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Abstract
This paper presents Conflux, a fast, scalable and de-
centralized blockchain system that optimistically process
concurrent blocks without discarding any as forks. The
Conflux consensus protocol represents relationships be-
tween blocks as a direct acyclic graph and achieves con-
sensus on a total order of the blocks. Conflux then, from
the block order, deterministically derives a transaction
total order as the blockchain ledger. We evaluated Con-
flux on Amazon EC2 clusters with up to 20k full nodes.
Conflux achieves a transaction throughput of 5.76GB/h
while confirming transactions in 4.5-7.4 minutes. The
throughput is equivalent to 6400 transactions per second
for typical Bitcoin transactions. Our results also indicate
that when running Conflux, the consensus protocol is no
longer the throughput bottleneck. The bottleneck is in-
stead at the processing capability of individual nodes.

1 Introduction

Following the success of the cryptocurrencies [4, 20],
blockchain has recently evolved into a technology plat-
form that powers secure, decentralized, and consistent
transaction ledgers at Internet-scale. The ledger becomes
a powerful abstraction and fuels innovations on real-
world applications in financial systems, supply chains,
and health cares [8, 9, 13], shifting the landscapes of the
industries that worth hundreds of billions of dollars.

Blockchain platforms like Bitcoin [20] use Nakamoto
consensus as their consensus protocols. This protocol
usually organizes transactions into an ordered list of
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Mellon University.

blocks (i.e., a blockchain), each of which contains mul-
tiple transactions and a link to its predecessor. To de-
fend against Sybil attacks, everyone solves proof-of-work
problems (e.g., finding partial hash collisions) to com-
pete for the right of generating the next block. To pre-
vent an attacker from reverting previous transactions, ev-
eryone agrees on the longest chain of blocks as the cor-
rect transaction history. Each newly generated block will
be appended at the end of the longest chain to make the
chain even longer and therefore harder to revert.

However, the performance bottleneck remains one of
the most critical challenges of current blockchains. In the
standard Nakamoto consensus, the performance is bot-
tlenecked by the facts 1) that only one participant can
win the competition and contribute to the blockchain,
i.e., concurrent blocks are discarded as forks, and 2)
that the slowness is essential to defend against adver-
saries [24, 26]. For example, Bitcoin generates one 1MB
block every 10 minutes and can therefore only process
7 transactions per second. Furthermore, to obtain high
confidence that a transaction is irreversible in Bitcoin,
users typically have to wait for tens of blocks building
on top of the enclosing block of the transaction. This
causes hours of waiting before confirming a transaction.
The insufficient throughput and long confirmation delay
severely limit the adoptions of blockchain techniques,
causing poor user experience, congested network, and
skyrocketing transaction fees [3, 5].

Previous research focuses on reducing the participa-
tions of the consensus to improve the performance with-
out compromising the security of the blockchains. For
example, Bitcoin-NG [10] periodically elects a leader
and allows the leader to dictate the transaction total order
for a period of time. It improves the throughput but not
the confirmation time of transactions. Several proposals
elect a small set of participants as a committee to run
Byzantine fault tolerance (BFT) to determine the trans-
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action order [12, 16, 18, 19]. This solution may create
undesirable hierarchies among protocol participants and
compromise the decentralization of the blockchains.

1.1 Conflux

We present Conflux, a fast, scalable, and decentralized
blockchain system that can process thousands of trans-
actions per second while confirming each transaction in
minutes. The core of Conflux is its consensus proto-
col that allows multiple participants to contribute to the
Conflux blockchain concurrently while still being prov-
ably safe. The protocol enables significantly faster block
generation and, in turn, enables higher throughputs and
faster confirmations. In fact, the Conflux throughput is
no longer limited by the consensus protocol, but by the
processing capability of each individual node.

One observation that drives the design of Conflux is
that standard Nakamoto consensus protocols preemp-
tively define a restrictive total order of transactions when
generating each block. This strategy introduces many
false dependencies that lead to unnecessary forks. The
key to our approach is to defer the transaction total
ordering and optimistically process concurrent trans-
actions and blocks. Given that the transactions rarely
conflict in blockchains (particularly in cryptocurrencies),
Conflux first optimistically assumes that transactions in
concurrent blocks would not conflict with each other by
default and therefore considers only explicit happens-
before relationships specified by the block generators.
This enables Conflux to operate with less constraints and
efficiently achieve consensus on one block total order
among many possibilities. Each participant in Conflux
then deterministically derives the transaction total order
from the agreed block total order, discarding conflicting
and/or duplicated transactions. This lazy reconciliation
provides the same external interface to the users.

To safely incorporate contributions from concurrent
blocks, the Conflux consensus protocol maintains two
kinds of relationships between blocks. When a partic-
ipant node generates a new block in Conflux, the node
identifies a parent (predecessor) block for the new block
and creates a parent edge between these two blocks like
Bitcoin. These parent edges enable Conflux to achieve
consistent irreversible consensus on its ledger. The node
also identifies all blocks that have no incoming edge
and creates reference edges from the new block to those
blocks. Such reference edges represent that those blocks
are generated before the new block. They enable Conflux
to systematically extend the achieved consensus to incor-
porate concurrent blocks. As a result, the edges between

blocks now form a sophisticated direct acyclic graph
(DAG) rather than a chain with potential forks [24, 25].

One challenge Conflux faces is how to agree on an ir-
reversible block total order of the DAG that include con-
current blocks. Conflux addresses this challenge with its
novel ordering algorithm. Given a pivot chain that starts
from the genesis block and that contains only parent
edges, the ordering algorithm deterministically partitions
all blocks in the DAG into epochs using the pivot chain,
topological sorts blocks in each epoch, and concatenates
the sorting results of all epochs into the final total or-
der following the happens-before order between epochs.
The algorithm guarantees that if the pivot chain stabilizes
(i.e., blocks on the chain are irreversible except the last
few blocks), then the produced block total order will sta-
bilize (i.e., blocks in the total order are irreversible except
blocks in the last few epochs). With its ordering algo-
rithm, Conflux reduces the problem of achieving consen-
sus on a block total order of the DAG to the problem of
achieving consensus on a pivot chain. Conflux therefore
uses a modified chain-based Nakamoto consensus [26]
to solve the chain consensus problem.
Assumptions and Guarantees: Conflux operates under
similar assumptions as Bitcoin and many others. Honest
nodes are reasonably synchronous respecting a network
diameter d (i.e., messages sent by honest nodes will be
delivered with a maximum delay of d). All honest nodes
together control more block generation power than at-
tackers. Under these assumptions, the Conflux consen-
sus protocol guarantees that the agreed block total order
is irreversible with very high probability.

Note that we focus on the consensus protocol design
and implementation and the incentive mechanism is out-
side the scope of this paper. Therefore in this paper, we
refer “honest nodes” as nodes that run bug-free programs
that faithfully implement Conflux. We leave designing
a compatible incentive mechanism to economically en-
courage honest behaviors as future work.

1.2 Experimental Results

We implemented a prototype of Conflux and evaluated
Conflux by deploying up to 20k Conflux full nodes on
800 Amazon EC2 virtual machines. We also compared
Conflux with two standard chain-based Nakamoto con-
sensus approaches, Bitcoin [20] and GHOST [26].

Our experimental results show that under the 20Mbps
bandwidth limit for each full node (i.e., the same experi-
mental environment as Algorand [12]), Conflux can pro-
cess one 4MB block per 5 seconds and therefore achieves
the transaction throughput of 2.88GB/h; the Conflux
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throughput is 11.62x of the throughput of Bitcoin and
GHOST, and is 3.84x of the throughput of Algorand [12].
Under the 40Mbps bandwidth limit, Conflux can process
one 4MB block per 2.5 seconds and therefore achieves
an even higher transaction throughput of 5.76GB/h. The
Conflux throughput is equivalent to 6400 transactions per
second for typical Bitcoin transactions. In fact, our re-
sults indicate that when running Conflux, the consensus
protocol is no longer the bottleneck of the throughput,
but the processing capability of individual nodes (e.g.,
the hardware bandwidth limit).

Our experiments also show that by working with faster
generation rates, Conflux allows blocks building on top
of each other more quickly and therefore enables fast
confirmations. Conflux confirms transactions in 4.5-7.4
minutes under the 4MB/2.5s and 40Mbps setting and 7.6-
13.8 minutes under the 4MB/5s and 20Mbps setting.

1.3 Contribution
This paper makes the following contributions:

• Consensus Protocol: We present a fast and scal-
able DAG-based Nakamoto consensus protocol and
its prototype implementation, Conflux, to optimisti-
cally process concurrent blocks while lazily rec-
onciling the transaction total order from an agreed
block total order. Conflux novelly maintains two
different kinds of relationships between generated
blocks to safely incorporate contributions from con-
current blocks into its ledger.

• Conflux Implementation: We present a prototype
implementation of Conflux based on the Bitcoin
core codebase [1]. To the best of our knowledge,
Conflux is the first blockchain system that uses a
DAG-based Nakamoto consensus protocol and that
can process thousands of transactions per second.

• Experimental Results: We present a systematic
large-scale evaluation of Conflux. Our results show
that, when running with up to 20k full nodes,
Conflux can achieve the transaction throughputs of
2.88GB/h and 5.76GB/h and confirm transactions
with high confidence in 4.5-13.8 minutes.

The rest of this paper is organized as follows. Sec-
tion 2 presents an overview of Conflux and an illustra-
tive running example for Conflux. Section 3 presents the
Conflux consensus protocol. Section 4 discusses our pro-
totype implementation of Conflux. Section 5 presents
our evaluation of Conflux. We discuss related work in
Section 6 and conclude in Section 7.
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Figure 1: Architecture of Conflux.

2 Overview and Example

This section presents an overview of Conflux and a run-
ning example to illustrate the Conflux consensus proto-
col.

2.1 Conflux Architecture

Figure 1 presents the architecture diagram of Conflux.
Similar to Bitcoin, a transaction in Conflux is a payment
message signed by the payer to transfer coins from the
payer to the payee, where the payer and the payee are
identified by their public keys. There can be special coin-
base transactions to mint new coins. Each transaction
also has a unique id generated by cryptographic digest
functions to ensure its integrity. A block consists of a list
of transactions (e.g. there are 4 transactions in block B
of Figure 1) and reference links to previous blocks (e.g.,
in the DAG state in Figure 1, B links to two previous
blocks). Each block also has a unique id generated by
digest functions to ensure data integrity. At the very be-
ginning, Conflux starts with a predefined genesis block
to determine the initial state of the blockchain.

A key difference between Conflux and traditional
blockchains is that the blocks and the edges form a DAG
instead of a linear chain. As the blocks travel across
the netowrk, each node might observe a slighlty differ-
ent DAG due to network delays. The goal of Conflux is
to maintain the local DAG of each individual node so that
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all nodes in Conflux can eventually agree on a total order
of blocks (and transactions).

Note that having total orders in Conflux enables the
supports of smart contracts, which execute Turing com-
plete programs to update the state associated with ac-
counts. For the purpose of illustration, in this paper we
assume a balance model with simple payment transac-
tions. One transaction conflicts with previous transac-
tions if after previous transactions, the payer does not
have enough balance to execute the transaction.
Gossip Network: All participant nodes in Conflux are
connected via a gossip network as shown in the top part
of Figure 1. Whenever a node initiates a transaction, it
broadcasts the transaction to all other nodes via the gos-
sip network (e.g., Tx9 in Figure 1). Whenever a node
generates a new block, it broadcasts the block to all other
nodes via the network as well (e.g., the block B in Fig-
ure 1). Conflux currently uses a modified gossip network
implementation in Bitcoin Core [1] (see Section 4).
Pending Transaction Pool: Each node maintains a
pending transaction pool as shown in the bottom right
of Figure 1. The pool contains all transactions that have
been heard by the node but are not yet packed into any
block. Whenever a node receives a new transaction from
the gossip network, the node adds the transaction into its
pool (e.g., adding Tx9 into the transaction pool in Fig-
ure 1). Whenever a node discovers a new block (either
by generating the block or by receiving the block from
other nodes), the node removes all transactions in the
new block from its pending transaction pool. For ex-
ample, in Figure 1, the node removes Tx1, Tx2, Tx3,
and Tx5 from its pool after generating the block B. In
Conflux concurrent blocks might pack duplicate or con-
flicting transactions due to network delays and malicious
nodes. These transactions will be resolved by our con-
sensus protocol.
Block Generator: Each node in Conflux runs a block
generator to generate valid new blocks to pack pending
transactions as shown in the bottom of Figure 1. Con-
flux operates with proof-of-work (PoW) mechanism, so
the block generator attempts to find solutions for PoW
problems to generate blocks. A valid block header must
contain a PoW solution in its header. Once such a valid
block header is generated, it selects pending transactions
from the pool to fill the new block. Similar to Bitcoin,
the PoW mechanism maintains a stable network block
generation rate via dynamically adjusting the difficulty
of the PoW problems. Note that besides PoW, Conflux
can also work with any other mechanism that can main-
tain a stable block generation rate, such as proof-of-stake
(PoS) [7, 15].

Local DAG State: Each node maintains a local state
that contains all blocks which the node is aware of. Be-
cause in Conflux each block may contain links to refer-
ence several previous blocks not just one, the result state
is a direct acyclic graph (DAG) as shown in center of
Figure 1. Whenever the node discovers a new block (ei-
ther by generating or by receiving it), the node updates
its local DAG state accordingly.

2.2 Consensus Protocol
The Conflux consensus protocol operates on the local
DAG state of each individual node. The goal of the pro-
tocol is to achieve the consensus on a total order of gen-
erated blocks among all nodes. From the total order of
the blocks Conflux then derives a total order of transac-
tions inside those blocks to process these transactions.
For conflicting or duplicated transactions, Conflux only
processes the first one and discards the remaining ones.
DAG and Edges: Figure 2 presents a running example of
the local DAG state of a node in Conflux. We will use this
example in the remaining of this section to illustrate the
high level ideas of the Conflux consensus protocol. Each
vertex in the DAG in Figure 2 corresponds to a block. In
Figure 2, Genesis is the predefined genesis block. Only
Genesis, A, B, and G are associated with transactions.
There are two kinds of edges in the DAG, parent edges
and reference edges:

• Parent Edge: Each block except Genesis has ex-
actly one outgoing parent edge (solid line arrows in
Figure 2). Intuitively, the parent edge corresponds
to a voting relationship, i.e., the node that generates
the child block votes for the transaction history rep-
resented by the parent block. For example, there are
one parent edge from C to A and one from F to B.

• Reference Edge: Each block can have multiple out-
going reference edges (dashed lines arrows in Fig-
ure 2). A reference edge corresponds to generated-
before relationships between blocks. For example,
there is a reference edge from E to D. It indicates
that D is generated before E.

Pivot Chain: Note that all parent edges in a DAG to-
gether form a parental tree in which the genesis block
is the root. In the parental tree, Conflux selects a chain
from the genesis block to one of the leaf blocks as the
pivot chain. Unlike the Bitcoin protocol which selects
the longest chain in the tree, Conflux selects the pivot
chain based on the GHOST rule [26]. Specifically, the
selection algorithm starts from the genesis block. At
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Tx0: Mint 10 coin to X
Tx1: Mint 10 coin to Z

B
Tx3: X sends 8 to Z
Tx4: Z sends 8 to Y

G
Tx4: Z sends 8 to Y

Besides Genesis, A, B, G, other 
blocks contain no transaction.

Epoch of Genesis Epoch of A Epoch of C Epoch of E Epoch of H

New Block

Parent edge:
Ref. edge:

Figure 2: An example local DAG state to illustrate the consensus algorithm of Conflux. The yellow blocks are on the
pivot chain in the DAG. Each block on the pivot chain forms a new epoch to partition blocks in the DAG.

each step, it computes the subtree sizes of each child in
the parental tree and advances to the child block with
the largest subtree, until it reaches a leaf block. The ad-
vantage of the GHOST rule is that it guarantees the irre-
versibility of the selected pivot chain even when facing
forks of honest nodes due to network delays as the blocks
in the forks also contribute to the safety of the pivot chain
according to the analysis [26].

In Figure 2, Conflux selects Genesis, A, C, E, and H
as the pivot chain. Note that this is not the longest chain
in the parental tree and the longest chain is Genesis,
B, F, J, I, and K. Conflux does not select this longest
chain because the subtree of A contains more blocks than
the subtree of B. Therefore, the chain selection algorithm
selects A over B at its first step.
Generating New Block: Whenever a node generates a
new block, it first computes the pivot chain in its local
DAG state and sets the last block in the chain as the
parent of the new block. This makes the chain heav-
ier (i.e., the corresponding subtree of each block on the
chain contains one extra block), so that other nodes will
be even more likely to select the same chain as their pivot
chains in future. The node then finds all tip blocks in the
DAG that have no incoming edge and creates reference
edges from the new block to each of those tip blocks.
For example, if the node has a local state as shown in
Figure 2, when generating a new block, the node will
choose H as the parent of the new block and will create
a reference edge from the new block to K.
Epoch: Parent edges, reference edges, and the pivot
chain together enable Conflux to split all blocks in a
DAG into epochs. As shown in Figure 2, every block
in the pivot chain corresponds to one epoch. Each epoch
contains all blocks 1) that are reachable from the corre-
sponding block in the pivot chain via the combination of
parent edges and reference edges and 2) that are not in-
cluded in previous epochs. For example, in Figure 2, J

belongs to the epoch of H because J is reachable from H
but not reachable from the previous pivot chain block, E.
Block Total Order: Conflux determines the total order
of the blocks in a DAG as follows. Conflux first sorts
the blocks based on their corresponding epochs and then
sorts the blocks in each epoch based on their topological
order. If two blocks in an epoch have no partial order
relationship, Conflux breaks ties deterministically with
the unique ids of the two blocks. For the local DAG in
Figure 2, Conflux obtains the total order as the following:
Genesis, A, B, C, D, F, E, G, J, I, H, and K.
Transaction Total Order: Conflux first sorts transac-
tions based on the total orders of their enclosing blocks.
If two transactions belong to the same block, Conflux
sorts the two transactions based on the appearance order
in the block.

Conflux checks the conflicts of the transactions at the
same time when deriving the orders. If two transac-
tions are conflicting with each other, Conflux will dis-
card the second one. If one transaction appears in mul-
tiple blocks, Conflux will only keep the first appearance
and discard all redundant ones. In Figure 2, the transac-
tion total order is Tx0, Tx1, Tx2, Tx3, Tx4, and Tx4.
Conflux discards Tx3 because it conflicts with Tx2.

2.3 Security Analysis
We next discuss potential attack strategies and explain
why Conflux is safe against these attacks. For a more
formal discussion of the Conflux safety, see Section 3.3.

Now suppose an attacker wants to revert the transac-
tion Tx4 in the block B in Figure 2. To do so, the attacker
needs to revert the agreed total order of the blocks so that
the attacker can insert an attacker block before B and that
the attacker block contains a transaction which conflicts
with Tx4. One naive attack strategy is to link such an at-
tacker block to existing blocks in very early epochs, e.g.,
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setting Genesis as the parent. However, because the at-
tacker block is new with no children, it will not become
a pivot chain block. By our epoch definition, the attacker
block has to wait for the references of future pivot chain
blocks. The block will still belong to a future epoch de-
spite the fact that it sets Genesis as its parent. Therefore
the block will not appear before B in the total order.

Therefore to revert a transaction enclosed by a block,
the attacker has to revert the partition scheme of epochs
before the block. Because the epoch partition scheme
is deterministically defined based on the pivot chain, the
attacker therefore has to revert the corresponding blocks
on the pivot chain. If the attacker attempts reverting the
pivot chain, the situation is then similar to the double
spending attack in chain-based Nakamoto consensus pro-
tocol. In this situation, the safety property of Conflux re-
lies on the fact that all honest nodes will continue to work
on the pivot chain to make the pivot chain longer and
heavier. Since honest nodes together have more block
generation power than the attacker, as the time passes
by, early blocks on the pivot chain are increasingly irre-
versible for the attacker.
Transaction Confirmation: A user can confirm his or
her transaction with the following strategy. The user lo-
cates the first epoch that contains a block including the
transaction. The user identifies the corresponding pivot
chain block of the epoch. The user then decides how
much risk he or she can tolerate based on the estimations
of the block generation power that the attacker controls.
The user finally estimates the risk of the pivot chain block
being reverted using the formula in Section 3.3 to decide
whether to confirm the transaction.

3 Conflux Consensus

In this section we present the Conflux consensus algo-
rithm and discuss its safety and liveness properties.

3.1 Consensus Algorithm

At any time, the local state of a user in the Conflux pro-
tocol is a graph G = 〈B,g,P,E〉. B is the set of blocks in
G. g ∈ B is the genesis block. P is a function that maps
a block b to its parent block P(b). Specially, P(g) = ⊥.
E is the set of directed reference edges and parent edges
in this graph. e = 〈b,b′〉 ∈ E is an edge from the block
b to the block b′, which denotes that b′ happens before
b. Note that there is always a parent edge from a block
to its parent block (i.e., ∀b ∈ B,〈b,P(b)〉 ∈ E). All nodes
in the Conflux protocol share a predefined deterministic

G = 〈B,g,P,E〉

Chain(G,b) =
{

g b = g
Chain(G,P(b))◦b otherwise

Child(G,b) = {b′ | P(b′) = b}
Sibling(G,b) = Child(G,P(b))−{b}
Subtree(G,b) = (∪i∈Child(G,b)Subtree(G, i))∪{b}
Before(G,b) = {b′ | b′ ∈ B,〈b,b′〉 ∈ E}
Past(G,b) = (∪i∈Before(G,b)Past(G, i))∪{b}
TotalOrder(G) = ConfluxOrder(G,Pivot(G,g))

Figure 3: The Definitions of Chain(), Child(), Sibling(),
Subtree(), Before(), Past(), and TotalOrder().

Input : The local state G = 〈B,g,P,E〉 and a starting
block b ∈ B

Output: The last block in the pivot chain for the subtree
of b in G

1 if Child(G,b) = /0 then
2 return b

3 else
4 s←−⊥
5 w←−−1
6 for b′ ∈ Child(G,b) do
7 w′←− |Subtree(G,b′)|
8 if w′ > w or w′ = w and Hash(b′)< Hash(s)

then
9 w←− w′

10 s←− b′

11 return Pivot(G,s)

Figure 4: The definition of Pivot(G,b).

hash function Hash that maps each block in B to a unique
integer id. It satisfies that ∀b 6= b′,Hash(b) 6= Hash(b′).

We next define several utility functions and notations.
Chain() returns the chain from the genesis block to a
given block following only parent edges. Child() returns
the set of child blocks of a given block. Sibling() returns
the set of siblings of a given block. Subtree() returns the
sub-tree of a given block in the parental tree. Before()
returns the set of blocks that are immediately generated
before a given block. Past() returns the set of blocks
that are generated before a given block (but including the
block itself). Figure 3 presents the definition of these
utility functions. In the rest of this section, we use or-
dered lists to denote chains and serialized orders. “◦”
denotes the concatenation of two ordered lists.
Pivot Chain Selection: Figure 4 presents our pivot
chain selection algorithm (i.e., the definition of Pivot()).
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Local State: A graph G = 〈B,g,P,E〉
1 while Node is running do
2 upon event Received G′ = 〈B′,g,P′,E ′〉 do
3 G′′←− 〈B∪B′,g,P∪P′,E ∪E ′〉
4 if G 6= G′′ then
5 G←− G′′

6 Broadcast the updated G to other nodes

7 upon event Generated a new block b do
8 a←− Pivot(G,g)
9 E ′←− E ∪{〈b, t〉 | ∀b′ ∈ B, 〈b′, t〉 /∈ E}

10 G←− 〈B∪{b},g,P[b 7→ a],E ′〉
11 Broadcast the updated G to other nodes

Figure 5: The Conflux Main Loop

Given a DAG state G, Pivot(G,g) returns the last block
in the pivot chain starting from the genesis block g. The
algorithm recursively advances to the child block whose
corresponding subtree has the largest number of blocks
(lines 4-10). When there are multiple child blocks with
the same number, the algorithm selects the child block
with the smallest unique hash id (line 8). The algorithm
terminates until it reaches a leaf block (lines 1-2).
Consensus Main Loop: Figure 5 presents the main loop
of a node running the consensus algorithm. It processes
two kinds of events. The first kind of events is receiv-
ing DAG update information from other nodes via the
underlying gossip network. The node updates its local
state accordingly (lines 2-3) and relays the local state via
the gossip network (lines 4-6). Note that here we assume
that the underlying gossip network already verified the
integrity of the received information (i.e., cryptographic
signatures in the blocks).

The second kind of events corresponds to the local
block generator successfully generating a new block b.
In this case, the node adds b into its local DAG G and
updates G as follows. It first sets the last block of the
pivot chain in its local DAG as the parent of b (lines 8
and 10). The node also finds all of those blocks in the lo-
cal DAG that have no incoming edges and creates a ref-
erence edge from b to each of those blocks (line 9). The
node finally broadcast the updated G to other nodes via
the gossip network. Note that P[b 7→ a] at line 10 denotes
the result map of mapping b to a in P (other mappings in
P are unchanged).

Note that for brevity, the pseudo-code in Figure 5
broadcasts the whole graph to the network. In our Con-
flux implementation, Conflux broadcasts and relays each
individual block to avoid unnecessary network transmis-
sions. See Section 4 for the details.

Input : The local state G = 〈B,g,P,E〉 and a block a
Output: A list of blocks L = b1 ◦b2 ◦ . . .◦bn, where

b1 = g and ∀1≤ i≤ n,bi ∈ B
1 a′←− P(a)
2 if a′ =⊥ then
3 return a

4 L←− ConfluxOrder(G,a′)
5 B∆←− Past(G,a)−Past(G,a′)
6 while B∆ 6= /0 do
7 G′←− 〈B∆,g,P,E〉
8 B′

∆
←− {x | |Before(G′,x)|= 0}

9 Sort all blocks in B′
∆

in order as b′1,b
′
2, . . . ,b

′
k

10 such that ∀1≤ i < j ≤ k, Hash(b′i)< Hash(b′j)
11 L←− L◦b′1 ◦b′2 ◦ . . .◦b′k
12 B∆←− B∆−B′

∆

13 return L

Figure 6: The Definition of ConfluxOrder().

Total Order: Figure 6 defines ConfluxOrder(), which
corresponds to our block ordering algorithm. Given
the local state G and a block a in the pivot chain,
ConfluxOrder(G,a) returns the ordered list of all blocks
that appear in or before the epoch of a. Using
ConfluxOrder(), the total order of a local state G is de-
fined as TotalOrder(G) in Figure 3.

The algorithm in Figure 6 first recursively orders all
blocks in previous epochs (i.e., the epoch of P(a) and
before). It then computes all blocks in the epoch of a as
B∆ (line 5). It topologically sorts all blocks in B∆ and
appends it into the result list (lines 6-12). The algorithm
uses the unique hash id to break ties (lines 8-9).

3.2 Assumptions and Parameters

We next present the protocol assumptions that are impor-
tant to our discussion of the safety and liveness properties
of the consensus algorithm. Our protocol has the follow-
ing assumptions and relevant parameters.
Block Generation Rate: The network together has a
block generation rate of λ . We use λh to denote the
combined block generation rate of honest nodes. We use
λa = q ·λh to denote the block generation rate of the at-
tacker. Therefore λ = λh +λa and 0≤ q < 1.
d-Synchronous: We assume the underlying gossip net-
work provides d-synchronous communications for all
honest nodes. If at time t, one honest node broadcast
a block or transaction via the gossip network, then be-
fore time t + d, all honest nodes will receive this block
and add this block into their local states.
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Adversary Model: The attacker can choose arbitrary
strategies to disrupt honest nodes. We assume two lim-
itations to the capability of the attacker. Firstly, the at-
tacker does not have the capability to reverse crypto-
graphic functions. Therefore honest nodes can reliably
verify the integrity of a block in the presence of the at-
tacker. Secondly, all honest nodes combined together
have stronger block generation power than the attacker,
i.e., as we noted before λa = q ·λh and 0≤ q < 1.

When the attacker generates a new block, the attacker
can create parent and reference edges from the new block
to arbitrary existing blocks, not necessarily following our
protocol. Note that because all blocks in Conflux is pro-
tected by cryptographic functions, the attacker however
cannot modify edges associated with an already gener-
ated block even if the block is generated by the attacker
himself/herself. The attacker can also withhold this new
block for a certain period of time before broadcasting the
block. Because Conflux implements a stale block detec-
tion mechanism similar to Bitcoin (see Section 4), the
attacker cannot withhold blocks forever (but it can do so
for hours). If the attacker decides to send a block to any
honest node, due to our d-synchronous assumption, all
honest nodes will see the block after a while.

3.3 Correctness

Safety: Conflux applies the GHOST rule to select its
pivot chain. The pivot chain of Conflux therefore sat-
isfies the same safety property as the selected chain in
GHOST rule [26]. As long as the attacker controls less
than half of the block generation power, it is highly un-
likely to revert an old common pivot chain block shared
by all honest nodes [26]. Because all honest nodes will
contribute toward the subtree of the pivot chain block,
after waiting a sufficiently long period of time it will be
impossible for the attacker to forge a subtree without the
pivot chain block heavier than the subtree of the pivot
chain block [26].

Because the algorithm in Figure 4 is deterministic,
once a prefix of the pivot chain becomes stablized in
all nodes (i.e., attacker cannot revert), the algorithm will
produce the same prefix of block orders for all nodes.
This total order prefix is therefore irreversible because of
the irreversiblility of the pivot chain.
Liveness: As discussed above, the consensus of the
block total order prefix in Conflux depends on the con-
sensus of the pivot chain prefix. Conflux therefore has
the same liveness property as the GHOST protocol [26],
i.e., eventually new blocks will be appended to the com-
mon prefix of the pivot chain.

Confirmation: For any block b′ in a DAG, suppose
b′ belongs to the epoch of b, where b is a pivot chain
block. We can confirm the transactions in b′ as long as
b becomes irreversible on the pivot chain. Like standard
Nakamoto consensus, although we can wait sufficiently
long to make the risk of an attacker reverting b arbitrarily
low. The risk will always be greater than zero. We have
the following lemma and theorem to bound the risk of
confirming b on the pivot chain:

Suppose b is a block on the pivot chain of all honest
nodes during the time [t−d, t] and P(b), the parent of b,
is generated at time zero. The chance of b being kicked
out of the pivot chain by one of its sibling blocks a is no
more than:

n−m

∑
k=0

ζk ·qn−m−k+1 +
∞

∑
k=n−m+1

ζk

where n is the number of blocks in the subtree of b before
time t−d, m is the number of blocks in the subtree of a
generated by honest nodes, and ζk = e−qλht (qλht)k

k! . This
is a direct application of Theorem 10 in [26]. It provides
us a way to estimate the stability of each individual block
on the pivot chain.

Note that the stability of a pivot chain prefix is deter-
mined by the least stable block in the prefix. Suppose b is
a block on the pivot chains of all honest nodes during the
time [t−d, t]. The chance of b falls off the pivot chain is
no more than:

max
a∈Chain(G,b)
a′∈Sibling(a)

Pr[a is kicked out of the pivot chain by a′]

4 Implementation

We have implemented both Conflux and GHOST (for
comparison in our evaluation) based on the Bitcoin Core
codebase v0.16.0 [1].
Block Header: To implement reference edges in Con-
flux, we modified the block header structure in Bitcoin to
include 32-byte block header hashes for each of its out-
going reference edges. Our experimental results show
that this introduces a negligible overhead of less than
960 bytes per block. Note that if a proof-of-work (PoW)
scheme is used to generate new blocks, these reference
hashes must be included as part of the puzzle to avoid
having attackers be able to generate blocks with differ-
ent references at essentially zero-cost.
Gossip Network: Both Conflux and GHOST require
to maintain the full structure of the tree/DAG of blocks,
while Bitcoin Core only propagates blocks in the iden-
tified longest chain. We therefore modified the gossip
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network layer of Bitcoin Core to broadcast and relay all
blocks. To ensure that when a block is delivered to the
consensus layer, all of its past blocks are already de-
livered, Conflux maintains the validity for each block.
Whenever Conflux receives a block, it traverses the DAG
structure using breadth-first search (BFS) and updates
the validity of each traversed block. A block is valid
if and only if Conflux has received all past blocks (i.e.,
blocks that are reachable via parent and reference edges)
of the block. Conflux then delivers all of the newly vali-
dated blocks to the consensus layer.

Detecting Stale Blocks: Bitcoin Core has the follow-
ing mechanism to detect stale blocks (e.g., blocks gen-
erated and withheld by attackers). Each node periodi-
cally synchronizes with its peers to maintain a network-
adjusted time, which is the median of the timestamps re-
turned by its peers. Each block in Bitcoin Core is also
timestamped. A new block will be flagged as invalid if
the timestamp of the new block is earlier than the me-
dian timestamp of previous 11 blocks or if the timestamp
of the new block is two hours later than the network-
adjusted time.

We use the same mechanism in Bitcoin Core with the
following modifications. First, we modify the rule pro-
portionally to the block generation rates which we use
in our experiments. For example, if the system gener-
ates a block every 20 seconds (i.e., 30 times faster than
Bitcoin), then a block is considered invalid if its times-
tamp is earlier than the median timestamp of previous
330 blocks. Secondly, Conflux does not delete blocks
with invalid timestamps. It simply ignores this invalid
block when counting the number of blocks in a subtree
for selecting the pivot chain. The rationale is that as
long as the invalid block no longer affects the partition
scheme of already stable epochs, it is safe to include the
block into future epochs, processing transactions inside
the block.

Bootstrapping a Node: When a node starts, it will
handshake with each of its peers and run a bootstrapping
one-way synchronization process to update its local state.
For both GHOST and Conflux, the node needs to down-
load all blocks in the tree/DAG from its peers, not just
the selected chain. To implement this one-way synchro-
nization, we enhanced the Bitcoin Core codebase with
four extra message types: gettips, tips, getchains
and chains. For sake of simplicity, let us consider the
case where a node A attempts to download the blocks
from another node B. A first sends B a gettips message
requesting the list of tips, i.e., leaf blocks in the (parental)
tree (represented by their 32-byte hashes). tips is used
in response to gettips to retrieve the block hash of all

the tips B is aware of. For each of B’s tip, A checks
whether this is an unknown block or not and packs all
the answers in a getchains message. Upon receiving
this getchains message, for each new tip to A, B com-
putes the last known block in the chain from the genesis
block to this tip and sends A a chain message contain-
ing the list of blocks starting right after the last known
block.

5 Experimental Results

We next present a quantitative evaluation of Conflux to
answer the following questions:

1. What is the throughput that Conflux can achieve for
obtaining the block total order?

2. What is the confirmation time that a user must wait
in Conflux for obtaining high confidence of irre-
versibility? How does this confirmation time cor-
relate with the block generation power that the at-
tacker controls and the risk that the user is willing
to tolerate?

3. How does Conflux compare to previous chain-based
Nakamoto consensus protocols like Bitcoin [20]
and GHOST [26]?

4. How does Conflux scale as the network bandwidth
changes? How does Conflux scale as the number of
full nodes grow?

We deployed Conflux on up to 800 Amazon EC2
m4.2xlarge virtual machines (VM), each of which has
8 cores and 1Gbps network throughput. By default, we
run 25 Conflux full nodes in each VM and limit the
bandwidth of each full node to 20Mbps. To model the
network latency, we use the inter-city latency measure-
ments [27] and assign each VM to one of 20 major cities.
We simulate the inter city delay by inserting artificial de-
lays before the message delivery. For each full node, the
gossip network of Conflux connects it to an average of
10 randomly selected peers. In our experiments, we as-
sign all full nodes with an equal block generation power.
For each generated block, we use the testing utilities in
Bitcoin core code base to fill the block full with artificial
transactions. To avoid unnecessary PoW computation,
we simulate the mining with a poisson process.

We then deployed Bitcoin and our implementation of
GHOST under the same setup as Conflux. We run up to
20k full nodes in our experiments. At April 2018, Bitcoin
has fewer than 12k full nodes [2] and Ethereum [6] has
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Figure 7: Block utilization ratio.

fewer than 17k full nodes. Our experiments are at the
same scale as those real-world cryptocurrencies.

Note that in our experiments we measure the network
diameter d as the propagation time for 99% of the blocks
to reach all full nodes. This enables us to see the trend
of network diameter (see Section 5.3). There is always
a few node generating blocks when they are lagging be-
hind, causing longer delays. Note that this phenomena
does not affect the correctness of Conflux because we
can simply count those nodes that lags behind as mali-
cious nodes. Also note that For all the experiments, we
monitored the overhead introduced by Conflux due to
its DAG-based approach. The computation overhead is
negligible compared to the PoW puzzles, and the spatial
overhead is a maximum of 960 bytes per block, which is
small compared to typical block size in several MBs.

5.1 Throughput

To evaluate the throughput improvement, we run Con-
flux, Bitcoin, and GHOST with 10k full nodes (i.e., 400
VMs) under the following two configurations: 1) in-
creasing the block size limit from 1MB to 8MB with
fixed block generation rate at 20 seconds per block; 2)
decreasing the block generation rate from 5 seconds per
block to 80 seconds per block with fixed block size limit
at 4MB. We run each protocol for two hours for each
configuration.

Figure 7 presents the results, where X-axis corre-
sponds to different configuration settings and Y-axis tells
the correspondent block utilization ratio. For Bitcoin and
GHOST, this ratio corresponds to the portion of blocks in
the selected chain. For Conflux, this number is always 1
because all blocks will be eventually included. Note that
the consensus protocol throughput is the multiplication
of three numbers: the block size limit, the block genera-
tion rate, and the block utilization ratio.

The results show that Conflux achieves a throughput
of 2.88GB/h under the block generation setting 4MB/5s.
If we assume the same transaction size as the real-world
Bitcoin network, Conflux could process 3200 transac-
tions per second. In fact, our results indicate that the
throughput of Conflux is only limited by the process-
ing capability of each individual node, i.e., Conflux can
achieve even higher throughput if we lift the bandwidth
limit to 40Mbps (See Section 5.3).

Our results also tell that as the block size and the block
generation rate increase, more blocks are generated in
parallel. For Bitcoin and GHOST, this indicates an in-
creasing number of forks in the resulting block trees.
For example, under the block generation setting 4MB/5s,
only 8% and 8.6% of blocks are on the agreed chains of
Bitcoin and GHOST, respectively. Blocks in forks will
not be included in the result total order and resources
are wasted for generating those blocks. Unlike Bitcoin
and GHOST, Conflux is capable of processing all blocks.
Conflux therefore achieves significantly higher through-
puts than Bitcoin and GHOST, especially when the block
size is large or the block generation rate is fast.

5.2 Confirmation Time

Figure 8 presents the average confirmation time of Con-
flux, Bitcoin, and GHOST under different configurations
as in the same experiments above. Confirmation time is
the time duration that a user has to wait to obtain a high
confidence that the total order of a block will not change
(i.e., the prefix of the total order before this block does
not change). In this setting, the user confirms a block
if the attacker has less than 0.01% chance to revert its
transaction, assuming the attacker controls less than 20%
of the network block generation power (i.e., q < 0.25).
The error bar in Figure 8 shows the medium, 25%, 75%,
minimum, and maximum confirmation time of blocks for
each protocol and each configuration.

Our results show that Conflux can confirm blocks in
minutes. When using the block generation setting of
4MB/5s, Conflux confirms blocks in 10.0min on aver-
age. Under all configurations, users in Conflux wait
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Figure 8: Confirmation time.

for a similar confirmation time as GHOST. This is ex-
pected, because the confirmation of Conflux blocks re-
lies on the confirmation of the corresponding pivot chain
blocks which follows the same GHOST rule. Note that
under all settings except 1M/20s, 2M/20s, and 4M/80s,
Bitcoin is unable to confirm any block because the ratio
of the longest chain is too small against any attacker with
20% of the network block generation power.

The results also show that as the block size increases,
blocks take longer to get confirmed on all three proto-
cols. This is because as explained in Figure 7, using
larger blocks will cause more blocks generated in par-
allel. Some nodes may temporarily generate blocks that
are not under the last block of the chain (or the pivot
chain in Conflux).

Our results further show that increasing the block gen-
eration will grow the chain (or the pivot chain in Conflux)
faster and therefore confirm blocks faster. But this effect
diminishes as the block generation rate approaches the
processing capability of individual nodes, because fre-
quent concurrent blocks and forks will slow down the
confirmation.
Attacker Capability and Confidence Ratio: The top
plot in Figure 9 shows, under the block generation setting
of 4M/10s, how the confirmation time changes for Con-
flux and GHOST, if the user assumes different attacker
capability. Note that Bitcoin cannot confirm confirma-
tions in this setting. Our results show that even the user
assumes attackers controlling 30% of the block genera-
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Figure 9: Risk tolerance.

tion power, Conflux can still confirm blocks in a medium
of 16.8 minutes with confidence 99.99%. As the attacker
controls more power, the confirmation time grows ex-
ponentially for both protocols. The bottom plot shows,
under the setting of 4M/10s, as the user waits longer how
the confirmation risk changes for Conflux, Bitcoin, and
GHOST. Our results show that the chance of attackers re-
verting the total order prefix of a confirmed block drops
exponentially as the user waits longer.

5.3 Scalability

To study the scalability of Conflux, we run Conflux
with the following two configurations: 1) increasing the
number of deployed full nodes from 2.5k to 20k with
block size limit at 4MB and block generation rate at 10s
per block (4MB/10s); 2) lifting the bandwidth limit to
40Mbps per node with block size limit at 4MB and block
generation rate at 2.5s per block (4MB/2.5s).
Scalability with Higher Bandwidth Limit: In our ex-
periments, we found that the throughput bottleneck of
Conflux becomes the processing capability of each in-
dividual node, especially the bandwidth limit. Con-
flux cannot run under the block generation setting of
4M/2.5s simply because the gossip network does not
have enough bandwidth to propagate blocks under this
fast rate. We then lifted the bandwidth limit of each node
from 20Mbps to 40Mbps and run Conflux on 10k full
nodes with the setting of 4M/2.5s again. Conflux runs
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successfully and achieves the throughput of 5.76G/h. In
this run, Conflux also confirms blocks in 5.68 minutes
on average. If we assume the same transaction size as
the real-world Bitcoin network, Conflux would process
6400 transactions per second.
Scalability with More Nodes: Figure 10 shows the con-
firmation time of Conflux with 2.5k, 5k, 10k, and 20k full
nodes under the setting of 4MB/10s. X-axis corresponds
to the number of full nodes while Y-axis tells the confir-
mation time in seconds. Figure 11 shows the network
diameter of Conflux with 2.5k, 5k, 10k, and 20k full
nodes under the setting of 4M/10s. X-axis corresponds
to the number of full nodes while Y-axis tells the net-
work diameter d (for propagating 99% of blocks). Our
results show that Conflux scales well to 20k full nodes
and achieves average confirmation time under 10.7 min-
utes. Note that the achieved throughput of the 4MB/10s
setting is always 720MB/h. Our results also show that
the network diameter grows linearly as the number of
full nodes doubling. The results show that even with 20k
users, the increment of the network diameter is small.
Therefore the confirmation time of of a Conflux transac-
tion is still dominated by waiting enough blocks building
on top the corresponding pivot chain block that processes

the transaction. Because we are using the same 4MB/10s
setting, this waiting time stays mostly the same so does
the confirmation time.

6 Related Work

DAG-based consensus: People have proposed sev-
eral consensus protocols over DAG-based blockchains.
SPECTRE [24] specifies a non-transitive partial orders
for all pairs of blocks in the DAG, while Conflux pro-
vides a total order over all transactions which is criti-
cal to support applications like smart contracts. Inclu-
sive blockchains [17] extends the Nakamoto consensus
to DAG and specifies a framework to include off-chain
transactions in a consistent manner. Conflux differs from
it in that Conflux maintains two different kinds of edges
between blocks, i.e., parent edges and reference edges,
while inclusive blockchains protocol has only one kind
of edges. The saperation between parent edges and ref-
erence edges enables us to obtain a pivot chain in the
parental tree formed by parent edges only. We can there-
fore prove the safety of Conflux directly based on the
safety property of the chain-based GHOST protocol [26].
In contrast, the main chain in the inclusive blockchains
protocol is a non-extensible path defined in its DAG, and
it is therefore not possible to apply GHOST directly to
the inclusive blockchains protocol.

PHANTOM [25] shares the same aspects of Conflux
in terms of specifying a total order across transactions in
DAG-based blockchains. In PHANTOM, participating
nodes first find an approximate k-cluster solution for its
local block DAG to prune potentially malicious blocks,
then topologically sorts the remaining blocks to obtain a
total order. PHANTOM, however, is vulnerable to live-
ness attacks. Attackers with little computation power can
delay the confirmation of transactions indefinitely with
high probabilities even all honest nodes are completely
synchronous. See Appendix A for the attack.

Besides the aforementioned differences, to our best
knowledge Conflux presents the first empirical evalua-
tion of DAG-based blockchains. Running 10k full nodes
on EC2 where each full node has 40Mbps of bandwidth,
Conflux commits 5.76GB of transactions per hour and
confirms them within 4.5-7.4 minutes. There is no em-
pirical evaluation of other DAG-based protocols and it
is therefore unclear what is the throughput and the con-
firmation time of these protocols once implemented and
deployed.
Nakamoto consensus: The Nakamoto consensus proto-
col and the GHOST rule specify how the nodes should
choose a single canonical chain when encountering mul-
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tiple forks [20, 26]. The end result is that all honest nodes
converge on the canonical chain on a high probability.
The canonical chain corresponds to a total-ordered, irre-
versible log of transactions, where blocks and transac-
tions that are not on the canonical chains are discarded
and do not contribute to the throughput.

Instead of choosing one single canonical chain, Con-
flux assigns a total order of non-conflicting transactions
over the DAG. In Conflux, blocks that are not on the pivot
chains also contribute to the throughput while Conflux
still maintains a total-ordered, irreversible log of trans-
actions for the users, resulting in significant performance
boost compared to Bitcoin and GHOST.
Consortium consensus: Much research explorers the
direction of reducing the uses of the expensive Nakamoto
consensus in blockchains to improve their performances.
Bitcoin-NG [10] elects a leader using the Nakamoto con-
sensus protocol and the leader is responsible to commit
all transactions until the next leader is elected. Several
research work has proposed to combine Nakamoto con-
sensus with BFT protocols [16, 23], or to fully replace
Nakamoto consensus with BFT protocols [12, 18, 19].

From a practical point of view, all the proposals above
run the alternative consensus protocols within a confined
group (one node for Bitcoin-NG) of nodes, since proto-
cols like BFT only scale up to dozens of nodes in prac-
tices. Therefore one key challenge of these systems need
to address is to choose the confined group in an adversar-
ial environment like blockchains while maintaining the
security guarantees. For example, the groups can be cho-
sen based on their stakes of the system [12] or external
hierarchy of trusts [18].

Conflux differs from the above approaches in two
ways. First, the total orders of the transactions is decided
by all participants of the network instead of a confined
group. Additionally Conflux is able to tolerate to half
of the network are malicious while the BFT-based ap-
proaches can only tolerate up to one third of malicious
nodes. Second, the above approaches enforce the total
order eagerly as the members of the confined group fully
verify and commit the transactions before moving on to
the next ones. Conflux, however, allows multiple blocks
generating in parallel and finalizes their orders later. The
design decision presents an interesting trade-off between
throughput and latency in the system. For example, Con-
flux achieves 3.84x throughput compared to Algorand,
but the confirmation time in Algorand is shorter than
Conflux.
Fairness: Recent studies have shown that large miners
with more than 25% of computational power can cap-
ture unproportionally more rewards, putting smaller min-

ers in disadvantages [11, 21, 22]. Although achieving
fairness is outside the scope of this paper, we note that
by adapting faster block generation rates and allowing
multiple blocks generated in parallel, Conflux inherently
mitigates the disadvantages of small miners. It is not pos-
sible for a large miner to invalidate blocks generated by
small miners via forking the chain.
Proof-of-Stake: The original Nakamoto consensus pro-
tocol in Bitcoin requires nodes to solve significant com-
putation puzzles (i.e., proof-of-work (PoW)) to vote for
consensus. As the PoW scheme demands a significant
amount of resources, alternative schemes such as proof-
of-stake (PoS) has been proposed [7, 14, 15]. In PoS
based system the leader is elected based upon the stakes
he or she owns in the system. The leader then is respon-
sible to append new blocks to the blockchain. Conflux
is complementary to the PoS scheme. The consensus al-
gorithm can be adopted by the PoS-based blockchains as
long as the PoS mechanisms can maintain a stable net-
work block generation rate.

7 Conclusion

Conflux is a fast, scalable, and decentralized blockchain
platform with proved safety. It exploits the inherent par-
allelism among blockchain transactions, uses a DAG-
based approach to defer the total order reconciliation
while providing the externally same interface compared
to traditional chain-based approaches. It provides orders
of magnitude throughput improvement, as validated by
the real deployment in Amazon EC2 clusters. Conflux
provides a promising solution to address the performance
bottleneck of blockchains and opens up a wide range of
blockchain applications.
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A Attack on PHANTOM

A.1 Overview

PHANTOM [25] is a DAG-based protocol that attempts
to achieve consensus on a total order of blocks. In
PHANTOM, participants topologically sorts their lo-
cal DAG. The algorithm guarantees results consistency
among different participants and robustness of accepted
transactions.

The topological sorting algorithm consists of two
phases, in the first phase, the algorithm 2-colors all the
blocks into blue and red to eliminate the potentially ma-
licious blocks. Given a graph G, this phase contains 4
steps:

• For each tip (the blocks without decedent) b ∈
tips(G), let past(b) contains all the ancestors of b,
coloring the subgraph past(b) recursively.

• Let |BLUEk(G)| denote the number of blue blocks
in 2-coloring result of G. Find the tip bmax which
maximizes |BLUEk(past(bmax))|.

• In graph G, color blocks in past(bmax) according
to the result of subgraph past(bmax), color bmax in
blue.
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• Let anti(b) denotes the blocks which aren’t the an-
cestors nor the decedents of b. For the blocks
b ∈ anti(bmax), color it in blue if anti(b) contains
less than k blue blocks in G.

The score of block b is defined by |BLUEk(past(b))|.
A main chain is derived from this step. bmax is the chain
tip. The highest scoring tip in past(bmax) is its predeces-
sor in the chain, and so on.

In the second step, participants topological sorts all
the blue blocks based on the main chain. In correctness
proof of PHANTOM, robustness of topological order is
based on robustness of its main chain.

A.2 Liveness attack
Here we show an attack for Algorithm 1 in
PHANTOM[25]. This attack allows attacker to
kick out a block from main chain arbitrarily late. We
only allow attacker withhold finite blocks and have small
block generation capability. For arbitrary large time
duration d, the attacker is able to kick out one block
from main chain which has been received by all the
honest miners for time d.
Notation: In the following, we call the blocks generated
by honest nodes honest blocks and the blocks generated
by attacker malicious blocks. For any block c, anti(c)
contains all the blocks which are not the ancestors nor
the descendants of c, which is called anti-set. past(c)
contains all the ancestors of c.

The attacker chooses an honest block as the start point,
which is denoted by b1. The honest blocks which refer
b1 as ancestor are denoted by b2,b3, · · · in time sequen-
tial. Similarly, we use a1,a2, · · · to denote the malicious
blocks. Let set B contain all the honest block, set A con-
tains all the malicious block.
Network Assumption: Here we use a weaker network
assumption. We do not assume the attacker can control
or delay the communication between honest participants.
We instead assume all messages between any two nodes
are delivered immediately, i.e., we assume a fully syn-
chronous network.

Or we can make this assumption weaker. We only re-
quire the messages between attacker and honest nodes
are delivered immediately. For the network between hon-
est nodes, we have the following assumption. We assume
|B∩anti(b j)| has an upper bound k′ for all the b j ∈B with
negligible exception. In real world, most mining compu-
tation power are in mining pools with good network syn-
chronization. But it also takes several tens of seconds to
relay a block to all the participants. So k′ may be much
smaller than the PHANTOM protocol parameter k.

We also assume b1 is on the main chain of every honest
blocks and anti(b2)∩B = /0.
Parameter Assumption: Suppose the gap between up-
per bound k′ and PHANTOM protocol parameter k is
k∆ = k− k′. When all the blocks suffer a maximum net-
work delay, the choice of k guarantees that |anti(b j)| ≤ k
holds for almost all the honest block b j. So in a high
block generation rate, we can assume that k is large
enough. Precisely,

k∆(k∆−7)≥ 4k′.

Attack strategy: We define an positive integer array
{hi}∞

i=1 as following:

hn =
(n−2)(n−1)

2
+1.

For each malicious block ai, it refers all the blocks
in {bx|x ∈ [hi]} ∪ {ay|y ∈ [i− 1]} as its ancestors. At-
tacker withholds block ai until block bhi−1+k∆

is gener-
ated. When bhi−1+k∆

is generated, attacker makes every-
one receive ai and bhi−1+k∆

immediately.
In this strategy, attacker can start to mine ai when bhi

and ai−1has been generated. If bhi−1+k∆
is generated ear-

lier than ai, we say the attacker fails the liveness attack.
Moreover, if i ≥ 3∆− 14 and bhi+1 is generated earlier
than block bhi , we will also judge that the attacker fails
the liveness attack.
Analysis: According to the previous strategy, every ma-
licious blocks have a large anti-set and every honest
blocks has a small anti-set.

Lemma 1 For any b j ∈ B, |anti(b j)∩A|< k∆.

Lemma 2 For any ai ∈ A,

|anti(ai)∩B|= (k∆−1)(k∆ +2i−4)
2

> k+ k′.

These properties provides malicious block advantage in
calculate blue set.

Lemma 3 According to Algorithm 1 in PHANTOM, for
any b j ∈B, Bluek(past(b j)) = past(b j)∩B. For any ai ∈
A, Bluek(past(ai)) = past(ai).

Proof. Without loss of generality, we ignore the common
ancestor past(b1) and regard b1 as genesis block. We
prove this lemma by induction.

This lemma holds for b1 trivially since anti(b1) = /0.
If this lemma holds for all the blocks in past(ai),

|Bluek(past(ai−1))|= hi−1 + i−2. For any honest block
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b j ∈ past(ai), |Bluek(past(b j))| = |past(b j) ∩ B| =
j − 1 ≤ hi − 1. So we have |Bluek(past(ai−1))| >
|Bluek(past(b j))|. ai−1 is the highest scoring tip of
past(ai).

We also have

|anti(b j)∩Bluek(past(ai−1)∪{ai−1})|
≤|anti(b j)∩B|+ |anti(b j)∩A|
<k′+ k∆.

So all the block in B ∩ past(ai) will be added to
Bluek(past(ai)), which results in Bluek(past(ai))∩B =
past(ai)∩B. We conclude Bluek(past(ai)) = past(ai).

If this lemma holds for all the blocks in past(b j),
∀ j′ < j, |Bluek(past(b j′))| ≥ j′ − 1− k′. For any at-
tacker block ai ∈ past(b j), we have j > hi−1+k∆

and
bhi−1+k∆

∈ past(b j).
We have

|Bluek(past(ai))|
=i−1+hi

=i−1+hi−1+k∆
− (k∆−1)(k∆ +2i−4)

2
<hi−1+k∆

−1− k′

≤|Bluek(past(bhi−1+k∆
))|

≤ max
b j′∈past(b j)

|Bluek(past(b j′))|,

This inequality shows that the highest scoring tip of b j is
in B. We denote it b j̄.

For any ai ∈ anti(G),

|anti(ai)∩Bluek(past(b j̄)∪{b j̄})|
≥|anti(ai)∩B|− k′

>k

No block in A∩ past(b j) will be add to Bluek(past(b j)),
which means Bluek(past(b j))∩A = /0 �

From this lemma, we can show that the attacker can
kick out block b2 from main chain at any time since the
liveness attack has not failed. This means that the honest
node shouldn’t acknowledge block b2 as an irreversible
block because the attacker is able to change the main
chain and reorder the blocks. More precisely, we have
the following theorem.

Theorem 4 Starting from the generation time of block
a3∆−14, as long as the attacker has not failed the liveness
attack, the attacker is able to kick out block b2 from main
chain in all the honest nodes.

Proof. In the attack strategy, each time the attacker
broadcasts ai, it broadcasts bhi−1+k∆

at the same time. In
the proof of lemma 3, we show that bhi−1+k∆

has higher
score than ai. So for each local graph in an honest nodes,
the main chain tip 1 will be an honest block. We also
show that each honest block will also choose an honest
block as the highest scoring tip. So the main chain of
each honest node must pass block b2.

Since the attacker has not failed the liveness attack,
suppose aw and bv are the malicious block and honest
block with the highest index. So we have w ≥ 3∆− 14
and v < hw+2. All the honest blocks have score no more
than v− 1 because Bluek(past(b j)) = past(b j)∩B ≤ j
for all the honest blocks. The score of aw is w+hw−1.
Now we claim that

v−1 < hw+2−1 = 2w−2+hw ≤ w+hw−1.

It implies that if attacker broadcasts aw and all its an-
cestors, aw will be the highest score block in all the hon-
est nodes. The lemma 3 also shows that the highest scor-
ing tip of a malicious block is also a malicious block. So
the main chain of all the honest nodes will pass block a1,
which is in anti(b2). Attacker kicks out b2 from main
chain successfully. �

Now the only remaining problem is that how long can
an attacker maintain such an attack. The following theo-
rem gives the probability of an infinite liveness attack.

Theorem 5 Suppose k∆ is an even integer. The liveness
attack never fails with probability at least

(
1− e−cq)3k∆−15 ·

∞

∏
i=3k∆−14

(1− e−q(i−1)),

where q = λa
λh
,c = 1.5k∆ − 8. This equation is strictly

larger than zero.

Proof. Here we require the attacker to finish the follow-
ing tasks.

For ai with i ≤ 3k∆ − 15, attacker starts to mine ai
when block b(i−1)·c+1 is generated. And ai must be gen-
erated before the generation of block bi·c+1.

For ai with i ≥ 3k∆ − 14, attacker starts to mine ai
when block bhi is generated and ai must be mined before
the generation of bhi+1 .

For i≤ 3k∆−15, we have

hi ≤ (i−1) · c+1
hi−1+k∆

≥ i · c+1

1The main chain tip is the block on main chain without children.
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For i≥ 3k∆−14, we have

h3k∆−14 = (3k∆−15) · c+1
hi+1 = hi+1

In this task, it can be shown that the mining time inter-
vals of malicious blocks satisfy the requirements in at-
tack strategy and do not overlap. Completing this task
implies applying a successful attack. For i ≤ 3k∆ −
15, the attacker fails when mining ai with probability
1− (1− q)c ≤ 1− e−cq. For i ≥ 3k∆− 14, the attacker
fails when mining ai with probability 1− (1− q)i−1 ≤
1− e−q(i−1). The probability of completing this task is

(
1− e−cq)3k∆−15 ·

∞

∏
i=3k∆−14

(1− e−q(i−1)).

Let n =

⌈
− log(1−e−q)

q

⌉
+1, e−qn < 1− e−q, we have

∞

∏
i=3k∆−14

(1− e−q(i−1))

≥

(
1−

∞

∑
i=n+1

e−q(i−1)

)
n

∏
i=3k∆−14

(1− e−q(i−1))

=

(
1− e−qn

1− e−q

) n

∏
i=3k∆−14

(1− e−q(i−1))

>0

So the probability is strictly larger than 0. �
As a result, attacker with 15% computation power

can maintain this attack infinitely with probability 98.9%
when k∆ ≥ 40.
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