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There are two main factors limiting the performance of quantum key distribution—channel transmis-
sion loss and noise. Previously, a linear bound was believed to put an upper limit on the rate-transmittance
performance. Remarkably, the recently proposed twin-field and phase-matching quantum key distribution
schemes have been proven to overcome the linear bound. In practice, due to the intractable phase fluc-
tuation of optical signals in transmission, these schemes suffer from large error rates, which renders the
experimental realization extremely challenging. Here, we close this gap by proving the security based
on a different principle—encoding symmetry. With the symmetry-based security proof technique, we can
decouple the privacy from the channel disturbance, and eventually remove the limitation of secure key
distribution on bit error rates. As a direct application, we show that the phase-matching scheme can yield
positive key rates even with high bit error rates up to 50%. In the simulation, with typical experimental
parameters, the key rate is able to break the linear bound with an error rate of 13%. Meanwhile, we pro-
vide a simple finite-data size analysis for the phase-matching scheme under this symmetry-based analysis,
which can break the bound with a reasonable data size of 1012. Encouraged by high loss and error toler-
ance, we expect the approach based on symmetry-protected privacy will provide a different insight into
the security of quantum key distribution.
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I. INTRODUCTION

Quantum key distribution (QKD) offers information the-
oretically secure means to distribute private keys between
distant parties by harnessing the laws of quantum mechan-
ics [1,2]. The commercialization and application of QKD
raise requirements in both impregnable security and out-
standing performance. For a review of the subject, see the
recent review article [3] and references therein.

The security, as the cornerstone of QKD, has been
proven theoretically at the end of the last century [4–6]
on the protocol level, while rigorous definition [7,8] and
strict finite-size analysis [9,10] have been provided later.
The security of QKD is based on the idea that informa-
tion gain means disturbance. That is, an eavesdropper’s
attempt of learning the keys would inevitably introduce
disturbance to the quantum states. To characterize the
information leakage, the disturbance in the channel is mon-
itored in real time. In practice, the physical devices used in
practical implementations often deviate from the assumed
theoretical models [11], resulting in various loopholes
and corresponding attacks [12,13]. In 2012, measurement-
device-independent quantum key distribution (MDI QKD)
has been presented [14], which removes the theoretical
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assumptions on measurement devices in security analysis
and hence closes all the detection loopholes.

The performance of QKD, on the other hand, char-
acterized by the key generation rate with respect to the
communication distance, reflects its value in commer-
cial cryptographic tasks. Under the circumstances that
quantum repeaters [15–17], as the ultimate solution to
extend quantum communication against losses, are cur-
rently infeasible, the linear key-rate-transmittance bound
[18] was widely believed to hold for all the point-to-point
QKD schemes without repeaters. For the commonly used
telecom fiber channel, the transmittance decreases expo-
nentially with the transmission distance, which puts an
upper limit on quantum transmission distance. Interest-
ingly, a recent work named twin-field QKD shows the
possibility of phase-encoding MDI QKD protocol to break
the linear key-rate bound [19]. A follow-up work, named
phase-matching quantum key distribution (PM QKD) has
been proposed [20,21], which has been rigorously shown
to be able to beat the linear bound even with statistical fluc-
tuations [22]. The twin-field-like MDI QKD is currently a
heated topic [23–26].

In PM QKD, only one basis is adopted for key gener-
ation and parameter estimation, which is distinct from the
former BB84-type protocol while sharing some similarities
with the Bennett-1992 protocol [27]. Essentially, the PM
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QKD protocol can be viewed as an MDI version of the
Bennett-1992 protocol [28]. To understand the security of
PM QKD, we would resort to the nonorthogonality of the
encoded state with 0/π encoding. However, the analy-
sis based on nonorthogonality usually cannot tolerate high
channel losses.

In this work, for a generic MDI QKD model, we estab-
lish a connection between the encoding symmetry and
privacy, which serves as a perspective of QKD security dif-
ferent from the conventional basis complementarity [29].
In this symmetry-based security proof, we first define
symmetric states given certain encoding operations, then
explore the realistic construction of symmetric states, and
finally propose efficient methods to estimate the ratio of
detection caused by symmetric states. For this generalized
MDI QKD framework, the symmetric state can promise
perfect privacy, i.e., with no information leakage. As a
result, the amount of information leakage only depends on
the state produced by the source and is irrelevant to the
channel condition. A similar phenomenon is also observed
in the round-robin differential-phase-shifting protocol [30].
The symmetry-based security proof allows higher error
tolerance compared with the original BB84 protocol. Fur-
thermore, we complete the finite-size analysis with an
improved decoy-state method [31–33].

II. ENCODING SYMMETRY AND PERFECT
PRIVACY

To show the close relationship between encoding sym-
metry and privacy, we introduce a generalized MDI QKD
framework. As is shown in Fig. 1, during each run, Alice
and Bob start with a preshared bipartite state ρAB, where
the systems held by Alice and Bob are denoted as A and
B, respectively. They generate random bits κa and κb inde-
pendently and apply U[κa(b)] ≡ Uκa(b) to their subsystem
A and B separately, where U2 = I . Then, the modulated
state, denoted as ρ ′

AB(κa, κb), is sent to an untrusted party

FIG. 1. Schematic diagram of a generalized discrete-variable
MDI QKD framework. Here we make no assumption on Alice’s
and Bob’s sources or their encoding unitary operations. The only
assumption is the symmetric property of the encoding operation,
i.e., U2 = I .

Eve, who measures the joint state, aiming to discriminate
whether κa = κb or κa �= κb, and announces the detec-
tion result. In each round, Alice and Bob encode two-bit
information,κa, κb, into the state ρAB. The encoded state
ρ ′

AB(κa, κb) can be written as

ρ ′
AB(κa, κb) = [UA(κa)⊗ UB(κb)]ρAB[UA(κa)⊗ UB(κb)]†.

(1)

After many rounds, Alice and Bob generate random bit
strings Ka and Kb, respectively. With the assistance of
Eve’s announcement and classical error correction, Bob
reconciles his bit string Kb to Ka. They then perform
privacy amplification on Ka to extract a private key.

Note that, we do not make any restriction on the dimen-
sion of the system A and B and the exact form of encoding
operation U. The only reasonable assumption made on the
source is that the encoding operation should be closed,
i.e., U2 = I . We believe such a MDI QKD framework is
able to cover a wide range of discrete-variable MDI QKD
protocols.

Now, let us focus on a symmetric case, where the pre-
shared state ρAB remains invariant under the transformation
of encoding operation UA ⊗ UB. That is, a pure state |ψ〉AB
is invariant under the encoding operation if

|ψ〉AB = UA ⊗ UB |ψ〉AB . (2)

Then, |ψ〉AB is an eigenstate of UA ⊗ UB. Since (UA ⊗
UB)

2 = I , the eigenvalue of UA ⊗ UB is either +1 or −1.
We name the eigenvalue +1 subspace of UA ⊗ UB as the
even space Heven and the eigenvalue −1 subspace as the
odd space Hodd. The states lie in Heven are called even
states and the states lie in Hodd are called odd states.
Together they are called parity states. Obviously, a mixture
of odd (even) states is still an odd (even) state.

For a generic mixture of pure parity states, ρAB =∑
i pi |ψi〉 〈ψi|, where all the components {|ψi〉} are parity

states, it remains invariant under UA ⊗ UB,

ρ ′
AB(0, 0) = ρ ′

AB(1, 1),

ρ ′
AB(0, 1) = ρ ′

AB(1, 0).
(3)

The raw key-bit information κa is “hidden” on the encoded
state ρ ′

AB(κa, κb). However, when Eve holds the purifica-
tion of ρAB, she may still learn κa from the encoded state.
Without loss of generality, we consider a purification of
ρAB, |�〉ABC = ∑

i
√

pi |ψi〉AB |i〉C, where system C is held
by Eve. Under the encoding operation UA ⊗ UB, all the odd
and even state components of {|ψi〉} will gain a factor −1
and 1, respectively. If there are only odd or even compo-
nents in ρAB, the purified state |�〉ABC will keep unchanged
under the encoding operation. On the other hand, the coex-
istence of odd and even components in ρAB will lead to
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a change of relative phase in |�〉ABC, allowing Eve to
discriminate ρ ′

AB(0, 0) and ρ ′
AB(1, 1).

To make the observations above rigorous, in Appendix
A, we analyze the security of QKD with symmetric
encoding by employing a standard phase-error-correction
approach [5,6,29]. When the input state ρAB is an (even or
odd) parity state, the symmetric encoding shown in Fig. 1,
provides perfect privacy, which is reflected as a zero phase-
error rate, E(ph) = 0. Note that a similar result has been
derived in a coherent-state-based twin-field QKD work
using a different approach [34].

Theorem 1. In the protocol shown in Fig. 1, if Alice and
Bob share an (even or odd) parity state ρAB at the begin-
ning of each run, then Eve has no information on Alice’s
(or Bob’s) encoded key bit κa (or κb), i.e., perfect privacy.

To generalize the discussion, when Alice and Bob’s
preshared state ρAB is a mixture of even and odd state,

ρAB = poddρodd + pevenρeven, (4)

then by applying Theorem 1, we can estimate the ratios of
odd and even components causing effective detection,

qodd = podd
Yodd

Q
,

qeven = peven
Yeven

Q
,

(5)

where Yodd, Yeven, and Q are the successful detection proba-
bility of ρodd, ρeven, and ρAB, respectively. The phase-error
rate is E(ph) = qeven. Therefore, the key rate is given by

r = 1 − H(E)− H(qeven), (6)

where E is the quantum bit error rate. Here, we can see
that as long as the final state postselected by successful
detection is close to a parity state (either even or odd), the
information leakage can be bounded.

III. IMPROVED ANALYSIS OF
PHASE-MATCHING QUANTUM KEY

DISTRIBUTION

The problem for implementing symmetric encoding is
that both the parity states ρodd and ρeven are usually non-
local. That is, they cannot be obtained by Alice and Bob
via independent local state preparation. Thus, they will
inevitably prepare a mixture of even and odd parity states
in practice. The PM QKD protocol can be regarded as
a special realization of symmetric encoding, where Alice
and Bob construct the parity state-input ρAB using two opti-
cal modes based on independent laser sources. To construct
parity state ρAB from experimentally accessible coherent

states, a natural way is to perform simultaneous 0/π phase
randomization on two coherent states |√μa〉A , |√μb〉B to
decouple the odd and even photon components.

For the convenience of parameter estimation, we con-
sider the PM QKD protocol where Alice and Bob ran-
domize the phase φ on |√μaeiφ〉A , |√μbeiφ〉B continuously
so that the photon-number components {|m, n〉}m+n=k are
decoupled,

ρAB =
∞∑

k=0

pkρk, (7)

where ρk a pure parity state since it is a Fock state. The
overall phase error of PM QKD is given by

qeven = 1 −
∑

k

q2k+1, (8)

where qk is the fraction of detection when Alice and Bob
send out k-photon signals,

qk = Pμt(k)
Yk

Qμt

. (9)

Here μt = μa + μb; Yk is the yield of k-photon compo-
nent; Qμt is the overall gain, i.e., the successful detection
probability when Alice and Bob send out coherent lights
with intensities of μa and μb, respectively; and Pμt(k) =
e−2μ(2μ)k/(k!) is the Poisson distribution. In order to esti-
mate the information leakage, we only need to estimate the
fraction of odd-state detections.

The simultaneous phase randomization is also nonlocal.
To achieve this in practice, Alice and Bob first random-
ize the phase independently, and then postselect the pulses
with the same random phase by phase announcement and
sifting [35]. The overall privacy, characterized by the over-
all phase-error rate, will not change after the random-phase
announcement [20,22], which indicates that simultaneous
phase randomization can be replaced by independent phase
randomization and postselection.

In each turn, Alice and Bob each generate a random
phase φa(b) and a random key bit κa(b). They then modulate
their coherent pulse |√μa(b)〉 by a phase [φa(b) + πκa(b)].
After Eve announces the detection result, they announce
the random phases φa(b) to group the signals with the same
random-phase difference. From the detection result, they
estimate the information leakage and extract the keys from
the encoding bits. In practice, the continuous phase ran-
domization can be replaced with discrete randomization
[36]. The detailed analysis of PM QKD with phase post-
selection and discrete phase randomization is presented in
Appendix B.

In discrete-phase encoding, Alice and Bob randomly
pick up one of the D phases equally distributed in
[0, 2π). They announce the discrete random phase φa =
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(2π/D)ja and φb = (2π/D)jb with the indexes ja(b) =
0, 1, . . . , D − 1. Based on the random-phase difference,
they group the signals by js = (jb − ja) mod (D/2). For
example, when D = 16, the signals with jb − ja = 1 and
9 are in the same group. After grouping, there is D/2
groups with the label of js = 0, 1, . . . , D/2 − 1. In the ideal
case, the signals with js = 0 are the signals with matched
phase. For the signals with js �= 0, there is an intrinsic mis-
matched phase φδ . It is conservative to regard φδ being
caused by Eve in security analysis. For each group of data,
the information leakage can be bounded by qeven in Eq. (8),
regardless of Eve’s measurement setting or the bit error
rates.

Thanks to this decoupled relationship between privacy
and channel disturbance, we can improve the postprocess-
ing step by utilizing the unaligned data with js �= 0. Alice
and Bob first reconcile their sifted raw key bits Ka and Kb
for each group js separately. If the error rate in a group
of data is too large, they can simply discard that group.
Denote the group set J to be the set of remaining phase-
group indexes {js}. That is, if js ∈ J , then the phase group
js is kept for key generation. They then estimate the even
photon fraction qeven for all the remaining data and perform
privacy amplification. Note that qeven is the same for differ-
ent data group js. The overall key rate of PM QKD, taking
the phase sifting and loss into account, is given by

R = 2Qμ

D

∑

js∈J

[
1 − H(qeven)− fH(Ejs)

]
, (10)

where f is the error-correction efficiency, and Ejs is the bit
error rate of phase group js with μia = μib = μ/2. In the
experiment, all the parameters in Eq. (10) can be directly
obtained except for qeven, which needs to be bounded by
the decoy-state method. It has been shown in the liter-
ature that with the infinite decoy-state method [32], all
the parameters, including qeven can be estimated accurately
[20,21].

IV. ROBUSTNESS TO LOSS AND NOISE

To test the capability to tolerate high noises, we simulate
the performance of PM QKD in the asymptotic limit, under
a different level of misalignment errors, with D = 16 dis-
crete phases. In the simulation model, there are three major
error sources: the system misalignment error ed, caused
by phase fluctuation and system misalignment; the back-
ground error, caused by dark counts pd; and the mismatch
error e	(js) caused by the intrinsic mismatch for different
phase groups,

e	(js) =

⎧
⎪⎪⎨

⎪⎪⎩

sin2
(
π js
D

)
, 0 ≤ js ≤ D

4
,

sin2
(
π

2
− π js

D

)
,

D
4
< js ≤ D

2
− 1,

(11)

which is related to the index deviation 0 ≤ js ≤ D/2 − 1.
The overall bit error rate E(js)μ is then given by

E(js)μ = min
(

{pd + ημ[e	(js)+ ed]}e−ημ

Qμ

, 0.5
)

, (12)

where η is the transmittance.
In practice, the phase drift caused by lasers and fiber

links will degrade the performance of PM QKD. To avoid
the effect caused by phase drift, one demanding way is
to introduce active feedback and phase locking. Another
enhancement is to introduce the phase postcompensation
method [20], where Alice and Bob can estimate the phase
drift φδ by strong light pulses, record it, and take it into
account in the sifting step. Suppose the phase drift is slow,
then Alice and Bob are able to figure out the closest dis-
crete phase φj ≡ (2π/D)j to φδ . Denote the index of the
closest discrete phase as jδ . During the sifting step, Alice
and Bob modify the definition of js to js = ja − jb − jδ .
In this sense, Alice and Bob “postcompensate” the effect
caused by phase drift.

With the parameters given in Table I, we simulate the
asymptotic key-rate performance under the setting of sys-
tem misalignment error rates ed of 1, 5, 9, and 13%. Note
that the normal symmetric BB84 protocol cannot yield any
positive key rate under the misalignment error ed ≥ 11%.
From Fig. 2, one can see, even if ed = 13%, the key rate of
PM QKD is still able to surpasses the linear bound when
l > 330 km. This illustrates the robustness of PM QKD
against both noisy and lossy channels. In an extreme case
when the source-light intensity μ → 0 and the dark count
of the detector pd = 0, the single photon fraction among all
the detected signal q1 → 1 according to Eq. (9), hence the
phase-error rate E(ph) → 0. In this case, the key rate of PM
QKD is positive even when the bit error E(js)μ is close to
50%. In Appendix D, we compare our analysis to the one
in the literature [20] and demonstrate its advantage when
ed gets larger.

TABLE I. List of parameters for the simulations shown in
Figs. 2 and 3. The failure probability ε and sending rounds N
is used for the finite data-size analysis in Fig. 3.

Parameters Values

Dark count rate pd 1 × 10−8

Error-correction efficiency f 1.1
Detector efficiency ηd 20%
Number of phase slices D 16
BB84 misalignment error e(BB84)

d 1.5%
Failure probability ε 1.7 × 10−10

Sending rounds N 1 × 1012 or 1 × 1013

064013-4



SYMMETRY-PROTECTED PRIVACY: BEATING... PHYS. REV. APPLIED 13, 064013 (2020)

FIG. 2. Rate-distance performance of PM QKD under differ-
ent system misalignment error rates ed. For BB84, ed = 1.5%.
The nonsmooth point indicates the places where the key contri-
bution from unaligned groups with js �= 0 turns to 0.

V. FINITE-SIZE PERFORMANCE

With the symmetry-based security proof of PM QKD,
the finite-size analysis can be considerably simplified. In a
complete finite-size analysis, we should take the cost and
failure probability of channel authentication, error verifica-
tion, privacy amplification, and parameter estimation into
account. However, the cost of the first three steps is negli-
gible comparing to the one in parameter estimation. When
the final key length is much larger than 37 bits, we can
ignore the corresponding failure probability with a con-
stant secret-key cost [10]. For simplicity, we ignore these
parts in our analysis. The phase-error estimation is at the
core of the finite-size analysis. According to Eqs. (8) and
(9), our task is to estimate the number of clicks caused
by odd-photon fraction in the phase groups J , with signal
intensity μa = μb = μ/2. The Chernoff bound is applied
to estimate the statistical fluctuation of decoy parameters
[37]. We leave the details of the finite decoy-state analysis
in Appendix C.

To demonstrate the practicality of PM QKD, we per-
form a simulation with finite data sizes, as shown in
Fig. 3. The key rate beat the linear bound at 270 km
under the condition where data size N = 1 × 1012 and
system misalignment error ed = 3%. When the system
misalignment error is 6%, which can be easily realized
in current experimental implementation, the linear bound
is exceeded at a similar length of 270 km, where, as an
expense, the data size should be enlarged into N = 1 ×
1013. Note that in the decoy analysis, the rounds with mis-
matched phases are also used for parameter estimation,
which is substantiated by the fact that the single-photon
state is ρ1 = 1

2 (|01〉AB 〈01| + |10〉AB 〈10|), regardless of

FIG. 3. Rate-distance performance of PM QKD under the data
size N = 1 × 1012, 1 × 1013 or infinitely large, and misaligned
error ed = 3 or 6%.

the sending intensity and random-phase difference. With
this observation, the size of available data for parame-
ter estimation is enlarged, which marginally reduces the
impact of statistical fluctuation and results in a higher key
rate.

VI. DISCUSSION

We analyze the security of a generalized MDI QKD
framework, from which we provide a perspective where
the QKD security originates from the encoding symme-
try. As an example, we show that the parity symmetry in
the encoded states provides the privacy of PM QKD. In
the same manner, here we conjecture that the translation
symmetry of encoded state in the round-robin differential-
phase-shifting protocol may explain why the information
leakage will not be affected by the channel noise, and leave
it for future works.

The symmetry-protected quality not only makes PM
QKD robust against channel disturbance but also simplifies
the parameter estimation and finite-size analysis consider-
ably. With improved decoy-state analysis, we demonstrate
the capability of PM QKD to surpass the linear bound with
data size N = 1 × 1013, currently accessible experimen-
tal devices, and a high noise level of 6%. Note that, the
discrete phase randomization with {φ = 2π(j /D)}D−1

j =0 and
Alice and Bob’s imbalanced signal intensity μa,μb will
not destroy the parity-symmetry essentially. This implies
a natural extension of PM QKD analysis to the cases with
few discrete random phases and the imbalanced intensity
arrangement of Alice and Bob.

Due to the universality of encoding symmetry and the
existence of symmetric states, we expect this symmetry-
based analysis will benefit the security proof of a large
variety of QKD protocols. For example, the analysis of
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encoding operation with parity symmetry U2 = I in this
work can be extended to the n-fold rotational symmetry
case, i.e., Un = I , where n ≥ 2. Note that, our analysis is
irrelevant to the exact form of the source and measure-
ment device. Therefore, this symmetry-based analysis can
be extended to the case where the security proof is not
obvious in a usual complementarity-based security view,
for example, the continuous-variable QKD protocol, where
the measurement is performed by homodyne detection on
optical modes.
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APPENDIX A: PROOF OF
SYMMETRY-PROTECTED PRIVACY

In this section, we provide security analysis of symmet-
ric encoding QKD. We first review the security proof based
on phase-error correction [5,6]. Then, we present a gen-
eral entanglement-based symmetric encoding protocol by
establishing the link between symmetric states and perfect
privacy.

Denote D(HA) as the space of density operators acting
on HA and L(HA) as the space of linear operators acting on
HA. For a qubit system A′, the Hilbert space is denoted by
HA′

. The Pauli operators on HA′
are XA′ , YA′ , and ZA′ . The

eigenstates of XA′ , YA′ , and ZA′ are {|±〉A′ }, {|±i〉A′ }, and
{|0〉A′ , |1〉A′ }, respectively. The X -basis measurement is
denoted by MX : {|+〉A′ 〈+| , |−〉A′ 〈−|}. The Z-basis mea-
surement is denoted by MZ : {|0〉A′ 〈0| , |1〉A′ 〈1|}. The four
Bell state are

|�±〉 = 1√
2
(|00〉 ± |11〉),

|�±〉 = 1√
2
(|01〉 ± |10〉).

(A1)

For a qubit A′ and a qudit A, the controlled-U operation is
defined as

CA′A = |0〉A′ 〈0| ⊗ IA + |1〉A′ 〈1| ⊗ UA. (A2)

1. Security definition

In QKD, the two communication parties, Alice and Bob,
will finally obtain a pair of bit strings Sa and Sb with a

length of Nk (if the protocol succeeds), which can be cor-
related to a quantum state held by Eve. The joint state ρABE
is a classical-classical-quantum state,

ρABE =
∑

sa,sb

PrSa,Sb(sa, sb) |sa〉A 〈sa| ⊗ |sb〉B 〈sb| ⊗ ρ
(sa,sb)
E ,

(A3)

where Sa, Sb are random variables and sa, sb ∈ {0, 1}Nk are
the values. In particular, an ideal key state held by Alice
and Bob is described by the private state,

ρ ideal
ABE = (2Nk )−1

∑

s

|s〉A 〈s| ⊗ |s〉B 〈s| ⊗ ρE , (A4)

where sa = sb = s implies that Alice and Bob hold the
same string, and ρE is independent of s, that is, Eve has
no information on the key-string variable S.

A QKD protocol is defined to be ε secure, if the final
distilled state ρABE is ε closed to any private state ρ ideal

ABE
with a proper chosen ρE

min
ρE

1
2
‖ρABE − ρ ideal

ABE ‖1 ≤ ε, (A5)

where ‖A‖1 ≡ Tr[
√

A†A] is the trace norm.
Usually, we would like to decompose the secret

definition to two parts, secrecy and correctness. A QKD
protocol is defined to be εcor correct, if the probability dis-
tribution PrSa,Sb(sa, sb) of the final state ρABE in Eq. (A3)
satisfies

PrSa,Sb(sa �= sb) ≤ εcor. (A6)

A QKD protocol is defined to be εsec secret, if the state ρAE
is closed to the single-party private state ρ ideal

AE

min
ρE

1
2
‖ρAE − ρ ideal

AE ‖1 ≤ εsec, (A7)

where ρ ideal
AE ≡ (2Nk )−1 ∑

s |s〉A 〈s| ⊗ ρE . If a QKD proto-
col is εcor correct and εsec secret, then it is (εcor + εsec)

secure [29].

2. Security proof based on phase-error correction

Here, we briefly review the main idea of phase-error-
based security proof, which is first proposed by Lo and
Chau [5], reduced to prepare-and-measure scheme later by
Shor and Preskill [6], and improved by Koashi later [29].

In an entanglement-based QKD protocol, Alice and Bob
will finally share a large bipartite state ρAB. Denote Alice
and Bob’s subspaces in a single run as HA and HB. Here,
the encrypted error correction is used to decouple the
error correction and privacy amplification. The protocol is
presented as below.
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Actual protocol

(1) (State distribution) Alice and Bob share a bipartite
state ρAB in the space (HA ⊗ HB)

⊗n, where n is the total
number of runs.

(2) (Measurement) Alice and Bob measure their sys-
tems H⊗n

A and H⊗n
B , respectively. Suppose the measure-

ment results can be described by n-bit strings κA and
κB.

(3) (Error correction) They reconcile the key strings
through an encrypted classical channel consuming lEC bits
of secret key. They agree on an n-bit raw key string κrec
except for a small failure probability εEC.

(4) (Privacy amplification) Alice randomly chooses n −
m strings {Vk}k=1,...,n−m of n bit, which are linearly inde-
pendent, and announces the strings to Bob. The final key
length is n − m, where the kth key bit is κrec × Vk. Denote
the final key as κfin.

Note that the error correction can be easily conducted just
by classical information theory. The only remaining con-
cern is to quantize the information leakage m on κrec. Note
that, Eve’s knowledge of κrec will not change after any
operation on HA and HB that keeps Eve’s state and the
raw key bits κrec. Based on this argument, we construct the
following virtual protocol.

Virtual protocol

(1) (State distribution) Alice and Bob share a bipartite
state ρAB ∈ (HA ⊗ HB)

⊗n.
(2) (Squashing) They apply operation 
 on ρAB and

convert it to a key space K⊗n and ancillary space HR, i.e.,

(ρAB) ∈ K⊗n ⊗ HR.

(3) (Measurement) They measure K⊗n on the Z basis
and obtain κrec. They then measure HR by MR. Suppose
the measurement result of MR is γ .

(4) (Privacy amplification) They randomly choose n −
m linearly independent n-bit strings {Vk}k=1,...,n−m and
announce them. The final key length is n − m, and the kth
key bit is κrec × Vk. Denote the final key as κfin.

The operation 
 and measurement MR can be chosen
freely, and are only subjected to the requirement that the
Z-basis measurement statistics on K⊗n is the same as κrec
in the actual protocol. Therefore, Eve’s knowledge of κrec
in the virtual protocol is the same as in the actual protocol.
The secrecy of κrec in the virtual protocol is the same as the
one in the practical protocol.

The core observation in the security proof based on
phase-error correction is that, with a proper choice of 

and MR, the security of Z-basis measurement result κrec
can be reflected on the predictability of X -basis measure-
ment result Tγ , given the measurement outcome γ on HR.
Denote |Tγ | as the size of possible X -basis measurement
outcomes.

Lemma 1 (Koashi, 09 [29]). If the chosen 
 and MR in
the above virtual protocol meets the requirements,

(1) the Z-basis measurement statistics on K⊗n is the
same as κrec in actual protocol;

(2) given each measurement outcome γ on HR, the size
of X -basis measurement outcome on K⊗n is bounded by
|Tγ | ≤ 2nξ , except for a small probability εT,

then the virtual protocol is
√
ε′

T secret and εEC correct,

thus
(√
ε′

T + εEC

)
secure, where ε′

T = εT + 2−nζ and m =
n(ξ + ζ ).

Here we collect all the related small failure probabili-
ties,

(i) εEC is the failure probability of error correction that
affect the correctness of the protocol, which is determined
by the method used in the error-correction step;

(ii) εT is the failure probability of bounding |Tγ |. Usu-
ally this is the failure probability εpe of estimating phase-
error number nEX . This amount is determined by the
method used to estimate the phase error;

(iii) ζ is the extra amount of privacy amplification to
enhance the privacy of the protocol, which can be deter-
mined arbitrarily according to the need for privacy. Usually
we denote εPA = 2−nζ as the failure probability of privacy
amplification.

Usually, we introduce phase-error number nEX to char-
acterize the size of |Tγ |. Suppose that, in an ideal case,
the X -basis measurement outcome K⊗n for a given γ is
deterministic T(0)γ . Then we can calculate the number of
phase error nEX of given measurement result Tγ from T(0)γ ,
defined as nEX (Tγ ) ≡ wt(Tγ ⊕ T(0)γ ), where wt(A) is the
weight, i.e., number of nonzero elements in string A, and
⊕ is the modulo-2 addition. Denote nEX as the maximum
value of nEX (Tγ ) for a given set {Tγ }. Then the size of {Tγ }
is bounded by

|Tγ | =
nEX∑

k=0

(
n
k

)
<

(
n

nEX + 1

)
< 2nH [(nEX +1)/n], (A8)

where the first inequality holds when (nEX + 1 < n/3)
[10]. The proof of the second inequality can be found in
Ref. [38]. From a phase-error correction point of view, this
is essentially the typical space argument used in Shannon’s
theory.

Denote the average phase-error number as n̄EX .
The phase-error rate is defined to be EX ≡ n̄EX /n.
Note that the final key length is n − m, where m =
nξ ≥ nH [(nEX + 1)/n] = nH(EX ), we conclude that an
approximate proportion H(EX ) of raw key bits is sacrificed
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in privacy amplification. Taken the reconciliation case lEC
into account, the net key-generation length is

K = n − m − lEC ≥ n[1 − H(EX )] − lEC. (A9)

One should note that, in Koashi’s security proof, there is
a degree of freedom on choosing the definition of phase
error EX , based on the operation 
 and the ancillary mea-
surement MR, as long as Lemma 1 holds. This endows a
large flexibility when we analyze the security of QKD.

3. Perfect privacy induced by encoding symmetry

We prove the symmetric encoding QKD based on the
aforementioned security proof, which essentially general-
izes the one employed in the security proof of PM QKD
[20]. First, we introduce a general entanglement-based
symmetric encoding QKD protocol, as shown in Fig. 4.
Here, Alice and Bob share a two-qudit state σAB on sys-
tem A and B, at the beginning of each run. Alice holds
an extra qubit A′ on state |+〉 initially, and she creates
entanglement between A and A′ by applying the following
control-U operation

CA′A(U) = |0〉A′ 〈0| ⊗ IA + |1〉A′ 〈1| ⊗ UA. (A10)

She then sends qudit A out to Eve. Similarly, Bob holds
B′, performs CB′B(U) on B and B′, and sends B to Eve.
Eve performs joint measurement on system A and B to
create entanglement on qubit system A′ and B′. Here, the
encoding unitary UA in CA′A(U) meets the requirement of
symmetric encoding,

U2 = U†U = I . (A11)

In that case, the eigenvalue of UA will be either 1 or −1.
Denote the subspaces spanned by the eigenvectors with

FIG. 4. Schematic diagram for a general entanglement-based
version of symmetric encoding protocol. When σAB is a par-
ity state, then the protocol is perfectly private without any
information leakage.

eigenvalue 1 and −1 to be the even space Heven
A and the

odd space Hodd
A . For a joint unitary UA ⊗ UB, the eigen-

value will also be 1 or −1. The even space and the odd
space of the joint A, B Hilbert space is

Hodd
AB = (Hodd

A ⊗ Heven
B )⊕ (Heven

A ⊗ Hodd
B ),

Heven
AB = (Hodd

A ⊗ Hodd
B )⊕ (Heven

A ⊗ Heven
B ).

(A12)

Definition 1. A state ρ on two qudits A, B is an odd state
with respect to UA ⊗ UB iff ρ ∈ Hodd

AB and an even state
with respect to UA ⊗ UB iff ρ ∈ Heven

AB . Both odd states and
even states are called parity states.

Corollary 1. A state ρ remains invariant under the trans-
formation of UA ⊗ UB, i.e., ρ = UA ⊗ UBρU†

A ⊗ U†
B, iff ρ

is a mixture of parity states.

Proof : Obviously, the mixture of parity states satisfies
the encoding symmetry ρ = UA ⊗ UBρU†

A ⊗ U†
B. Here we

prove all the states ρ with encoding symmetry are mixture
of parity states.

Since (UA ⊗ UB)
2 = I , the eigenvalue of it should be

either −1 or 1. Denote the eigenbasis of UA ⊗ UB as {|p , i〉}
with eigenvalues {(−1)p}, where p = 0, 1 denotes the even
subspace Heven

AB or odd subspace Hodd
AB , while i denotes the

inner degeneracy in the even or odd subspace.
We expand ρ in the eigenbasis of UA ⊗ UB,

ρ =
∑

p ,q,i,j

cp ,q,i,j |p , i〉 〈q, j | . (A13)

Therefore,

UA ⊗ UBρU†
A ⊗ U†

B =
∑

p ,q,i,j

(−1)p−qcp ,q,i,j |p , i〉 〈q, j | ,

(A14)

and ρ = UA ⊗ UBρU†
A ⊗ U†

B implies that

cp ,q,i,j = 0 if p �= q, (A15)

that is, the off-diagonal space between odd and even states
is a null space.

Moreover, due to the degeneracy of odd and even sub-
space, it is alway possible to find an eigenbasis of UA ⊗ UB
as {|p , i〉} to diagonalize the parity states. �

We first consider the following entanglement-based
QKD protocol, and analyze how the symmetry of the state
will preserve QKD privacy.

Protocol I

(1) State preparation: Alice and Bob share a known
state σA,B on two qudits A, B, at the beginning of each run.
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They initialize their qubits A′, B′ in |+〉. Alice applies the
control gate CA′A(U) to A′ and A. Similarly, Bob applies
CB′B(U) to B′ and B.

(2) Measurement: Alice and Bob send the two optical
pulses A and B to an untrusted party, Eve, who is supposed
to perform joint measurement and announce the detection
results. The ideal measurement is to discriminate whether
the state is σAB or (UA ⊗ I)σAB(UA ⊗ I)†.

(3) Announcement: Eve announces the detection result
for each round. Based on Eve’s announcement, Bob
decides whether or not to apply X operation on his qubit
B′.

(4) Sifting: Given a specific announcement of Eve,
Alice and Bob keep the qubits of systems A′ and B′.

Alice and Bob perform the above steps for many
rounds and end up with a joint 2n-qubit state ρA′B′ ∈
(HA′ ⊗ HB′)⊗n.

(5) Key generation: Alice and Bob perform local Z
measurements on ρA′B′ to generate raw data string κA and
κB. They reconcile the key string to κrec by an encrypted
classical channel, with the consummation of lEC-bit keys.
Here we set Alice’s key as the final reconciled key
κA = κrec.

Denote the whole 2n state Alice and Bob share after the
quantum step as ρA′B′ , and the partial-traced state of the
mth round as ρ(m)A′B′ .

Lemma 2. In protocol I, if the optical state σ Alice and
Bob share during the mth run is an odd state, then the
two-qubit state Alice and Bob finally obtain, ρ(m)A′B′ , is in
the subspace spanned by {�−,�−}; and if σ is an even
state, then ρ(m)A′B′ is in the subspace spanned by {�+,�+}.
Here m ∈ {1, 2, . . . , n}.

Proof : First consider the pure state σ = |ψ〉 〈ψ |. The
joint state on system A′, B′, A, B before the C(π) operations
is

|++〉A′B′ |ψ〉AB = 1
2

[(|00〉 + |11〉)
+ (|01〉 + |10〉)]A′B′ |ψ〉AB . (A16)

Note that for odd state |ψo〉AB,

UA ⊗ UB |ψo〉AB = − |ψo〉AB ,

UA ⊗ IB |ψo〉AB = −IA ⊗ UB |ψo〉AB ,
(A17)

and for even state |ψe〉AB,

UA ⊗ UB |ψe〉AB = |ψe〉AB ,

UA ⊗ IB |ψe〉AB = IA ⊗ UB |ψe〉AB ,
(A18)

Therefore, for odd pure state |ψo〉 input, the state after the
CA′A(U)⊗ CB′B(U) operations is

|�o〉 = CA′A(U)⊗ CB′B(U)
(

1
2

[(|00〉 + |11〉)+ (|01〉 + |10〉)]A′B′ |ψo〉AB

)

= 1
2

{[|00〉A′B′ + |11〉A′B′ (UA ⊗ UB)] + [|01〉A′B′ (UA ⊗ IB)+ |10〉A′B′ (IA ⊗ UB(π)]} |ψo〉AB

= 1
2

[(|00〉 − |11〉)A′B′ |ψo〉AB + (|01〉 − |10〉)A′B′(UA ⊗ IB) |ψo〉AB],

(A19)

and for even pure state |ψe〉 input, the state after the CA′A(U)⊗ CB′B(U) operations is

|�e〉 = CA′A(U)⊗ CB′B(U)
(

1
2

[(|00〉 + |11〉)+ (|01〉 + |10〉)]A′B′ |ψe〉AB

)

= 1
2

{[|00〉A′B′ + |11〉A′B′ (UA ⊗ UB)] + [|01〉A′B′ (UA ⊗ IB)+ |10〉A′B′ (IA ⊗ UB(π)]} |ψe〉AB

= 1
2

[(|00〉 + |11〉)A′B′ |ψe〉AB + (|01〉 + |10〉)A′B′(UA ⊗ IB) |ψe〉AB].

(A20)

For the odd-state case, if we partially trace out sys-
tem A, B in |�o〉, the state ρ(m)A′,B′ is in the subspace of
{�−,�−}. Whatever Eve’s announcement afterward is,
the possible operation on ρ(m)A′,B′ is either IA′ ⊗ IB′ or IA′ ⊗

XB′ . Note that (IA′ ⊗ XB′) |�−〉 = |�−〉, hence the state
ρ
(m)
A′,B′ is still in the subspace of {�−,�−}. Similarly, for

the even-state case, the state ρ(m)A′,B′ is in the subspace of
{�+,�+}.
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For general mixed states, we can regard them as mix-
tures of pure parity states,

σodd =
∑

i

pi |ψ(i)
o 〉 〈ψ(i)

o | ,

σeven =
∑

i

pi |ψ(i)
e 〉 〈ψ(i)

e | .
(A21)

This is equivalent to Charlie sending out |ψ(i)
o(e)〉 with prob-

ability pi. For each odd pure-state component, the left qubit
state ρ(m)A′,B′ is in the subspace of {�−,�−}, therefore their
mixtures are still in this subspace. Similar arguments hold
for the even-parity states. �

Note that

(XA′ ⊗ XB′) |�+〉 = (XA′ ⊗ XB′) |�+〉 = 1,

(XA′ ⊗ XB′) |�−〉 = (XA′ ⊗ XB′) |�−〉 = −1.
(A22)

Therefore, if the state ρ(m)A′,B′ is in the subspace of {�−,�−},
then the measurement outcome of X ⊗ X is always −1; in
contrast, if the state is in the subspace of {�−,�−}, then
the measurement outcome of X ⊗ X is always 1.

Definition 2. In protocol I, define the observed value
1
2 (1 − 〈XA′ ⊗ XB′ 〉) to be the odd phase-error rate EX

o , and
1
2 (1 + 〈XA′ ⊗ XB′ 〉) to be the even phase-error rate EX

e .

Note that EX
e = 1 − EX

o . From Lemma 2, we have the
following Theorem.

Theorem 2. In protocol I, for an odd (even) state input
σ , the odd (even) phase-error rate is always 0. That is, if
Alice measures system A′ on X basis instead of Z basis,
then the measurement result is certain, given Bob’s mea-
surement outcome γB′ on system B′. In this case, Eve has
no information on Alice’s Z-basis measurement result κrec,
i.e., perfect privacy.

In the phase-error-based proof, the definition of phase
error EX is adaptive as long as the requirements in Lemma
1 hold. Both the odd states and even states σ yield cen-
tain XA′ ⊗ XB′ results, hence they are the perfect source for
protocol I, which yield keys with perfect privacy.

Now we consider the case when Alice and Bob hold a
mixture of odd and even states. The overall phase-error rate
cannot be zero, regardless of whether odd or even phase-
error definition is applied.

We write the state σAB shared by Alice and Bob as

σAB =
∑

i

p (i)o |ψ(i)
o 〉AB 〈ψ(i)

o | +
∑

j

p (j )e |ψ(j )
e 〉AB 〈ψ(j )

e | ,

(A23)

with
∑

i p (i)o + ∑
j p (j )e = 1. Introduce the purification

of σ ,

|�〉PAB =
∑

i

√
p (i)o |o, i〉P |ψ(i)

o 〉AB

+
∑

j

√
p (j )e |e, j 〉P |ψ(j )

e 〉AB , (A24)

where system P is a register to store the parity informa-
tion. Suppose {|p , i〉P} is an orthogonal basis such that
〈p , i|q, j 〉 = δpqδij , with p = o, e denotes the parity of the
according state, and i denotes the index of odd and even
pure states. Such a basis is defined as the Z basis of
system P.

Here we consider two cases, where Eve’s knowledge of
σAB is different. First, we consider the case when Eve’s
state is decoupled from σAB at the beginning, that is,
ρABE = σAB ⊗ ρE . That is to say, Eve does not hold the
purified system P, and we can virtually imagine that sys-
tem P is held by Alice and Bob. In Fig. 5 we draw the
whole protocol Ia with the ancillary P presents. In phase-
error-based proof, when we characterize Eve’s knowledge
of Alice’s final Z-basis measurement results on A′ κrec, we
transform the problem to how Alice can predict the X -
basis measurement result γ in the presence of system B′
and P. In this case, Alice can learn the parity information
of each single round from the measurement result of P,
where Alice can flip her X -basis measurement result on
K to match γ if the parity is not in accordance with the
definition choice of phase error. Therefore, by Theorem 2
above, Alice can perfectly predict the X -basis measure-
ment result. Applying Lemma 1, we prove the perfect
privacy of parity states.

Corollary 2. In protocol I, if Alice and Bob share a mix-
ture of odd and even states σAB at the beginning of each
run, and Eve’s state ρE is decoupled from σAB, i.e., ρABE =
σAB ⊗ ρE , then Eve has no information on Alice’s Z-basis
measurement result κrec, i.e., perfect privacy.

Now we consider the case when Eve holds the purifica-
tion of σAB. We consider the following protocol.

Protocol Ia

(1) In the same manner, Alice and Bob perform steps
(1)–(4) in protocol I for many rounds and end up with a
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FIG. 5. Schematic diagram for the whole protocol I/Ia when the input state is a general mixed parity state σAB. Here we postselect
the rounds when Eve announces effective clicks. Alice and Bob prepare n rounds of state |�〉PAB in Eq. (A24). They perform the PM
QKD encoding by applying C(U) gates on system A′, A and B′, B, as illustrated in Fig. 4. After that, they send system A, B to Eve, and
perform IA′B′ or IA′ ⊗ XB′ operation on each round of system A′, B′. They measure them by ZA′ ⊗ XB′ to get strings κrec, γ . In protocol
Ia, after Eve’s announcement, they send system P to Eve. In phase-error-based proof, Eve’s knowledge of κrec can be characterized by
Alice’s knowledge of her X -basis measurement result Tγ on A′.

joint 2n-qubit state ρA′B′ . After that, Alice and Bob send
the purified system P of each run to Eve.

(2) Key generation: Bob performs local X measure-
ments on system B′ with measurement outcome γB′ , and
Alice performs local Z measurements to obtain the final
key κrec.

In protocol Ia, a weaker version of protocol I, Alice and
Bob no longer hold the system P, which makes them
unable to discriminate the parity information, and their
ability to predict Tγ is weakened. However, an important
observation is that, due to system P being sent to Eve
after her announcement, the announcement result must be
independent of system P, in which case, for Eve’s fixed
measurement strategy, the state ρA′B′ in protocols Ia and Ib
will be the same.

In another aspect, without the assistance of parity infor-
mation in P, Alice and Bob cannot deal with the odd and
even rounds separately, and there is no longer perfect pri-
vacy. Alice’s knowledge of Tγ given γ is characterized
by the overall odd or even phase error. For the clicked n
rounds, if we measure the system P on Z basis, and there
are neven rounds with even-parity measurement results.
Then the overall odd phase-error rate is

EX
o = neven

n
. (A25)

Corollary 3. In protocol I/Ia, if Alice and Bob share a
mixture of odd and even states σAB at the beginning of each
run and Eve holds the purification of σAB, then the final
odd phase error EX

o , which characterizes the information
leakage of κrec to Eve, is given by

EX
o = neven

n
, (A26)

where n is the round number with effective signals, and
neven is the estimated rounds with even state as the source.

From now on, we define the phase error Eph as the odd
phase-error rate EX

o . As an expense to realize parity states
by independent phase randomization with phase announce-
ment, we cannot discriminate even and odd components
any more, and should use a unified phase-error definition,
while Eve’s announcement strategy is unchanged, and the
local state ρA′B′ also remains unchanged, which indicates
that protocol Ia and protocol Ib are the same except in
parity discrimination.

APPENDIX B: SECURITY PROOF OF PM QKD

Here we present security proof of PM QKD, by reduc-
ing it to the symmetric encoding QKD mentioned above.
In particular, we use the decoy method to monitor the
phase-error number nEX in real experimental setting to
determine what proportion of raw keys should be sacri-
ficed to enhance the total privacy. First, we introduce the
notation used in the proof.

The qudit system A considered in Appendix A is on an
optical mode, whose creation operator is a† and Hilbert
space is denoted as HA. A k-photon Fock state |k〉A is
defined as

|k〉A ≡ (a†)k√
k!

|0〉A , (B1)

where |0〉A is the vacuum state. A coherent state |α〉A is
defined as

|α〉A ≡ e−(1/2)|α|2
∞∑

k=0

αk

√
k!

|k〉A (B2)
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The photon number of |α〉A follows a Poisson distribution
Pμ(k) = e−μμk/k!, where μ = |α|2 is the mean photon
number, also the light intensity. In the following proof, we
specifically select

U = UA = UB = eiπa†a, (B3)

which satisfies the condition U2 = I . When applied on
a Fock state |n〉, this operation adds an additional phase
(−1)n, which has no effect on even-photon Fock states,
while changing the phase of odd-photon Fock states. As
a result, we have the following corollary.

Corollary 4. A state ρ on two modes A, B is an odd (even)
state with respect to UA ⊗ UB iff �̂oρ�̂o = ρ (�̂eρ�̂e =
ρ). �̂o and �̂e are the projectors of the odd and even
subspaces respectively, which are defined as

�̂o =
∑

m+n:odd

|m, n〉AB 〈m, n| ,

�̂e =
∑

m+n:even

|m, n〉AB 〈m, n| ,
(B4)

where {|m, n〉A,B}m,n are the Fock basis on optical modes A
and B.

1. Phase randomization and parity state

To generate a mixture of parity states, we introduce the
“twirling” operation,

E(σAB) = 1
2
σAB + 1

2
(UA ⊗ UB)σAB(UA ⊗ UB)

†. (B5)

Note that E(σAB) remains invariant under the transforma-
tion UA ⊗ UB, and therefore is a mixture of parity state for
any state σAB on two optical modes A and B according to
Corollary 1. To implement E in PM QKD, Alice and Bob
can first randomize their systems A, B with random phase
φa and φb independently, announce the random phase, and
postselect the runs with the same random phase after Eve’s
detection announcements. PM QKD with independent ran-
domization is summarized as protocol II below, as shown
in Fig. 6.

Protocol II

(1) State preparation: Alice and Bob share a known
state σAB on two optical modes A, B, at the beginning of
each run. They initialize their qubits A′, B′ in |+〉. Alice
applies the control gate CA′A(U) to qubit A′ and optical
pulse A, and adds an extra random 0 or π phase φa on A.
Similarly, Bob applies CB′B(U), φb to B′ and B.

(2) Measurement: Alice and Bob send the two optical
pulses A and B to an untrusted party, Eve, who is supposed

to perform joint measurement and obtain the detection
results L or R, which is expected to be projective measure-
ment on the basis E(σAB) and (UA ⊗ I)E(σAB)(UA ⊗ I)†.
However, this is not an assumption or requirement of the
measurement of Eve, as an untrusted party.

(3) Announcement: Eve announces the detection result
or no successful detection for each round. After that, Alice
and Bob announce their random phases φa and φb.

(4) Sifting: When Eve announces an L or R click, Alice
and Bob keep the qubits of systems A′ and B′. In addi-
tion, Bob applies a Pauli X gate to his qubit B′ if Eve’s
announcement is R click. If |φa − φb| = π , Bob applies
another Pauli X gate on B′.

Alice and Bob perform the above steps for many
rounds and end up with a joint 2n-qubit state ρA′B′ ∈
(HA′ ⊗ HB′)⊗n.

(5) Parameter estimation: Alice and Bob estimate the
click ratios caused by even-state fractions.

(6) Key generation: Alice and Bob perform local Z
measurements on ρA′B′ to generate raw data strings κA and
κB. They reconcile the key string to κA by an encrypted
classical channel, with the consummation of lEC-bit keys.
After that, they perform privacy amplification according to
the even-state ratio to generate keys.

In protocol II, the signals with |φa − φb| = π can also be
used if Bob performs extra YB′ gate on system B′ before
the key-generation step [20]. Besides the independent ran-
domization, protocol II is the same as protocol I, which
indicates that the security of protocol II can be reduced to
protocol I, and the information leakage in protocol II can
be bounded by the phase-error rate, EX

o , which is intro-
duced in protocol Ia, a weaker form of protocol I. The
problem of independent randomization is analyzed in the
following text.

FIG. 6. Realistic PM QKD protocol with extra 0/π -phase ran-
domization. σAB is a generic state on optical modes A and B.
φa,φb are two random phases, which are either 0 or π . In
practice, the phase can be absorbed into the controlled-U(π)
operations afterwards.
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In the protocol, Alice and Bob have to announce φa,φb
publicly to postselect the runs with the same random phase
φa = φb. As is analyzed in Ref. [20], the random phase
φa,φb is correlated to the key information, which can be
utilized by Eve. To model the information leakage caused
by random-phase announcement, consider the case where
Alice and Bob share a pure state |ψ〉AB. In a purified sce-
nario, suppose a qubit register P is initialized in the state
|+〉, then Alice and Bob realize E with

|�〉PAB = U(|+〉P |ψ〉AB),

= 1√
2
{|+〉P |ψ〉AB + |−〉P [UA(π)⊗ UB(π)] |ψ〉AB},

= |0〉P |ψ̄e〉AB + |1〉P |ψ̄o〉AB ,

= √
pe |0〉P |ψe〉AB + √

po |1〉P |ψo〉AB ,
(B6)

where

|ψ̄e〉AB = 1
2

[|ψ〉AB + (UA ⊗ UB) |ψ〉AB],

|ψ̄o〉AB = 1
2

[|ψ〉AB − (UA ⊗ UB) |ψ〉AB].
(B7)

Here |ψ̄e〉AB , |ψ̄o〉AB are unnormalized even and odd states,
where pe = 〈ψ̄e|ψ̄e〉 and po = 〈ψ̄o|ψ̄o〉.

Therefore, the register P records whether π modulation
is applied by X -basis state |±〉, while the parity informa-
tion of the state is kept in the Z-basis state |0〉 or |1〉 of the
register, as shown in the equation given above.

In this scenario, phase announcement can be interpreted
as the following process: Alice and Bob prepare |�〉PAB,
as a purification of E(σAB), and measure system P on X
basis, followed by announcing the result to Eve after the
detection announcement. In a worse case, we can reduce
the protocol to protocol Ib, where Eve holds the system P
after her detection announcement.

To conclude, the PM QKD protocol can be realized
by any initial state σAB with the assistance of a phase
randomization, at the expense of losing the capability of
distinguishing parity components.

2. PM QKD based on coherent state

So far, we do not make any assumption on the struc-
ture of initial state σAB. Here, we focus on one specific
implementation. Due to the fact that coherent states are
easy to implement in experiments, we set σAB as |√μa〉A ⊗
|√μbeiδ〉B. After the twirling phase randomization, the

state becomes

ρ = 1
2
(|√μa〉A 〈√μa| ⊗ |√μbeiδ〉B 〈√μbeiδ|

+ |−√
μa〉A 〈−√

μa| ⊗ |−√
μbeiδ〉B 〈−√

μbeiδ|)
= peven |ψδ

e (μa,μb)〉AB 〈ψδ
e (μa,μb)|

+ podd |ψδ
o (μa,μb)〉AB 〈ψδ

o (μa,μb)| , (B8)

where

|ψδ
e (μa,μb)〉AB = 1√

peven
(|√μa〉A ⊗ |√μbeiδ〉B

+ |−√
μa〉A ⊗ |−√

μbeiδ〉B),

|ψδ
o (μa,μb)〉AB = 1√

podd
(|√μa〉A ⊗ |√μbeiδ〉B

− |−√
μa〉A ⊗ |−√

μbeiδ〉B). (B9)

Here the probabilities peven, podd are the normalization fac-
tors. In the case where δ = 0, the initial state is an unbiased
mixing of |√μa〉A ⊗ |√μb〉B and |−√

μa〉A ⊗ |−√
μb〉B,

in which case the even and odd components are

ρe(μa,μb) = 1
2

[|ψ0
e (μa,μb)〉AB 〈ψ0

e (μa,μb)|
+ |ψπ

e (μa,μb)〉AB 〈ψπ
e (μa,μb)|],

ρo(μa,μb) = 1
2

[|ψ0
o (μa,μb)〉AB 〈ψ0

o (μa,μb)|
+ |ψπ

o (μa,μb)〉AB 〈ψπ
o (μa,μb)|]. (B10)

Note that ρe(μa,μb) [ρo(μa,μb)] is only comprised of
even (odd)-photon Fock states, and therefore in even (odd)
subspace.

In the final key distillation steps, we deal with the runs
with φa = φb and |φa − φb| = π together, and the over-
all phase-error rate Eph is given by the fraction of clicks
caused by even components ρe(μa,μb). To estimate the
even clicks, we only need to estimate the yield Yeven, i.e.,
the detection probability when Alice and Bob send the state
ρe(μa,μb). The phase-error rate Eph is

Eph = pevenYeven

Qμa,μb

. (B11)

Here, the only task remaining is to estimate Yeven, as Qμa,μb
given experiment parameters and data. peven describes the
proportion of even photon rounds, which relates to the
intensities μa,μb.
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3. Phase-error estimation and continuous
randomization

As a common technique, the decoy-state method
[31–33] can be applied to estimate the value of Yeven. The
core of the decoy-state method is to use a set of testing
states to learn Eve’s behavior on specific components in
the signal states. The decoy is based on the observation
that, if the same components appear in both the (mixed)
signal states and the (mixed) testing states, Eve cannot
attack on them with different manners, in principle. In this
section, we consider the asymptotic case with n → ∞,
so that there is no statistical fluctuation. The finite-size
analysis is in Appendix C.

For the simplicity of discussion, we assume that μa =
μb = μ/2. The following argument can be easily general-
ize to the case when μa �= μb. Denote the fraction of odd-
and even-labeled clicked rounds as

qodd = nodd

n
; qeven = neven

n
. (B12)

According to Eq. (B10), the signal source is combined by
|ψe〉 and |ψo〉 with probability of peven and podd,

ρ = pμoddρo

(μ
2

,
μ

2

)
+ pμevenρe

(μ
2

,
μ

2

)
, (B13)

Here we add superscript μ to the probabilities and states,
since they are the functions ofμ. The core is to estimate the
detection probability of ρe(μ/2,μ/2), namely, the yield
Yμeven.

The fraction of odd- and even-parity states in the final
detected signal is given by

qμodd = pμodd
Yμodd

Qμ

,

qμeven = pμeven
Yμeven

Qμ

,

(B14)

where Qμ is the total gain of the signals. For signals with
intensity μ, we have

Qμ = pμoddYμodd + pμevenYμeven. (B15)

To efficiently estimate qodd and qeven, Alice and Bob adjust
the intensity μ of their prepared coherent lights. With
constraints from different intensities,

Qμ = pμoddYμodd + pμevenYμeven,

Qν = pνoddYνodd + pνevenYνeven,
(B16)

we have better estimation of Yμodd and Yμeven. Note that
Yμodd, Yμeven is dependent on the intensity μ. For different

signal intensities μ, ν, the difference of yield Yμodd, Yμeven is
bounded by

|Yμodd − Yνodd| ≤
√

1 − F2
μν , (B17)

where Fμν is the fidelity between the odd state |ψo〉 with
intensities μ and ν, respectively,

Fμν = Tr

[√√
ρ
μ

oddρ
ν
odd

√
ρ
μ

odd

]
. (B18)

In order to obtain a tighter bound on the estimation of
Yμeven, we can introduce extra phases other than {0,π} for
coherent states |√μ/2〉A ⊗ |√μ/2〉B. As an extreme case,
one choice is to randomize the phase continuously from
0 to 2π , i.e., continuous randomization. Note that, for a
coherent state,

1
2π

∫ 2π

0
dφ |√μeiφ〉 〈√μeiφ| =

∞∑

k=0

Pμ(k) |k〉 〈k| ,

(B19)

where Pμ(k) = e−μ(μk/k!) is the proportion of Fock state
|k〉 in the mixed states.

If we randomize the phase of two coherent pulses
simultaneously, for states with |φa − φb| = δ, we have

1
2π

∫ 2π

0
dφ |

√
μ/2eiφ〉A 〈

√
μ/2eiφ| ⊗ |

√
μ/2ei(φ+δ)〉B

× 〈
√
μ/2ei(φ+δ)| =

∞∑

k=0

Pμ(k) |k̄δ〉AB 〈k̄δ| , (B20)

the k-photon state |k̄δ〉AB is

|k̄δ〉AB = (a† + eiδb†)k√
2kk!

|00〉AB . (B21)

Consider the simultaneous randomization and the key-
encoding process, the total phase difference of Alice and
Bob’s coherent state can be φa = φb or |φa − φb| = π ,
which indicates the mixed k-photon state, which is sent to
Eve, is

ρk = 1
2

(|k̄0〉AB 〈k̄0| + |k̄π 〉AB 〈k̄π |) , (B22)

which is independent of the intensity μ. In this case, the
state Alice and Bob send out can be regarded as a prob-
abilistic mixture of mixed k-photon state ρk. By directly
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applying Lemma 2, we can estimate the phase error by

Eph =
∞∑

k=0

q2k, (B23)

where qk is the proportion of detection event caused by
state ρAB, especially q0 corresponds to the vacuum signal
detection, i.e., dark counts.

The source components are Fock states {|k〉}, whose
yields {Yk} are independent of μ. The fractions qμk of k-
photon component in the final detected signals are given by

qμk = Pμ(k)
Yk

Qμ

. (B24)

The overall gain is given by

Qμ =
∞∑

k=0

Pμ(k)Yk. (B25)

Similarly, we use the decoy-state method in the continuous
randomization case, and there is a set of Eq. (B25) with
different signal intensities μ and corresponding proportion
Pμ(k), which can be used to bound {Yk}, therefore we can
estimate Eph efficiently.

The continuous phase-randomized protocol, named pro-
tocol III, is as follows.

Protocol III

(1) State preparation: Alice and Bob prepare coherent
states |√μa〉A ⊗ |√μb〉B on two optical modes A, B, at the
beginning of each run. They initialize their qubits A′, B′ in
|+〉. Alice applies the control gate CA′A(U) to qubit A′ and
optical pulse A, and adds an extra random 0 ∼ 2π phase
φa on A. Similarly, Bob applies CB′B(U), φb to B′ and B.

(2) Measurement: Alice and Bob send the two optical
pulses A and B to an untrusted party, Eve, who is supposed
to perform joint measurement and obtain the detection
results L or R.

(3) Announcement: Eve announces the detection result
or no successful detection for each round. After that, Alice
and Bob announce their random phases and intensity set-
tings {φa,μa} and {φb,μb} and keep the signals with |φa −
φb| = 0 or π and μa = μb.

(4) Sifting: When Eve announces an L or R click, Alice
and Bob keep the qubits of systems A′ and B′. In addi-
tion, Bob applies a Pauli X -gate to his qubit B′ if Eve’s
announcement is R click. If |φa − φb| = π , Bob applies
another Pauli X gate on B′.

Alice and Bob perform the above steps for many
rounds and end up with a joint 2n-qubit state ρA′B′ ∈
(HA′ ⊗ HB′)⊗n.

(5) Parameter estimation: Alice and Bob estimate the
click ratio caused by even-state fractions by decoy-state
methods.

(6) Key generation: For the signals with intensity μa =
μb = μ/2, Alice and Bob perform local Z measurements
on ρA′B′ to generate raw data strings κA and κB. They recon-
cile the key string to κA by an encrypted classical channel,
with the consummation of lEC-bit keys. After that, they
perform privacy amplification according to the even-state
ratio to generate keys.

4. Practical issues in PM QKD

In practice, to bound the phase error, we only need to
bound the yield of single-photon components ρ1,

ρ1 = 1
2
(|01〉AB 〈01| + |10〉AB 〈10|), (B26)

and the overall odd phase-error rate is bounded by

Eph ≤ 1 − q1, (B27)

where q1 = Pμ(1)Y1/Qμ.
To make the above protocol III practical, we now con-

sider the following issues.

(1) From continuous phase randomization to discrete
phase randomization.A continuous phase randomization
and phase postselection is practically intractable. However,
in practice, randomizing the phases of coherent pulses
discretely is enough. For a coherent state |√μ〉, if we ran-
domize its phase discretely with {φj = (2π/D)j }D−1

j =0 , the
state can be expanded by a group of “pseudo” Fock states
[36],

1
D

D−1∑

j =0

|√μeiφj 〉C 〈√μeiφj | =
D−1∑

k=0

PμD(k) |λk〉C 〈λk| ,

(B28)

where

|λk〉C = e−μ/2
√

Pμ(k)

∞∑

l=0

(
√
μ)lD+k

√
(lD + k)!

|lD + k〉C ,

PμD(k) =
∞∑

l=0

μlD+ke−μ

(lD + k)!
,

(B29)

as we can see, when D becomes large, |λ0〉 and |λ1〉 will
get close to the Fock state |0〉 and |1〉.

Now we calculate the deviation of q1 caused by dis-
crete phase randomization. Without loss of generality, we
set |φa − φb| = δ. After the discrete phase randomization,
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the state is

1
D

D−1∑

j =0

∣∣∣∣

√
μ

2
eiφj

〉

A

〈√
μ

2
eiφj

∣∣∣∣ ⊗
∣∣∣∣

√
μ

2
ei(φj +δ)

〉

B

×
〈√
μ

2
ei(φj +δ)

∣∣∣∣ =
∞∑

k=0

PμD(k)
∣∣λ̄δk

〉
AB

〈
λ̄δk

∣∣ , (B30)

the k-photon state |λ̄δk〉AB is

|λ̄δk〉AB = e−μ/2
√

Pμ(k)

∞∑

l=0

(
√
μ)lD+k

√
(lD + k)!

|lD + k
δ〉AB , (B31)

where |k̄δ〉AB is defined in Eq. (B21).
We compare the fidelity between |1̄δ〉AB and |λ̄δ1〉AB,

| 〈1̄δ|λ̄δ1〉 |2 = e−μ

PμD(1)

∣∣∣∣∣

∞∑

l=0

(
√
μ)lD+1

(lD + 1)!
〈1̄δ|lD + 1

δ〉
∣∣∣∣∣

2

,

= e−μ

PμD(1)
μ,

= e−μμ

e−μ
(
μ+ μ(D+1)

(D+1)! + μ(2D+1)

(2D+1)! + · · ·
) ,

= 1

1 + μD

(D+1)! + μ2D

(2D+1)! + · · ·
,

≥ 1 − μD

(D + 1)!
,

(B32)

the final inequality holds because [(n + 1)D + 1]! ≥
(nD + 1)!(D + 1)! for n ≥ 1. Note that the fidelity is
independent of the phase difference δ.

Therefore, according to Eq. (B17), the yield differ-
ence of |1̃δ〉 and |λ̄δ1〉AB is bounded by

|Y1 − Yμλ1
| ≤

√
1 − | 〈1̄δ|λ̄δ1〉 |2 ≤

√
μD

(D + 1)!
, (B33)

then the difference between estimated |λ̄δ1〉AB fraction,
denoted by q1 and qμλ1

, is bounded by

|q1 − qμλ1
| ≤ PμD(1)

|Y1 − Yμλ1
|

Qμ

≤ PμD(1)
Qμ

√
μD

(D + 1)!

= ξD(μ)

Qμ

, (B34)

note that ξD(μ) ≡ PμD(1)
√
μD/(D + 1)! ≈ (μD/2+1e−μ)/√

(D + 1)!, which is only correlated to the signal intensity

μ and discrete phase number D. Therefore, we can com-
pare the ratio ξD(μ)/Qμ, which illustrates the deviation of
the estimated q1 from the real qμλ1

.
If we set D = 16, then ξD(μ) ≈ μ9e−μ/

√
17!,

which is a tiny value when μ < 1, compared to the gain
Qμ ≈ ημ, where η is the channel transmittance from Alice
or Bob to the middle point Eve. Therefore, we can safely
ignore the effect caused by discrete phase randomiza-
tion and borrow the former decoy-state method based on
continuous phase randomization [32,39].

(2) Key generation and parameter estimation with sig-
nals where the phases are not aligned.

In protocol III, only the states with aligned phases
|φa − φb| = 0,π and the same intensity μa = μb are post-
selected to estimate the detections caused by single-photon
components and generate keys. This will cause a huge
waste on sifting in a practical finite-size case. We now
discuss how to use these signals for key generation and
parameter estimation.

First, we notice that for signals with μa = μb =
μ/2 and |φa − φb| = δ, δ + π , we can regard it as a spe-
cific case of protocol III, where Alice and Bob originally
share a state |√μa〉A ⊗ |√μbeiδ〉B. According to Eq. (B21),
the mixed k-photon state when |φa − φb| = δ, δ + π is

ρδk = 1
2

(|k̄δ〉AB 〈k̄δ| + |k̄δ+π 〉AB 〈k̄δ+π |) . (B35)

In general, the k-photon state is correlated with the mis-
aligned phase δ, which implies that states with different
mismatched phases have different mixed k-photon states.
However, this state is not true for k − 1, where the single-
photon state,

ρδ1 = 1
2
(|01〉AB 〈01| + |10〉AB 〈10|) , (B36)

is independent of the misaligned phase. Therefore, states
with different unaligned phases have the same single-
photon component, which indicates that we can use all of
the states to estimate the yield of the single-photon compo-
nent, regardless of the misaligned phase δ. The phase error
can be bounded by

Eph ≤ 1 − q1. (B37)

Based on this observation, during the postprocessing, Alice
and Bob first reconcile their sifted raw key bits Ka and Kb
for each group js = ja − jb separately. If the error rate in
a group of data is too large, they can simply discard that
group. Denote the group set J to be the set of remaining
phase-group indexes {js}. That is, if js ∈ J , then the phase
group js is kept for key generation. They then estimate the
even-photon fraction qeven for all the remaining data in J
and perform privacy amplification.
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In a more general scenario, Alice and Bob can esti-
mate the yield of states |01〉AB and |10〉AB, denoted as
Y01 and Y10, respectively. The overall yield Y1 can be
calculated by

Y1 = 1
2
(Y01 + Y10). (B38)

Similar to the traditional MDI QKD [14,40,41], Alice and
Bob can use signals with different intensities to achieve a
better estimation on Y1. However, in this paper, to simplify
the discussion, we focus on the signals with μa = μb, and
leave the better estimation for future works.

(3) From infinite decoy-state analysis to the finite
decoy-state setting.

In practice, with finite data size, we can use only
finite rounds for testing. To accurately bound the even-state
components, we have to use the testing states with finite
intensity settings.

We explicitly analyze this problem in Appendix C.
As a result, we show that Alice and Bob can use only vac-
uum + weak decoy state, similar to the BB84 decoy-state
analysis [39].

With all the factors taken into consideration, the practical
version of protocol III, named protocol IV, is presented as
below.

Protocol IV

(1) State preparation: Alice prepares coherent state
|√μaeiφja 〉A on optical mode A, with μa ∈ {0, ν/2,μ/2},
and φja ∈ {(2π/D)ja}D−1

ja=0. She initializes her qubit A′ in
|+i〉. She applies the control gate CA′A(U) to qubit A′
and optical pulse A. Similarly, Bob prepares |√μbeiφjb 〉B
on optical mode B. He initializes his qubit B′ in |+〉. He
applies the control gate CB′B(U) to qubit B′ and optical
pulse B.

(2) Measurement: Alice and Bob send their optical
pulses, A and B, to an untrusted party, Eve, who is expected
to perform an interference measurement and record the
detector (L or R) that clicks.

(3) Announcement: Eve announces the detection result
or no successful detection for each round. After that, Alice
and Bob announce their random phases and intensity set-
tings {ja,μa} and {jb,μb} and keep the signals with μa =
μb.

(4) Sifting: When Eve announces an L or R click, Alice
and Bob keep the qubits of systems A′ and B′. In addi-
tion, Bob applies a Pauli X gate to his qubit B′ if Eve’s
announcement is R click. If 3D/4 > [(ja − jb) mod D] ≥
D/4, Bob applies another Pauli X gate on B′.

Alice and Bob perform the above steps for many
rounds and end up with a joint 2n-qubit state ρA′B′ ∈
(HA′ ⊗ HB′)⊗n.

(5) Parameter estimation: For all the raw data that they
have retained, Alice and Bob record the detect num-
ber M (js)

ia,ib of different intensity combinations {μia ,μib}
and phase groups js. They then estimate the information
leakage Eph

μ using Eq. (B27).
(6) Key generation: For the signals with intensity μa =

μb = μ/2, Alice and Bob perform local Z measurements
on ρA′B′ to generate raw data strings κA and κB. They
first group the signals by js = min[(ja − jb) mod D, (jb −
ja) mod D]. After that, they keep the signals with js in
a set J . They reconcile the corresponding key string to
κA by an encrypted classical channel, with the consum-
mation of ljsEC-bit keys according to js. After that, they
perform privacy amplification according to the estimated
single-photon ratio q1 to generate keys.

The key rate of this protocol is

r = 2
D

∑

js∈J

[
1 − H(Eph)− ljsEC

]
. (B39)

Typically, ljsEC can be replaced by fH(Ejs), where f is error-
correction efficiency and Ejs is bit error rate for each phase
group js that is in J . Eph is the phase-error rate bounded by
Eq. (B37).

Following Shor and Preskill [6], we can move the mea-
surement before the sifting step, in which case C − π

rotation is replaced by the bit flip operation. Then protocol
IV reduces to PM QKD protocol in the paper.

PM QKD

(1) State preparation: Alice randomly generates a key
bit κa, and picks a random phase φja from the set

{ja 2π
D

}D−1
ja=0, and the intensity μia from {0, ν/2,μ/2}. She

then prepares the coherent state |√μiaei(φja+πκa)〉A. Sim-
ilarly, Bob generates κb, φjb , μib and then prepares
|√μibei(φjb+πκb)〉B.

(2) Measurement: Alice and Bob send their optical
pulses, A and B, to an untrusted party, Eve, who is expected
to perform an interference measurement and record the
detector (L or R) that clicks.

(3) Announcement: Eve announces the detection result
for each round. After that, Alice and Bob announce their
random phases and intensity settings {ja,μa} and {jb,μb}
and keep the signals with μa = μb.

(4) Sifting: When Eve announces a successful detec-
tion, (a click from exactly one of the detectors L or R),
Alice and Bob keep κa and κb. Bob flips his key bit κb
if Eve’s announcement is an R click. Then, Alice and
Bob group the signals by js = (ja − jb) mod D. If js ∈
[D/4, 3D/4), Bob flips his key bit κb. After that, Alice
and Bob merge the data with js and js + D/2, with js =
0, 1, . . . , D/2 − 1.
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(5) Parameter estimation: For all the raw data that they
have retained, Alice and Bob record the detect num-
ber M (js)

ia,ib of different intensity combinations {μia ,μib}
and phase groups js. They then estimate the information
leakage Eph

μ using Eq. (B27).
(6) Key generation: For the signals with μia = μib =

μ/2, Alice and Bob group them by the phase index js =
min[(ja − jb) mod D, (jb − ja) mod D]. After that, they
keep the signals with js in a set J . They reconcile the
corresponding key string to κA by an encrypted classical
channel, with the consummation of ljsEC-bit keys according
to js. After that, they perform privacy amplification accord-
ing to the estimated single-photon ratio q1 to generate
keys.

APPENDIX C: FINITE DATA-SIZE ANALYSIS

In this section, we analyze the finite-size effect of the PM
QKD protocol introduced in the main text. Here we ignore
the effect caused by discrete phase randomization. Recall
that during the postprocessing in PM QKD, Alice and Bob
first reconcile their sifted raw key bits Ka and Kb for each
phase group js = ja − jb separately. They keep some of the
phase groups js ∈ J for key generation. They then estimate
the single-photon fraction qJ

1 for all the remaining data in
J and perform privacy amplification.

As mentioned in the main text, in QKD finite-size anal-
ysis, one should take the cost and failure probability of
channel authentication, error verification, privacy ampli-
fication, and parameter estimation into account. However,
the cost of the first three steps is negligible in compari-
son to the one in parameter estimation. When the final key
length is much larger than 37 bits, one can ignore the corre-
sponding failure probability with a constant secret-key cost
[10]. For simplicity, we ignore these parts in our analysis.
The finite-size key length Nk is then

Nk =
∑

j ∈J

M j
si[1 − H(Eph)− fH(Ej )], (C1)

with the failure probability of εeph. Here M j
si is the sifted

raw key length of phase group j before error verification
and privacy amplification, f is the error-correction effi-
ciency, Ej is the quantum bit error rate of group j , Eph is
the estimated upper bound of phase-error rate bounded by

Eph < 1 − qJ
1 = 1 − MμJ

1

MμJ , (C2)

with a failure probability of εeph. Here MμJ is the click
round number with μa = μb = μ/2 and phase group js ∈
J , and MμJ

1 is the estimated single-photon component in it.
The core of parameter estimation of Eph is to estimate

the clicked rounds caused by the single-photon component
MμJ

1 , for all the clicked rounds with μa = μb = μ/2 and

all the left phase group J . Here, we follow Ref. [37] for a
tight decoy-state analysis in the finite-data regime.

As stated in Appendix 4, since the single-photon state
ρ1 is the same whatever φa and φb is, we can first estimate
the single-photon clicks Mμ

1 caused by all the phase groups
with different jd all together, and then estimate MμJ

1 for the
left groups J afterwards.

Without matching the random phase φa,φb by js, the
state on optical modes A, B sent out to Eve when μa =
μb = μ/2 is

ρAB =
∑

k

Pμ(k)ρ tot
k , (C3)

where

ρ tol
k =

∫ π

0
dδ ρδk =

∑

ka,kb

B
(

ka; k,
1
2

)
|ka, kb〉 〈ka, kb| ,

(C4)

and B(k; n, p) = (n
k

)
pk(1 − p)(n−k) is the binomial distri-

bution. ρδk is given by Eq. (B35). Note that ρ tot
1 = ρ1. For

different intensities {0, ν,μ}, the k-photon component ρ tot
k

are the same, following Poisson distribution with different
parameters. Therefore, the former finite-size decoy-state
analysis on the BB84 protocol can be directly applied to
PM QKD.

For each intensity {0, ν,μ}, suppose Alice and Bob
send out N vac, N w, N s rounds of pulses, with M vac, M w, M s

rounds of effective clicks, respectively. We have

N vac ≈ (rvac)2N ,

N w ≈ (rw)2N ,

N s ≈ (rs)2N .

(C5)

A unified notation is {N a, M a}, with a ∈ {vac, w, s} indi-
cating the intensity setting of vacuum, weak, and signal.
Denote the normalized rate of each intensity setting a in
the final clicked signals as

qa = N a/N , (C6)

note that, qa is a fixed number after Alice and Bob send out
all the signals.

For a specific intensity setting a ∈ {vac, w, s}, denote
the rounds of sending out k-photon pulses ρ tot

k and clicks
caused by it as {N a

k , M a
k }. Define

Nk ≡
∑

a

N a
k , (C7)

to be the overall rounds to send k-photon signals. Denote
the conditional probability that Alice and Bob choose the
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intensity setting a when sending out the k-photon signal as

p(a|k) = lim
Nk→∞

N a
k

Nk

= qaPa(k)
qvacP0(k)+ qwPν(k)+ qsPμ(k)

,
(C8)

where we slightly abuse the notation Pa(k) to denote the
Poisson distribution with intensity setting a.

Therefore, we have

N a =
∑

k

N a
k ≈

∑

k

p(a|k)Nk,

M a =
∑

k

M a
k ≈

∑

k

p(a|k)Mk,
(C9)

where p(vac|k) = 0 for all k �= 0.
In the whole QKD process, the values {N a}a and {M a}a

are known by Alice and Bob. The values {N a
k }a,k are

available to Alice and Bob, in principle, and cannot be con-
trolled by Eve. The values {Mk}k are, however, controlled
by Eve and unknown to Alice and Bob.

The core observations to perform finite-size analysis in
this case are as follows.

(1) When Alice and Bob send out k-photon signals, the
choosing of a different intensity setting a is independent
and identically distributed (i.i.d.), given by the probability
distribution p(a|k).

(2) Eve’s attack on k-photon signals cannot depend on
the intensity setting a.

Therefore, Eve’s attack can be described by a random sam-
pling from the set of Nk. She randomly chooses Mk rounds
from it and announces them as effective clicks. Among
them, {M a

k }a, i.e., the clicks caused by different intensity
settings, are randomly distributed.

To clarify the random-sampling model, we can then
rewrite M a

k as

M̄ a
k =

Mk∑

i=1

(χ̄a
k )i, (C10)

where

(χ̄a
k )i =

{
1 with probability pa

k ,
0 with probability 1 − pa

k ,
(C11)

(with i = 1, . . . , Mk) are i.i.d. indicator random variables.

Group these random variables and define

M̄ a =
∑

k

M̄ a
k =

∑

k

Mk∑

i=1

(χ̄a
k )i, (C12)

as the variable indicating the overall clicks caused by
intensity setting a. The bar on M a

k is used to indicate that it
is a variable.

The decoy-state problem can be modeled as for the
unknown {Mk}k and the known {pa

k }a,k, to evaluate the
value of the variable M̄ s

1, given the observed constraints
that {M̄ a = M a}a.

We first observe that,

E(M̄ a
k ) = p(a|k)Mk, (C13)

and hence

E(M̄ a) =
∑

k

E(M̄ a
k ) =

∑

k

p(a|k)Mk. (C14)

Note that, the expectation values are taken with respect
to the i.i.d. variables {(χ̄a

i )j }a,i,j . Therefore, we can bound
the expected values E(M̄ a) by applying an inversed form
of the Chernoff bound on Eq. (C12) and with the observed
{M a}a. From Eq. (C14), we have

E
U(M̄ a) ≥

∑

k

p(a|k)Mk ≥ E
L(M̄ a), (C15)

where we use superscripts U and L to denote upper and
lower bounds, respectively.

To estimate M s
1, we first estimate M1 from Eq. (C15),

and then estimate M s
1 by direct use of the Chernoff bound

on Eq. (C10). We briefly summarize the results of the
Chernoff bound in Appendix 1.

The decoy method discussed above is based on
Eq. (C14) and the correlation between variables {M̄ a, Mk}.
To unify it with the former decoy-state formulas with
{Qa, Yk}, we further define the gain and yield variable as

Q̄a := M̄ a

N a ,

Y∗
k := Mk

N∞
k

,
(C16)

where

N∞
k =

∑

a

Pa(k)N a =
∑

a

Pa(k)(ra)2N , (C17)

is the expectation value of Nk.
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From Eq. (C14) and the definition of Q̄a, Ȳ∗
k in Eq. (C16),

we can recover the decoy-state formula expressed by Q̄a

and Ȳ∗
k ,

E[Q̄a] = E[M̄ a]
N a =

∑
k p(a|k)Mk

N a

=
∑

k

qaPa(k)
qvacP0(k)+ qwPν(k)+ qsPμ(k)

Mk

qaN
,

=
∑

k

Pa(k)
Mk

N
[
qvacP0(k)+ qwPν(k)+ qsPμ(k)

] ,

=
∑

k

Pa(k)
Mk

N∞
k

,

=
∑

k

Pa(k)Y∗
k . (C18)

Now, with the observed value M a, we can calculate Qa,
and apply the decoy-state formulas,

E
U[Q̄a] ≥

∑

k

Pμ(k)Y∗
k ≥ E

L[Q̄a]. (C19)

With Eq. (C19), we can estimate Y∗
1 by Ref. [37]

Y∗
1 ≥ (Y∗

1)
L = μ

μν − ν2

(
E

L[Qw]eν − E
U[Qs]eμ

ν2

μ2

− μ2 − ν2

μ2 E
U[Qvac]

)
. (C20)

Note that the whole process can be divided into two steps.
Step I is to estimate (Y∗

1)
L and (M1)

L for all of the phase
groups. Step II is to estimate (M s,J

1 )L for phase-group set J
from (M1)

L in all phase groups. To summarize, the whole
phase-error estimation process is as follows.

(1) (Data recording) To record {N s, N w, N vac} and
record the number of clicked rounds {M s, M w, M vac}.

(2) (Chernoff estimation I) Based on an inversed usage
of the Chernoff bound, to calculate {EU(M̄ a), EL(M̄ a)}a,
given M a and estimate the failure probability ε1. Calculate
the {EU(Q̄a), EL(Q̄a)}a by Eq. (C16).

(3) (Decoy estimation) Calculate the lower bound (Y∗
1)

L

based on {EU(Q̄a), EL(Q̄a)}a by Eq. (C20). Calculate
(M1)

L by Eq. (C16).
(4) (Chernoff estimation II) Based on a direct usage of

the Chernoff bound, to calculate (M s,J
1 )L for phase-group

set J and estimate the failure probability ε2. To calculate
Eph based on Eq. (C2). The overall failure probability is
εeph = ε1 + ε2.

1. Chernoff bound

Here we present the methods to evaluate E(M̄ a) from
M a and evaluate M s

1 from M1 using Chernoff bounds.
To evaluate E(M̄ a) from M a, we inversely use the

Chernoff bounds based on Bernoulli variables. We briefly
summarize the results in Ref. [37]. For the observed value
χ , we set the lower and upper bound of estimated E(χ) as
{EL(χ), EU(χ)}. Denote

E
L(χ) = χ

1 + δL ,

E
U(χ) = χ

1 − δU .
(C21)

The failure probability of the estimation E(χ) ∈ [EL(χ),
E

U(χ)], given by the Chernoff bound, is

ε = e−χg2(δ
L) + e−χg2(δ

U), (C22)

where g2(x) = ln(1 + x)− x/(1 + x).
To evaluate M s

1 from M1, we directly apply the Chernoff
bounds. Suppose the direct sampling expectation value of
M s

1 is given by E(M s
1) = ps

1M1. For the expected value
E(χ), we set the lower and upper bound of the estimated
χ as {χL,χU}. Denote

χL = (1 − δ̄L)E(χ),

χU = (1 + δ̄U)E(χ).
(C23)

The failure probability of the estimation χ ∈ [χL,χU],
given by the Chernoff bound, is

ε = e−(δ̄L)2E(χ)/(2+δ̄L) + e−(δ̄U)2E(χ)/(2+δ̄U). (C24)

In practice, we can preset the lower bound and upper bound
{EL(χ), EU(χ)} or {χL,χU} by assuming a Gaussian dis-
tribution on χ first,

E
L(χ) = χ − nα

√
χ , E

U(χ) = χ + nα
√
χ ,

χL = χ − nα
√

E(χ), χU = χ + nα
√

E(χ),
(C25)

where nα is a preset parameter to determine the estimation
precision. After that, we calculate the failure probabilities
by Eqs. (C22) and (C24).

APPENDIX D: SIMULATION FORMULA AND
RESULTS

Here we list the formulas used to simulate the key-rate
performance of PM QKD and MDI QKD in Fig. 2 in the
main text. The channel is modeled to be a pure loss one and
symmetric for Alice and Bob with transmittance η (with
the detector efficiency ηd taken into account).
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1. Gain, yield, and error rate of PM QKD

In PM QKD, suppose Alice and Bob emit the k-photon
light ρδk in Eq. (B35), the yield (i.e., effective detection
probability) Yk is given by [cf. Eq. (B13) in Ref. [20] ],

Yk ≈ 1 − (1 − 2pd)(1 − η)k, (D1)

suppose Alice and Bob emit the coherent states ρ in
Eq. (B8) with μa = μb = μ/2, the gain (i.e., effective
detection probability) Qμ is [cf. Eq. (B14) in Ref. [20] ]

Qμ ≈ 1 − (1 − 2pd)e−ημ. (D2)

As stated in the main text, the quantum bit error rate Ejs

is mainly composed of three components. The first one is
the intrinsic error e	(js) caused by phase mismatch when
js �= 0,

e	(js) =

⎧
⎪⎪⎨

⎪⎪⎩

sin2
(
π js
D

)
, js ≤ D

2
,

sin2
(
π

2
− π js

D

)
, js >

D
2

,
(D3)

which is related to the index deviation js. The second one
is the extra misalignment error e0, caused by phase fluc-
tuation. Here we regard e0 and e	(js) as being caused by
independent factors, and the overall misalignment error is
ed(js) = e0 + e	(js). Also, the dark-count effect will con-
tribute to the bit error. The overall bit error rate E(js)μ is then

given by [cf. Eq. (B22) in Ref. [20] ]

E(js)μ = [pd + ημ(e	(js)+ e0)]
e−ημ

Qμ

, (D4)

where pd is the dark-count rate.
Similarly, the overall bit error rate for the k-photon light

can be estimated by [cf. Eq. (B20) in Ref. [20] ]

e(js)k = pd(1 − η)k + [e	(js)+ e0][1 − (1 − η)k]
Yk

(D5)

when the phase deviation δ belongs to group js.
The key-rate formula is listed in Eq. (10) of the main

test. In the original PM QKD analysis, the phase-error rate
EX is bounded by [cf. Eq. (C3) in Ref. [20] ]

EX
μ ≤ q0eZ

0 + (q1eZ
1 + q3eZ

3 + q5eZ
5 )

+ (1 − q0 − q1 − q3 − q5). (D6)
2. Simulation formulas for MDI QKD protocols

The key rate of MDI QKD is [14]

RMDI = 1
2
{Q11[1 − H(e11)] − fQrectH(Erect)}, (D7)

where Q11 = μaμbe−μa−μbY11 and 1/2 is the basis sifting
factor. We take this formula from Eq. (B27) in Ref. [35].
In simulation, the gain and error rates are

Y11 = (1 − pd)
2
[ηaηb

2
+ (2ηa + 2ηb − 3ηaηb)pd + 4(1 − ηa)(1 − ηb)p2

d

]
,

e11 = e0Y11 − (e0 − ed)(1 − p2
d )
ηaηb

2
,

Qrect = Q(C)
rect + Q(E)

rect,

Q(C)
rect = 2(1 − pd)

2e−μ′/2[1 − (1 − pd)e−ηaμa/2][1 − (1 − pd)e−ηbμb/2],

Q(E)
rect = 2pd(1 − pd)

2e−μ′/2[I0(2x)− (1 − pd)e−μ′/2],

ErectQrect = edQ(C)
rect + (1 − ed)Q

(E)
rect,

(D8)

where μ′ denotes the average number of photons reaching
Eve’s beam splitter, μa = μb = μ/2, ηa = ηb = η, and

μ′ = ηaμa + ηbμb,

x = 1
2
√
ηaμaηbμb.

(D9)

We take these formulas from Eqs. (A9), (A11), (B7), and
(B28)–(B31) in Ref. [35].

The linear key-rate bound of repeaterless point-to-point
QKD protocol used in the main text is [18]

RPLOB = − log2(1 − η). (D10)

3. Comparison of PM QKD key rates

Here, we compare PM QKD performance in our analy-
sis with the previous analysis [20] in the asymptotic case.
The channel and detector parameters are listed in the main
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FIG. 7. Comparison of PM QKD performance with the pre-
vious analysis [20] and our results. We set the typical intrinsic
misalignment error rates to be 5 and 9%.

text. In Fig. 7, we show the comparison results when the
misalignment error ed(0) is 5 and 9%. Clearly, our analysis
makes PM QKD more robust against the noise.
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