case 1: The cycle exists in Gi. We introduce a constraint along the cycle as in Corollary
1. This constraint is called a cycle constraint. The set of such cycle constraints for edge
e in all locus graphs is denoted by CC(e), i.e.,

CC(e) = {(b, e) | b is associated with the cycle in T (Gi) ∪ {e}, 1 ≤ i ≤ m}.

The set of cycle constraints for all cross edges is denoted by CC =
⊎

e∈EX CC(e).

Case 2: Some of the edges of the cycle do not exist in Gi. This means that the cycle C
is broken into several disjoint paths in Gi by the pre-determined vertices. Since e exists
in Gi, exactly one of these paths, denoted as P, contains e. Observe that both endpoints
of P are pre-determined and thus Corollary 2 could give us a constraint concerning the
h-variables along the path. Such a constraint will be called a path constraint. The set of
such path constraints for e in all locus graphs Gi is denoted by CP(e), i.e.,

CP(e) =

{
(l, j, b, e)

∣∣∣∣∣∣ in T (Gi) ∪ {e}, b is associated with the path containing e
connecting two pre-determined vertices l and j, 1 ≤ i ≤ m

}
.

The set of path constraints for all cross edges is denoted by CP =
⊎

e∈EX CP(e).

Tree Edge Constraints. By Corollary 2, there is an implicit constraint concerning the
h-variables along each path between two pre-determined vertices in the same connected
component of T (Gi). Therefore, for each connected component T of T (Gi), we arbi-
trarily pick a pre-determined vertex in the component as the seed vertex, and generate
a constraint for the unique path in T (Gi) between the seed and each of the other pre-
determined vertices in the component, as in Corollary 2. Such a constraint will be called
a tree constraint.

To conform with the notation of path constraints and for the convenience of presen-
tation, we arbitrarily pick a tree edge denoted as e0, and write the set of tree constraints
at all loci as

CT =

{
(l, j, b, e0)

∣∣∣∣∣∣ in a connected component of T (Gi) with seed l, b is associated with
the path connecting vertices l and a predetermined vertex j, 1 ≤ i ≤ m

}
.

Define C = CC∪CP ∪CT. The subset of all the constraints in C generated in locus graph
Gi will be denoted as Ci. The next two lemmas are easy to prove.

Lemma 2. [30,31] |C| = |CC| + |CP| + |CT| = O(mn).

Lemma 3. None of the constraints in CP ∪CT are defined on a path that begins or ends
at a founder.

As in [30,31], we can prove that C forms a sufficient set of constraints, i.e. any solu-
tion in terms of the h-variables satisfying all these constraints would imply a feasible
solution in terms of both the h- and p-variables satisfying Equation 3. The proof is
very similar to the corresponding proof in [30,31] and therefore omitted. The following
lemma hence follows.
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Lemma 4. The k-RHC problem can be expressed as the following ILP:
∑

for all edges ( jr, j)

∑m−1
i=1

∣∣∣h jr, j[i] − h jr, j[i + 1]
∣∣∣ ≤ k

plus
all the linear equality constraints in C

(5)

4 An O(mn logk+1 n) Time Algorithm for k-RHC on Tree Pedigrees

As mentioned before, the basic idea of our algorithm is to locate all the k recombinants
first. Once we know the locations of all the recombinants, we can define the relationship
between h-variables at consecutive loci corresponding to the same edge in the pedigree
graph. For example, if there is a recombinant between locus i and locus i + 1 on edge
(u, v), hu,v[i] = hu,v[i + 1] + 1. If such a recombinant does not exist, hu,v[i] = hu,v[i + 1].
In this way, all the h-variables at different loci corresponding to the same edge can be
represented by a single h-variable in the ILP of Equation 5, and the k-RHC ILP is effec-
tively reduced to a ZRHC instance which can be solved by the linear-time algorithm in
[22]. Hence, the challenge here is how to locate the recombinants without exhaustively
enumerating all the possibilities in the entire pedigree. The key idea is that we com-
pare the constraints of C (as well as some additional constraints involving one or two
h-variables to be constructed in the next two subsections) at different loci to see if they
imply the necessity of a recombinants. For example, suppose that we have a constraint
along path P = j0, . . . , jt at locus i and another constraint along the same path P at
locus l (l > i). By Corollary 2, we have

∑t−1
r=0 h jr , jr+1 [i] = bi and

∑t−1
r=0 h jr, jr+1 [l] = bl. If

bi � bl, there is at least one pair of h-variables, say h jr, jr+1 [i] and h jr , jr+1 [l], that do not
have the same value. This would suggest a recombinant on the edge ( jr, jr+1) between
the loci i and l. Consider the collection of the markers between of loci i and l of each
member on the path P as the region where this recombinant could occur. The size of
the region is (t + 1)(l − i + 1). If the region is not very large, it contains at most one
recombinant with a high probability (since k is a constant). Thus, we could enumerate
all the possible locations of this recombinant in the region to locate it exactly.

Before we give the algorithm, we need some notations to describe a random in-
stance of k-RHC. For each founder j, we use the random variable q j,1[i] to represent j’s
maternal allele at locus i and q j,2[i] to represent j’s paternal allele at locus i. These q-
variables are independent and they collectively represent the founder haplotypes. Ran-
dom h-variables are used to represent the random inheritance. Although h-variables
concerning different edges in the pedigree are independent, the h-variable concerning
the same edge are not. The latter variables are related by the random recombinants.
For convenience, we call the edges in the pedigree graph adjacent to the founders the
founder edges. The other edges are called the non-founder edges. In the following sub-
sections, we will show that we can determine many h-variable values (or summations
of their values) on these two kinds of edges separately. These determined h-variables
and summations will be used as additional constraints besides C to aid the search for
the locations of recombinants.
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4.1 Determining h-Variables on Non-founder Edges

For each founder j and locus i, the phase p j[i] is only determined by the random founder
allele variables q j,1[i] and q j,2[i]. The p-variables of non-founders are determined by
both the q-variables and h-variables. When the h-variables are fixed, each phase p j[i] of
a non-founder is only determined by two random q-variables q f ,s[i] and qg,t[i]. In other
words, the paternal allele of member j at locus i is inherited from q f ,s[i] and its maternal
allele is from qg,t[i]. If ( f , s) = (g, t), the two alleles of j at locus i are inherited from
the same allele of some founder. In this case, the locus i of member j is homozygous
no matter what q f ,s[i], qg,t[i] are. We say that member j is pre-homozygous at locus i. If
( f , s) � (g, t), the two alleles of member j at locus i are inherited from different alleles
of the founders. Then the locus i of member j can be homozygous or heterozygous with
equal probability. We say that member j is pre-heterozygous at locus i.

Clearly, for a tree pedigree, all its members are pre-heterozygous at every locus. Us-
ing this property, the next lemma shows that the phases of many loci are pre-determined
around non-founder edges in a random k-RHC instance and thus we can determine the
h-variable values on many non-founder edges.

Lemma 5. Consider a random instance of k-RHC on a tree pedigree. If (u, v) is a non-
founder edge in the pedigree graph with u being the parent, then the probability for u
to be heterozygous at locus i and both u and v to be pre-determined at locus i (and thus
hu,v[i] to be determined) is at least 1/8.

4.2 Determining h-Variables on Founder Edges

Without loss of generality, we assume that each founder has at least two children (oth-
erwise recombinants on the edge between the founder and its only child cannot be
detected and in fact are unnecessary). For a founder x, if it is homozygous at locus i,
all the h-variables concerning locus i and founder edges incident on x will not appear
in any constraints. If it is heterozygous at locus i, its phase will not be pre-determined
for it has no parents. So, we cannot determine the h-variables on founder edges directly
like in Lemma 5. However, we can determine the summation of any pair of h-variables
concerning the same founder.

Lemma 6. Consider a random instance of k-RHC on a tree pedigree. If x is a founder
with children u and v, then the probability for a locus i to be heterozygous at x but
pre-determined at u and v (and thus the summation hx,u[i] + hx,v[i] to be determined) is
at least 1/8.

Now we are ready to describe how to locate the recombinants. We divide the loci of each
member (which could be a haplotype block) into m

a log n disjoint segments of size a log n
each, where a is a constant to be decided later on, and treat the interior and boundary
segments differently. (The boundary segments are the two segments at the end.) It turns
out that the boundary segments are much tougher to deal with.

4.3 Locating Recombinants in the Interior Locus Segments

Since we can determine each h-variable with probability 1/8 for every non-founder
edge, we can determine at least one h-variable in each segment with high probability
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for each non-founder edge. If there is at most one recombinant in any two consecutive
segments associated with the same non-founder edge, we can locate such a recombinant
in a small region of size O(log n) by comparing the determined h-variables of both
segments. If the values of two neighboring determined h-variables are equal, there is
no recombinant between the loci of the h-variables. Otherwise, there exists at least one.
Similarly, we can locate recombinants associated with the founder edges. Suppose that u
is a founder and v1, . . . , vl are its children. Because we can determine hu,vs [i]+hu,vt[i] for
each pair of children vs and vt at locus i with probability at least 1/8, we can determine
at least one summation hu,vs + hu,vt in each segment with high probability. If the values
of two neighboring determined summations are equal, there is no recombinant between
the associated loci. Otherwise, there exists at least one. The detailed location algorithm,
called Locate-Interior-Recombinants, will be given in the full paper.

Lemma 7. The procedure Locate-Interior-Recombinants can locate each recombinant
from an interior locus segment in a small region of size at most 4a log n correctly with

probability at least 1 − k2 6a log n
(m−1)n −

2nm
a log n

(
7
8

)a log n
.

4.4 Locating Recombinants in the Boundary Locus Segments

For a non-founder (or founder) edge (u, v), suppose that is is the smallest locus such
that hu,v[is] (or a summation containing hu,v[is]) can be determined and it is the largest
such locus. By Lemma 7, each recombinant between loci it and ib on edge (u, v) is
located in a small region of size at most 4a log n. But the lemma does not show how
to decide if there exists a recombinant between loci 1 and is or one between loci it and
m. We call these two regions, which are typically contained in the boundary segments,
the boundary regions of edge (u, v). In this subsection, we will show how to locate
recombinants from the boundary regions in small regions of size O(log n).

For convenience, define the length of a constraint as the number of h-variables in
it. First, we give an upper bound on the maximum length of any constraint in the set
C = CC ∪ CP ∪ CT.

Lemma 8. For any constant b, the length of every constraint in the set C is less than

b log n with probability 1 − 2mn2
(

1
2

) 1
4 b log n

.

Now we give the basic idea of locating recombinants in the boundary regions. Let us
consider two adjacent loci i − 1 and i. Suppose that all the h-variables at locus i have
already been determined. In other words, for the h-variables concerning non-founder
edges, their values are known, and for the h-variables corresponding to founder edges,
we know the summation of any pair of h-variables concerning edges incident on the
same founder vertex. Note that for a founder u with children v1, . . . , vl, the summa-
tion hu,vs [i] + hu,vt[i] for any pair of children vs, vt (s < t) can be calculated using∑t−1

j=s hu,v j[i] + hu,v j+1[i]. If there is no recombinant between loci i − 1 and i, all the h-
variables at locus i − 1 will be the same as those at locus i. So, we can set hu,v[i − 1] =
hu,v[i] for each non-founder edge (u, v) and hu,v j[i− 1]+ hx,v j+1[i− 1] = hu,v j[i]+ hu,v j+1[i]
for each founder u with children v1, . . . , vl, and then check if all the constraints in the
set Ci−1 hold. Note that by Lemma 3, each constraint in Ci−1 contains an even number



An Efficient Algorithm for Haplotype Inference on Pedigrees 335

of founder edges incident on the same founder. So, the validity of each constraint in
Ci−1 can be determined. If any constraint is unsatisfied, there is at least one recombi-
nant on this constraint (path) between loci i − 1 and i. Since each constraint contains
fewer than b log n h-variables by Lemma 8, it can be regarded as a small region. Thus,
each constraint contains no more than one recombinant with high probability. If all the
constraints hold, there are no recombinants between these two loci. Otherwise, we can
locate each recombinant in a region of size b log n (i.e. some unsatisfied constraint in
Ci−1). By iterating this towards locus 1 and locus m separately, we can locate all bound-
ary recombinants.

The detailed algorithm for locating boundary recombinants, called Locate-Boundary-
Recombinants, will be given in the full paper. It assumes that the procedure Locate-
Interior-Recombinants has been run to locate all recombinants in the interior regions.
Once all the recombinants have been located, Locate-Boundary-Recombinants in fact
returns a feasible (final) solution in terms of the p-variables.

Our main algorithm, Tree k-RHC, first calls a simple preprocessing procedure to set
up the constraints and then the procedures Locate-Boundary-Recombinants and Locate-
Interior-Recombinants to locate the recombinants and construct a feasible solution.
Before we analyze the performance of algorithm Tree k-RHC, we prove two lemmas.
An h-variable is called active if it appears in some constraints in C. Otherwise, it is
inactive. Clearly, the values of inactive h-variables have no impact on the constraints.

Lemma 9. For any edge (u, v) and set of 2a log n consecutive loci i + 1, i + 2, . . . , i +
2a log n, at least one of hu,v[i+1], . . . , hu,v[i+2a log n] is active with probability at least

1 − 2nm
a log n

(
7
8

)a log n
.

The next lemma shows that we can focus on active h-variables when trying to locate the
recombinants.

Lemma 10. For each edge (u, v), if hu,v[i1] � hu,v[i2] and all the h-variables hu,v[i]
(i1 < i < i2) are inactive, then there is a recombinant between loci i1 and i2 on edge
(u, v). Moreover, any two consecutive loci in this interval would be a feasible location
for this recombinant.

To prove that the algorithm Tree k-RHC finds a feasible solution in O(mn logk+1 n) time
with high probability, we need only show that all the recombinants can be located in the
correct regions with high probability.

Theorem 1. For any a > 0, b > 0 and m > 2a log n, the algorithm Tree k-RHC solves
the probabilistic k-RHC problem on tree pedigrees in time O

(
mn log n

(
max{4a,b} log n

)k)
with probability at least 1− k2 6a log n

(m−1)n −
2nm

a log n

(
7
8

)a log n
−2mn2

(
1
2

) 1
4 b log n

− k(k−1) 2ab log2 n
(m−1)n .

Corollary 3. When 90 log n < m < n3, Tree k-RHC solves the probabilistic k-RHC

problem on tree pedigrees in time O(mn logk+1 n) with probability 1 − O(k2 log2 n
mn +

1
n2 ).
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