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Abstract We give a lower bound of �(n(d−1)/2) on the quantum query complexity
for finding a fixed point of a discrete Brouwer function over grid [n]d . Our lower
bound is nearly tight, as Grover Search can be used to find a fixed point with O(nd/2)

quantum queries. Our result establishes a nearly tight bound for the computation of
d-dimensional approximate Brouwer fixed points defined by Scarf and by Hirsch,
Papadimitriou, and Vavasis. It can be extended to the quantum model for Sperner’s
Lemma in any dimensions: The quantum query complexity of finding a panchro-
matic cell in a Sperner coloring of a triangulation of a d-dimensional simplex with
nd cells is �(n(d−1)/2). For d = 2, this result improves the bound of �(n1/4) of
Friedl, Ivanyos, Santha, and Verhoeven.

More significantly, our result provides a quantum separation of local search and
fixed point computation over [n]d , for d ≥ 4. Aaronson’s local search algorithm
for grid [n]d , using Aldous Sampling and Grover Search, makes O(nd/3) quantum
queries. Thus, the quantum query model over [n]d for d ≥ 4 strictly separates these
two fundamental search problems.
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1 Introduction

In this paper, we give a nearly tight bound on the quantum query complexity of fixed
point computation over the grid [n]d = {1,2, . . . , n}d . Our result demonstrates a strict
separation of fixed point computation and local search in the quantum query model,
resolving an open question posed in [1]. We also solve the problem left open in [1]
about both the randomized and quantum query complexity of discrete fixed point
computation over the hypercube {0,1}n.

1.1 Motivation

In various applications, we often need not only to decide whether solutions satisfying
certain properties exist, but also to find a desirable solution. This family of computa-
tional problems is usually referred to as the search problem.

Three fundamental types of search problems are global optimization, local search,
and fixed point computation (FPC). In a global optimization problem, we are given an
objective function g over a domain D and are asked to find a solution x ∈ D such that
g(x) ≤ g(y), for all y ∈ D. In local search, we are given a function h over a domain D

and a neighborhood function N : D → 2D . We are asked to find a solution x ∈ D such
that h(x) ≤ h(y), for all y ∈ N(x). In practice, we also consider the approximation
version of these problems.

FPC arises in geometry, topology, game theory, and mathematical economics.
Brouwer proved that every continuous map f from a 3D simplex S to itself has a
fixed point, i.e., x ∈ S such that f (x) = x. Applying Brouwer’s theorem, Nash es-
tablished that every finite, n-player game has an equilibrium point [2]. Arrow and
Debreu [3] then extended the equilibrium theory to exchange markets that satisfy
some very general conditions.

Mathematically, FPC and optimization are somewhat related. For example, one
can reduce FPC to root finding: x ∈ S is a fixed point of f if f (x)−x = 0, or ‖f (x)−
x‖ = 0; Every global optimum of g(x) = ‖f (x) − x‖ is a fixed point of f . One
can also view a local optimum of h as a fixed point: For every x ∈ D, let fh(x)

be a point in N(x) that minimizes h(x); Then every fixed point x of fh is a local
optimum of h. Of course, this reduction from local search to FPC is less formal
than the reduction from FPC to global optimization because the function fh may
not satisfy the “continuity” conditions required by the Fixed Point Theorems. The
following are two fundamental complexity questions about these search problems:

– Is global optimization strictly harder than fixed point computation?
– Is a fixed point harder to find than a local optimum?

To address these questions in the framework traditionally considered in Theoret-
ical Computer Science, one may want to compare global optimization, local search,
and FPC over discrete domains. For optimization problems, it is somewhat easier
to define the discrete or combinatorial analog of continuous optimization, by con-
sidering discrete input domains, such as the hypercube {0,1}n or grid [n]d : Given a
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function h over D = {0,1}n or [n]d , find a global or local optimum of h. In local
search one may consider N(x) to be the direct neighbors of x in {0,1}n or [n]d .

The discrete FPC is less straightforward, and some inaccuracy must be introduced
to ensure the existence of a solution with finite description [4–8]. One idea is to
consider approximate fixed points as suggested by Scarf [4] over a finite discretization
of the convex domain, where a vertex x in the discretization is an approximate fixed
point of a continuous map f if ‖f (x) − x‖ ≤ ε for a given ε > 0. Another idea is to
use the direction-preserving functions (see Sect. 2) as introduced by Iimura, Murota,
and Tamura [9] over [n]d . One can also use Sperner’s definition of discrete fixed
points. Sperner’s famous lemma states: Suppose that � is a d-dimensional simplex
with vertices v1, v2, . . . , vd+1, and that S is a simplicial decomposition of �. Suppose
� assigns to each vertex of S a color from {1,2, . . . , d +1} such that, for every vertex
v of S , �(v) �= i if the ith component of the barycentric coordinates of v (that is, the
convex combination of v1, . . . , vd+1 to express v) is 0. Sperner’s Lemma asserts that
there must exist a cell in S that contains all the d + 1 colors. This fully-colored
simplex cell is often referred to as a Sperner simplex of (S,�). Now consider a
Brouwer map f with Lipschitz constant L over the simplex �. Suppose further that
the diameter of each simplex cell in S is at most ε/L. Then, one can define a color
assignment �f such that each fully-colored simplex in (S,�f ) must have a vertex
v satisfying ‖f (v) − v‖ ≤ �(ε). Thus, a fully-colored cell of (S,�f ) can be viewed
as an approximate, discrete fixed point of f . The Hirsch, Papadimitriou, and Vavasis
model [7] extends Sperner’s Lemma from the simplex to the hypergrid [n]d .

Note that if the function h for optimization or the map f for FPC is given suc-
cinctly by a boolean circuit, then these three problems are search problems in com-
plexity classes FNP, PLS, and PPAD, respectively. Other than PPAD ⊆ FNP and
PLS ⊆ FNP, the relations between these classes remain unclear.

In a recent paper, Chen and Teng demonstrated that the randomized query model
over [n]d strictly separates these three search problems [1]:

Global optimization is harder than fixed-point computation,
and fixed-point computation is harder than local search.

In particular, they proved that, given a black-box, discrete Brouwer function f from
[n]d to [n]d , the randomized query complexity of finding a fixed point x is �(nd−1).
The separation statement above then follows from two earlier results: A folklore the-
orem states that the randomized query complexity for finding a global optimum of
a black-box function h from [n]d to R is �(nd); Aldous [10] showed that the ran-
domized query complexity of finding a local optimum of a black-box function h from
[n]d to R is O(nd/2).

They further conjectured that FPC is also strictly harder than local search in the
quantum query model over [n]d . In particular, they conjectured that the quantum
query complexity of FPC over [n]d is �(nd/2). If this conjecture is true, then just like
in its randomization counterpart, FPC is harder than local search under the quantum
query model in two or higher dimensions.

1.2 Our Contributions

We prove a nearly tight bound of �(n(d−1)/2) on the quantum query complexity
of FPC over [n]d—Grover Search solves FPC with O(nd/2) quantum queries. Our
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result also gives a nearly tight bound for the computation of d-dimensional ap-
proximate Brouwer fixed points as defined by Scarf and by Hirsch, Papadimitriou,
and Vavasis [7]. It can be extended to the quantum model for Sperner’s Lemma in
any dimensions: the quantum query complexity of finding a panchromatic cell in a
Sperner coloring of a uniform triangulation of a d-dimensional simplex with nd cells
is �(n(d−1)/2). For d = 2, this result improves the bound of �(n1/4) obtained by
Friedl, Ivanyos, Santha, and Verhoeven [11].

Our result provides a quantum separation between local search and FPC over [n]d ,
for d ≥ 4. Aaronson’s local search algorithm over [n]d makes O(nd/3) quantum
queries [12]. Thus the quantum query model over [n]d strictly separates these two
fundamental search problems when d ≥ 4.

We use the quantum adversary argument of Ambainis [13, 14] in the lower bound
proof. We hide a distribution of random, directed paths in the host grid graph (over
[n]d ) with a known starting vertex, and ask the algorithm to find the ending vertex
of the path. This “path-hiding” approach was used in [12, 15, 16] for deriving quan-
tum lower bounds of local search. It was also used in [11] for deriving the �(n1/4)

lower bound of the two-dimensional Sperner’s problem. The main difference between
our work and previous works is that the paths used in previous works have some
monotonicity properties: there is an increasing (or decreasing) value along the path.
Given any two vertices on the path, without querying other vertices one can decide
which vertex appears earlier on the path. Such a monotonicity property makes it eas-
ier to derive good bound on the collision probability needed for a lower bound on
local search, but limits the length of the path, making it impossible to derive tight
lower bounds for FPC.

Instead of using “monotone” paths, we improve the path construction technique of
Chen and Teng [1] in their randomized query lower bound for FPC, and make it work
for the quantum adversary argument. We also find an interesting connection between
the two discrete domains—hypergrid [n]d and hypercube {0,1}n, which allows us
to resolve a question left open in [1] on both the randomized and quantum query
complexity of FPC over {0,1}n. We show that they are �(2n(1−ε)) and �(2n(1−ε)/2)

respectively, for all ε > 0.
It remains open whether the quantum query complexity of FPC over [n]d is indeed

�(nd/2) or a better algorithm with query complexity �(n(d−1)/2) exists.

1.3 Related Work

In [7], Hirsch et al. introduced the first query model for discrete FPC over [n]d .
They proved a tight �(n) deterministic bound for [n]2, and an �(nd−2) determinis-
tic lower bound in general. Chen and Deng [17] improved their bound to �(nd−1).
Friedl, Ivanyos, Santha, and Verhoeven considered the 2-dimensional Sperner’s prob-
lem [11]. They proved an �(n1/2) bound for its randomized query complexity and
an �(n1/4) bound for its quantum query complexity.

Aaronson [12] was the first to introduce the quantum query complexity of local
search over [n]d (and also {0,1}n). He gave an upper bound O(nd/3) and a lower
bound �(nd/4−1/2/

√
logn). Santha and Szegedy [18] proved a lower bound �(n1/4)

for d = 2. Zhang [15] then proved a lower bound of �(nd/3) which is tight up to a
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log factor, for d ≥ 5. In the same paper, he obtained a nearly tight quantum bound for
{0,1}n. For d = 2 and d = 3, Sun and Yao [16] eventually gave an almost optimal
lower bound.

Following the work of [12, 15, 16], we use the quantum adversary method of
Ambainis to establish our lower bound for FPC. There have been several extensions
of Ambainis’s method, including the weighted adversary method of Ambainis [13]
and Zhang [14], the spectral method of Barnum, Saks and Szegedy [19], and the
Kolmogorov complexity method of Laplante and Magniez [20]. It was shown by
Spalek and Szegedy that the power of all these methods is equivalent [21]. Recently
a new adversary method with negative weights was proposed by Hoyer, Lee, and
Spalek [22].

We use the weighted adversary method. It might be possible that some new adver-
sary method can be used to obtain the tight �(nd/2) lower bound.

2 Definition of Problems

We start with some notation. We let Z
d
n denote set {1,2, . . . , n}d , and Gd

n denote the
natural directed graph over Z

d
n: edge (u,v) ∈ Gd

n if there exists i ∈ [d] such that
|ui − vi | = 1 and uj = vj for all other j ∈ [d]. We let Hn denote the following
directed graph over hypercube {0,1}n: edge (u,v) ∈ Hn if there exists i ∈ [n] such
that |ui − vi | = 1 and uj = vj for all other j ∈ [n].

We use Kn to denote the complete directed graph of size n: the vertex set of Kn is
{1,2, . . . , n}, and (i, j) is an edge in Kn for all 1 ≤ i �= j ≤ n, . We use Kd

n to denote
the Cartesian product of d complete graphs: Kd

n = Kn�Kn� · · ·�Kn. More exactly,
the vertex set of Kd

n is {1,2, . . . , n}d ; (u,v) is a directed edge of Kd
n if there exists

i ∈ [d] such that ui �= vi and uj = vj for all other j ∈ [d].
Let G be a directed graph, and P be a simple directed path in G. We say P =

v1v2 · · ·vk , where k ≥ 1, is simple if for all 1 ≤ i �= j ≤ k, vi �= vj . Then P naturally
induces a map FP from the edge set of G to {0,1}: for all (u,v) ∈ G, FP (u,v) =
1 if (u,v) ∈ P ; and FP (u,v) = 0, otherwise. We let END(P ) denote the ending
vertex of P . Finally, we let E

d = {±e1,±e2, . . . ,±ed} denote the set of principle
unit-vectors in d-dimensions. Let ‖ · ‖ denote ‖ · ‖∞.

2.1 Discrete Brouwer Fixed-Points

A function f : Z
d
n → {0} ∪ E

d is bounded if f (x) + x ∈ Z
d
n for all x ∈ Z

d
n; v ∈ Z

d
n is

a zero point of f if f (v) = 0. Clearly, if F(x) = x + f (x), then v is a fixed point of
F if and only if v is a zero point of f .

Definition 1 A function f from set S ⊂ Z
d to 0} ∪ E

d is direction-preserving if
‖f (u) − f (v)‖ ≤ 1 for all pairs u,v ∈ S such that ‖u − v‖ ≤ 1.

Following the discrete fixed-point theorem of [9], we have: for every function
f : Z

d
n → {0} ∪ E

d , if f is both bounded and direction-preserving, then it has at least
one zero point. We refer to a bounded and direction-preserving function f over Z

d
n
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Fig. 1 END-OF-PATH problems over K2
3 , G2

4, and H 3, respectively

as a Brouwer function over Z
d
n . In the query model, one can only access f by asking

queries of the form: “What is f (v)?” for a point v ∈ Z
d
n .

The problem ZPd that we will study is: Given a Brouwer function f : Z
d
n → {0} ∪

E
d in the query model, find a zero point of f . We use QQd

ZP(n) to denote the quantum
query complexity of problem ZPd . A description of the quantum query model can be
found in [23] and [24]. The main result of the paper is

Theorem 1 (Main) For all d ≥ 2 and large enough n, QQd
ZP(n) = �(n

d−1
2 ).

2.2 The End-of-Path Problems over Graphs Kd
n ,Gd

n and Hn

To prove Theorem 1, we need to introduce the following d-dimensional problem
KPd (the END-OF-PATH problem over Kd

n ): Its input is a binary string of length |Kd
n |

(that is, the number of edges in Kd
n ), which encodes the map FP of a simple directed

path P in Kd
n ; P is known to start at 1 = (1, . . . ,1) ∈ Kd

n ; and we need to find its
ending vertex END(P ). We use QQd

KP(n) to denote the quantum query complexity of
problem KPd .

Similarly, for d ≥ 2, we define the END-OF-PATH problem GPd over Gd
n , and use

QQd
GP(n) to denote its quantum query complexity. The following reduction from GPd

to ZPd was given in [1]: From any input string FP of GPd , where P is a simple path
in Gd

n (starting at 1), one can construct a Brouwer function f over Z
d
24n+7 such that:

1. Function f has exactly one zero point v∗. Once it is found, the ending vertex of
P can be located immediately;

2. For any v ∈ Z
d
24n+7, f (v) only depends on (at most) 4d bits of FP .

Using Lemma 1 of [18], we have

Lemma 1 For all d ≥ 2, QQ d
GP(n) ≤ O(d) · QQd

ZP(24n + 7).

To give a lower bound for QQ d
GP(n), we reduce KPd to GPd+1, and prove the

following lemma. The proof can be found in Appendix B.

Lemma 2 For all d ≥ 1, QQ d
KP(n) ≤ O(d

√
dn) · QQ d+1

GP (4dn + 1).

Finally, in Sect. 3, we prove an almost-tight lower bound for KPd .
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Theorem 2 For all d ≥ 1 and large enough n, QQd
KP(2n + 3) = �((n/211)

d+1
2 ).

As a result, Theorem 1 follows directly from Lemma 1, 2, and Theorem 2.
Besides, as a by-product, our work also implies an almost-tight lower bound for

the END-OF-PATH problem HP over Hn: Its input is a binary string of length |Hn|
which encodes the map FP of a simple directed path P in Hn; P is known to start
at 0 = (0,0, . . . ,0) ∈ {0,1}n and we need to find END(P ). Let QQ HP(n) denote its
quantum query complexity, then in Appendix A, we show that

Lemma 3 For all d ≥ 2 and n ≥ 1, QQd
GP(2n) ≤ O(1) · QQ HP(dn).

As a corollary of Lemma 2, 3, and Theorem 2, we have

Corollary 1 For all ε > 0 and large enough n, QQ HP(n) = �(2n(1−ε)/2).

3 An Almost-Tight Lower Bound for KPd

Using Grover’s search [25], we get the following upper bound for QQd
KP:

Lemma 4 For all d ≥ 1, QQ d
KP(n) = O(

√
d · nd+1).

To prove a matching lower bound, we need the following theorem from [13, 14]:

Theorem 3 Let f : S → {0,1}n1 be a partial function, where S ⊂ {0,1}n2 . Let w :
S × S → {0,1} be a map satisfying the following condition: w(x,y) = w(y,x) for all
x,y ∈ S and w(x,y) = 0 whenever f (x) = f (y).

Then the quantum query complexity QQ(f ) of f satisfies

QQ(f ) = �

(
min

x,y,i:xi �=yi
w(x,y)=1

√
1

θ(x, i)θ(y, i)

)
,

where

θ(x, i) =
∑

y′∈S,y′
i �=xi

w(x,y′)∑
y′∈S w(x,y′)

for all x ∈ S and i ∈ [n2].

The sketch of the proof is as follows. First, we build a set of hard paths S d
m in

graph Kd
2m+3 for d ≥ 1 and m ≥ 2. These paths induce a collection of binary strings

{FP ,P ∈ S d
m} of length |Kd

2m+3|, which plays the role of S in Theorem 3. Naturally,
the f in Theorem 3 maps each string FP to END(P ). Then, given any small enough
β > 0, we define a relation Rd

m,β over set S d
m× S d

m. It induces a relation over {FP ,P ∈
S d

m} × {FP ,P ∈ S d
m}, which satisfies all the conditions for w in Theorem 3. Finally,

we analyze θ and use Theorem 3 to obtain a lower bound for QQ d
KP(2m + 3).
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We let v = (v1, . . . , vd) denote a vertex in Kd
m, where vi ∈ [m] for all i ∈ [d].

For d ≥ 2, we let Dd denote the map from Z
d to Z

d−1: Dd(v) = (v1, . . . , vd−1). For
v ∈ Z

d−1 and t ∈ Z, we let (v, t) denote the vertex u ∈ Z
d with ud = t and ui = vi

for all i ∈ [d − 1].

3.1 Construction of the Hard Paths

For all d ≥ 1 and m ≥ 2, we now construct, inductively, a set of paths S d
m over Kd

2m+3.
All these paths start with 1 = (1, . . . ,1) ∈ Z

d .

Definition 2 (m-connector) Every permutation π : [m + 1] → [m + 1] with π(1) =
1 defines a sequence of 2m + 3 integers: C = 1 ◦ 2π(1) ◦ (2π(1) + 1) ◦ 2π(2) ◦
(2π(2) + 1) ◦ · · · ◦ 2π(m + 1) ◦ (2π(m + 1) + 1). Such a sequence C is called an
m-connector. For each i ∈ [m + 1], we also use C(i) to denote 2π(i), so C = 1 ◦
C(1) ◦ (C(1) + 1) ◦ · · · ◦ C(m + 1) ◦ (C(m + 1) + 1).

We use Cm to denote the set of all m-connectors.

The construction of S d
m when d = 1 is straightforward: P ∈ S 1

m if there is
a C ∈ Cm such that P has the following edges: (1,C(1)), (C(1),C(1) + 1),

(C(1) + 1,C(2)) · · · (C(m + 1),C(m + 1) + 1). We also say P is generated by C.
For the case when d > 1, we assume S d−1

m has already been constructed. A path P

is in S d
m if it can be generated by a (2m+4)-tuple (C,P1, . . . ,P2m+3), where C ∈ Cm

and Pi ∈ S d−1
m . The 2m+ 3 paths P1,P2, . . . ,P2m+3 in the tuple must satisfy the fol-

lowing condition: END(P1) = END(PC(1)) and END(PC(i)+1) = END(PC(i+1)) for
all i ∈ [m].

Path P is a simple path in graph Kd
2m+3 containing the following edges:

1. For all i ∈ {1,3, . . . ,2m + 1,2m + 3} and u,v ∈ Kd
m with ud = vd = i, edge

(u,v) ∈ P if and only if (Dd(u),Dd(v)) ∈ Pi ;
2. For all i ∈ {2,4, . . . ,2m,2m + 2} and vertices u,v ∈ Kd

m with ud = vd = i, edge
(u,v) ∈ P if and only if (Dd(v),Dd(u)) ∈ Pi ;

3. For all i ∈ [m + 1], edge ((1,1, . . . ,1,C(i)), (1,1, . . . ,1,C(i) + 1)) ∈ P ;
4. Let v = END(P1), then edge ((v,1), (v,C(1))) ∈ P ;
5. For all i ∈ [m], let v = END(PC(i)+1), then ((v,C(i) + 1), (v,C(i + 1))) ∈ P .

It is easy to see that the set S d
m of hard paths constructed here are not “monotone”: Let

u and v be two vertices in Kd
2m+3 in general positions; Then even if we are told that

both u and v are on some path P ∈ S d
m, we have no idea which one appears earlier

on P .

3.2 The Relation Rd
m,β over S d

m × S d
m

Let r ∈ Z
+ be an integer such that 2r + 1 ≤ m.

Let C1 and C2 be two m-connectors. For integers k1 ∈ [r] and r + 1 ≤ k2 ≤ m− r ,
we say C1 can be r-transformed to C2 with parameters (k1, k2) if: for all i ∈ [k1],
C2(k2 − k1 + i) = C1(m − k1 + 1 + i) and C2(m − k1 + 1 + i) = C1(k2 − k1 + i);
for all other indices j ∈ [m + 1], C2(j) = C1(j).
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Fig. 2 Connectors C1 and C2, where C1 can be r-transformed to C2 with (k1, k2)

See Fig. 2 for an example. Clearly, if C1 can be r-transformed to C2, then C2 can
also be r-transformed to C1 with the same parameters.

Now given a triple τ = (m,d,β) such that β ∈ (0,32−d ] and mβ ∈ Z
+, we induc-

tively construct a symmetric relation Rd
m,β from S d

m × S d
m to {0,1}. For convenience,

we also denote it by Rτ for short. We will use it as the map w in the adversary ar-
gument (see Theorem 3). Before presenting details of the construction, we introduce
the following useful notation: Given a path P ∈ S d

m and a vertex v ∈ Kd
2m+3, we let

– Sτ [P ] = {P ′ ∈ S d
m,Rτ (P,P ′) = 1}, and Nτ [P ] = |Sτ [P ]|;

– Sτ [P,v] = {P ′ ∈ Sτ [P ], END(P ′) = v}, and Nτ [P,v] = |Sτ [P,v]|;
– Vτ [P ] = {v ∈ Kd

2m+3, Nτ [P,v] > 0}.
For the case when d = 1, assume P and P ′ are two paths in S 1

m, which are gen-
erated by m-connectors C and C′ in Cm, respectively. Then Rτ (P,P ′) = 1 if and
only if there exist integers k1 and k2 such that C can be (βm)-transformed to C′ with
parameters (k1, k2). Clearly, the definition of Rτ implies that

Vτ [P ] = {C(r + 1) + 1,C(r + 2) + 1, . . . ,C(m − r) + 1} ⊂ {5,7, . . . ,2m + 3},
where r = βm, and thus, |Vτ [P ]| = (1 − 2β)m.

For the case when d > 1, we use τ̄ to denote (m,d − 1, β). By induction on d , we
may assume that Rτ̄ (from S d−1

m × S d−1
m ) has already been constructed since

β ∈ (0,32−d ] ⊂ (0,32−(d−1)].
Now let P and P ′ be two paths in S d

m, which are generated by tuples

(C,P1, . . . ,P2m+3) and (C′,P ′
1, . . . ,P

′
2m+3),

respectively. We set Rτ (P,P ′) = 1 if the following conditions are satisfied:

– Let r = βm. There exist integers k1 ∈ [r] and r + 1 ≤ k2 ≤ m − r such that C can
be r-transformed to C′ with parameters (k1, k2);

– Let r1, r2, r3, r4 denote C(k2 − k1) + 1, C(m + 1) + 1, C(m − k1 + 1) + 1, and
C(k2)+1, respectively. Let l1, l2, l3 denote C(m− k1 +2), C(k2 +1), and C(k2 −
k1 + 1), respectively;

– For each i = 1,2 and 3, there exists v ∈ Vτ̄ [Pri ] ∩ Vτ̄ [Pli ] such that

P ′
ri

∈ Sτ̄ [Pri ,v] and P ′
li

∈ Sτ̄ [Pli ,v];
– P ′

r4
∈ Sτ̄ [Pr4]; and for all other j ∈ [2m + 3], P ′

j = Pj .
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This finishes the construction of Rτ .
First, it is easy to check that Rτ is a symmetric relation:

Rτ (P,P ′) = 1 ⇐⇒ Rτ (P
′,P ) = 1.

Moreover, we prove the following lemma concerning the set Vτ [P ]:

Lemma 5 For every path P ∈ S d
m, we have

|Vτ [P ]| = ((1 − 2β)m
)d

and Vτ [P ] ⊂ {5,7, . . . ,2m + 3}d . (1)

Proof We use induction on d . The case when d = 1 is trivial.
For the case when d > 1, we let τ̄ denote (m,d − 1, β), and prove that

Vτ [P ] =
⋃

t=C(k)+1,r+1≤k≤m−r

Vτ̄ [Pt ] × {t}. (2)

Equation (1) then follows since by the inductive hypothesis, we have

|Vτ̄ [Pt ]| = ((1 − 2β)m)d−1 and Vτ̄ [Pt ] ⊂ {5,7, . . . ,2m + 3}d−1

for every Pt in (2).
By the definition of Vτ [P ], to prove (2), it suffices to show that, for any vertex v ∈

Kd
2m+3 such that vd = C(k) + 1 for some k : r + 1 ≤ k ≤ m − r and (v1, . . . , vd−1) ∈

Vτ̄ [Pvd
], we have Nτ [P,v] > 0.

To this end, we let Mi,j , for all i, j : 1 ≤ i �= j ≤ m + 1, denote

Mi,j =
∑

v∈Vτ̄ [PC(i)+1]∩Vτ̄ [PC(j)]
Nτ̄ [PC(i)+1,v] · Nτ̄ [PC(j),v]. (3)

Then by the inductive hypothesis, we have

|Vτ̄ [PC(i)+1] ∩ Vτ̄ [PC(j)]| ≥ 2((1 − 2β)m)d−1 − md−1 > 0,

since β < 32−d . Therefore, Mi,j > 0 for all i, j . The reason why we introduce these
integers is because Nτ [P,v] can be expressed as

r∑
k1=1

Mk−k1,m−k1+2Mm+1,k+1Mm−k1+1,k−k1+1Nτ̄ [Pvd
, (v1, . . . , vd−1)]. (4)

As a result, Nτ [P,v] > 0 since we assumed that (v1, . . . , vd−1) ∈ Vτ̄ [Pvd
]. �

Next, we use Lemma 5 to prove the following statement about Rd
m,β ≡ Rτ :

Lemma 6 For d ≥ 1 and β ∈ (0,32−d ] such that r = βm ∈ Z
+, we have

1

μd(β)
≤ Nτ [P,v]

Nτ [P ′,v′] ≤ μd(β),
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for all P,P ′ ∈ S d
m, v ∈ Vτ [P ] and v′ ∈ Vτ [P ′], where μd(β) is defined inductively

on d as follows: μ1(β) = 1; for d ≥ 2,

μd(β) = (μd−1(β))7

(2(1 − 2β)d−1 − 1)3
.

Proof The case when d = 1 is trivial.
For d > 1, suppose P is generated by (C,P1, . . . ,P2m+3) and P ′ is generated

by (C′,P ′
1, . . . ,P

′
2m+3). We define integers Mi,j and M ′

i,j , as in (3), for P and P ′,
respectively. Then, by using the inductive hypothesis and (1), we have

Mi,j /Mi′,j ′ ≤ (μd−1(β))2/(2(1 − 2β)d−1 − 1).

The lemma then follows by applying this inequality to every item in (4). �

The following lemma concerning μd is easy to verify (by induction on d):

Lemma 7 For all d ≥ 1 and β ∈ (0,32−d ], μd(β) ≤ e32d−1β .

Let P be a path in S d
m. For all i, j : 1 ≤ i �= j ≤ m + 1, Mi,j is defined as in (3),

then we have the following two corollaries of Lemma 7.

Corollary 2 For all 1 ≤ i �= j, i′ �= j ′ ≤ m + 1, Mi,j

/
Mi′,j ′ < 2.

Corollary 3 For all paths P and P ′ in S d
m, Nτ [P ]/Nτ [P ′] ≤ μd(β) < 2.

3.3 Proof of the Lower Bound

For d ≥ 1 and β ∈ (0,32−d ], we show that, when m is large enough and satisfies
βm ∈ Z

+, relation Rτ ≡ Rd
m,β can serve as the function w in Theorem 3, and gives

us an almost-tight lower bound for QQ d
KP(2m + 3).

Let (v1,v2) be a directed edge in Kd
2m+3, v ∈ Kd

2m+3, and path P ∈ S d
m. We intro-

duce the following notation:

– Sτ [P, (v1,v2)] = {P ′ ∈ Sτ [P ], FP (v1,v2) �= FP ′(v1,v2)};
– Sτ [P,v, (v1,v2)] = Sτ [P,v] ∩ Sτ [P, (v1,v2)];
– Nτ [P, (v1,v2)] = |Sτ [P, (v1,v2)]|, Nτ [P,v, (v1,v2)] = |Sτ [P,v, (v1,v2)]|.
We also let

θτ

(
P, (v1,v2)

) = Nτ [P, (v1,v2)]
Nτ [P ] =

∑
v∈Vτ [P ] Nτ [P,v, (v1,v2)]

Nτ [P ] .

Theorem 2 follows as a corollary of Theorem 3 and Lemma 8 below.

Lemma 8 Let d ≥ 1 and β ∈ (0,32−d ]. There exists a constant Ld,β such that for
all m ≥ Ld,β with βm ∈ Z

+, if P,P ′ ∈ S d
m satisfy

Rd
m,β(P,P ′) = Rτ (P,P ′) = 1 and FP (v1,v2) �= FP ′(v1,v2)
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for some edge (v1,v2) ∈ Kd
2m+3, then

θτ (P, (v1,v2)) · θτ (P
′, (v1,v2)) ≤

(
211

m

)d+1

. (5)

Proof Without loss of generality, we may assume FP (v1,v2) = 0 and FP ′(v1,

v2) = 1. We use mathematical induction on d .
When d = 1, we assume P and P ′ are generated by C and C′, respectively. Since

Rτ (P,P ′) = 1, there exist integers k1 ∈ [r] and r + 1 ≤ k2 ≤ m − r such that C

can be (r = βm)-transformed to C′ with parameters (k1, k2). It is also easy to check
that Nτ [P ] = Nτ [P ′] = β(1−2β)m2. Because FP (v1, v2) = 0 and FP ′(v1, v2) = 1,
(v1, v2) must fall into one of the following three cases. For each case, we will prove
upper bounds for Nτ [P, (v1, v2)] and Nτ [P ′, (v1, v2)], which in turn give us upper
bounds for θτ (P, (v1, v2)) and θτ (P

′, (v1, v2)).

1. (v1, v2) = (C(k2 − k1) + 1,C(m − k1 + 2)): In this case, it is easy to show
that Nτ [P, (v1, v2)] = 1. Actually P ′ is the only path in Sτ [P, (v1, v2)]. Next,
we bound Nτ [P ′, (v1, v2)]. For this purpose, we use P ′′ to denote a path in
Sτ [P ′, (v1, v2)], which is generated by C′′. Moreover, we use k′

1 and k′
2 to de-

note the integers such that C′ can be r-transformed to C′′ with (k′
1, k

′
2). Since

FP ′(v1, v2) = 1 but FP ′′(v1, v2) = 0, we must have

k2 − k1 ∈ {k′
2, k

′
2 − k′

1}.
Thus, the number of such paths P ′′ is at most 2r = 2βm. As a result,

θτ (P, (v1, v2)) = 1

β(1 − 2β)m2
and θτ (P

′, (v1, v2)) ≤ 2

(1 − 2β)m
;

2. (v1, v2) = (C(m + 1) + 1,C(k2 + 1)): By similar arguments, one can show that
Nτ [P, (v1, v2)] = βm and Nτ [P ′, (v1, v2)] ≤ 2βm. As a result, we have

θτ (P, (v1, v2)) = 1

(1 − 2β)m
and θτ (P

′, (v1, v2)) ≤ 2

(1 − 2β)m
;

3. (v1, v2) = (C(m − k1 + 1) + 1,C(k2 − k1 + 1)): By similar arguments, one can
show that Nτ [P, (v1, v2)] = 1 and Nτ [P ′, (v1, v2)] ≤ (1 − 2β)m. As a result,

θτ (P, (v1, v2)) = 1

β(1 − 2β)m2
and θτ (P

′, (v1, v2)) = 1

βm
.

When m is large enough (e.g., set L1,β to be (1 − 2β)/(2β2)), it is clear that
θτ (P, (v1, v2)) ·θτ (P

′, (v1, v2)) in the second case is greater than the other two cases,
and we have

θτ (P, (v1, v2)) · θτ (P
′, (v1, v2)) ≤ 2

((1 − 2β)m)2
<

(
211

m

)2

.

This finishes the proof for the case when d = 1.
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When d > 1, suppose P and P ′ are generated by (C,P1, . . . ,P2m+3) and (C′,
P ′

1, . . . ,P
′
2m+3), respectively. Moreover, C can be (βm)-transformed to C′ with

(k1, k2). Integers Mi,j and M ′
i,j are defined as previously. Let τ̄ = (m,d − 1, β).

For i ∈ [m + 1], we let

Mi = Nτ̄ [PC(i)+1] and M ′
i = Nτ̄ [P ′

C(i)+1].

First, we consider the case when v1
d �= v2

d , and v1
i = v2

i for all 1 ≤ i ≤ d − 1. We
use v∗ to denote (v1

1, v1
2, . . . , v1

d−1) = (v2
1, v2

2, . . . , v2
d−1). Then there are again, three

cases to consider.

1. (v1
d , v2

d) = (C(k2 − k1) + 1,C(m − k1 + 2)): By Lemma 6 and Corollary 2, we
can write θτ (P, (v1,v2)) as

Nτ̄ [PC(k2−k1)+1,v∗]Nτ̄ [PC(m−k1+2),v∗]Mm+1,k2+1 Mm−k1+1,k2−k1+1Mk2∑r
t1=1

∑m−r
t2=r+1 Mt2−t1,m−t1+2Mm+1,t2+1 Mm−t1+1,t2−t1+1Mt2

≤ 8(μd−1(β))2

βm · (1 − 2β)m · (2(1 − 2β)d−1 − 1)md−1
= O

(
1

md+1

)
,

and θτ (P
′, (v1,v2)) = O(1/m). Equation (5) then follows when m is large

enough.
2. (v1

d , v2
d) = (C(m+1)+1,C(k2 +1)): By Lemma 6 and Corollary 2, we can write

θτ (P, (v1,v2)) as

∑r
t1=1Mk2−t1,m−t1+2Nτ̄ [PC(m+1)+1,v∗]Nτ̄ [PC(k2+1)+1,v∗]Mm−t1+1,k2−t1+1Mk2∑r

t1=1
∑m−r

t2=r+1 Mt2−t1,m−t1+2Mm+1,t2+1Mm−t1+1,t2−t1+1Mt2

≤ 8(μd−1(β))2

(1 − 2β)m · (2(1 − 2β)d−1 − 1)md−1
<

32

md
.

Similarly, one can show that,

θτ (P
′, (v1,v2)) <

32

(1 − 2β)m
,

and (5) follows.

Case 3, (v1
d , v2

d) = (C(m − k1 + 1) + 1,C(k2 − k1 + 1)), can be proved similarly.
Second, we consider the case when v1

d = v2
d . By the inductive hypothesis, we know

there exists a constant Ld−1,β such that for all m > Ld−1,β and P,P ′ ∈ S d−1
m , if (1)

Rτ̄=(m,d−1,β)(P,P ′) = 1 and (2) FP (u1,u2) �= FP ′(u1,u2) for some directed edge
(u1,u2) ∈ Kd−1

2m+3, then

θτ̄ (P , (u1,u2)) · θτ̄ (P
′, (u1,u2)

) ≤ (211/m)d .

Here we set Ld,β ≥ Ld−1,β , so the inequality above holds for all m > Ld,β .
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It is easy to check that

v1
d ∈ {C(k2 − k1) + 1,C(k2 − k1 + 1),C(k2) + 1,C(k2 + 1),

C(m − k1 + 1) + 1,C(m − k1 + 2),C(m + 1)},
since otherwise, FP (v1,v2) = FP ′(v1,v2). In the proof, we only consider the case
when v1

d = C(k2) + 1. All the other cases can be proved similarly. We let u1 and u2

denote Dd(v1) and Dd(v2), respectively.
First, Nτ [P, (v1,v2)] can be divided into two parts. The first part is

r∑
t1=1

Mk2−t1,m−t1+2Mm+1,k2+1Mm−t1+1,k2−t1+1Nτ̄ [PC(k2)+1, (u1,u2)].

For every path Pi , using Corollary 3, we have

Nτ̄ [PC(k2)+1, (u1,u2)]
Nτ̄ [Pi] = Nτ̄ [PC(k2)+1, (u1,u2)]

Nτ̄ [PC(k2)+1] · Nτ̄ [PC(k2)+1]
Nτ̄ [Pi]

< 2 · θτ̄ (PC(k2)+1, (u1,u2)).

The second part is

min(m−r,k2+r)∑
t2=k2+1

Mm+1,t2+1Mm−(t2−k2)+1,k2+1Mt2At2,

where

At2 =
∑

v∈Vτ̄ [PC(k2)+1]∩Vτ̄ [PC(m−(t2−k2)+1)]
Nτ̄ [PC(k2)+1,v, (u1,u2)]

× Nτ̄ [PC(m−(t2−k2)+1),v].
However, for all t2 and 1 ≤ i �= j ≤ m + 1, we have

At2

Mi,j

≤ μd−1(β) ·
∑

v∈Vτ̄ [PC(k2)+1]∩Vτ̄ [PC(m−(t2−k2)+1)] Nτ̄ [PC(k2)+1,v, (u1,u2)]∑
v∈Vτ̄ [PC(i)+1]∩Vτ̄ [PC(j)] Nτ̄ [PC(i)+1,v]

≤ μd−1(β) · Nτ̄ [PC(k2)+1, (u1,u2)]
Nτ̄ [PC(k2)+1] · Nτ̄ [PC(k2)+1]∑

v∈Vτ̄ [PC(i)+1]∩Vτ̄ [PC(j)] Nτ̄ [PC(i)+1,v]

≤ (μd−1(β))2

(2(1 − 2β)d−1 − 1)
· θτ̄ (PC(k)+1, (u1,u2)).

Therefore, we have

θτ (P, (v1,v2)) ≤ 8 · θτ̄ (PC(k)+1, (u1,u2))

(1 − 2β)m

(
2 + (μd−1(β))2

(2(1 − 2β)d−1 − 1)

)



378 Algorithmica (2010) 56: 364–382

≤ 26

m
· θτ̄ (PC(k)+1, (u1,u2)).

For θτ (P
′, (v1,v2)), one can similarly show that

θτ (P
′, (v1,v2)) ≤ 8 · μd−1(β) · 2 · θτ̄ (P

′
C(k)+1, (u

1,u2))

≤ 25 · θτ̄ (P
′
C(k)+1, (u

1,u2)).

On the other hand, since Rτ̄ (PC(k)+1,P
′
C(k)+1) = 1, and FPC(k)+1(u

1,u2) �=
FP ′

C(k)+1
(u1,u2), from the inductive hypothesis, we have

θτ̄ (P
′
C(k)+1, (u

1,u2)) · θτ̄ (PC(k)+1, (u1,u2)) ≤ (211/m)d .

As a result,

θτ (P, (v1,v2)) · θτ (P
′, (v1,v2)) ≤ (211/m)d+1. �

Appendix A: A Reduction from GPd to HPd

For d ≥ 2 and n ≥ 1, we let N = 2n and m = dn. We first define a one-to-one cor-
respondence ϒ from {0,1}m to Z

d
N . In the presentation below, we use p,q to denote

vertices in Z
d
N , and u,v,w to denote vertices in {0,1}m.

First, we arbitrarily pick a hamiltonian path of graph Hn: v1v2 · · ·vN with v1 = 0.
This path gives us a correspondence � from the vertices of Hn to [N ] = {1, . . . ,N}:
�(vi ) = i for all i ∈ [N ]. Then for each vertex v ∈ {0,1}m, we can write it as
(v1,v2, . . . ,vd) in which every vi is a vertex in Hn, and define ϒ as

ϒ(v) = ϒ(v1,v2, . . . ,vd) = (
�(v1),�(v2), . . . ,�(vd)

) ∈ Z
d
N .

Given any simple path P in Gd
N starting at 1, one can build a simple path P ′ in Hm

as follows:

FP ′(u,w) = 1 iff FP (p,q) = 1,

where p = ϒ−1(u) and q = ϒ−1(w). It is easy to verify that the starting vertex of P ′
is 0; and v∗ is the ending vertex of P ′ iff ϒ−1(v∗) is the ending vertex of P . Lemma 3
follows directly from this reduction.

Appendix B: A Reduction from KPd to GPd+1

In this section, we prove Lemma 2. First, we define a search problem GGd over
graph Gd

n , which was first introduced in [1].
Let G be a subgraph of Gd

n . For each v ∈ Z
d
n , we use �I(v) and �O(v) to denote

its in-degree and out-degree in G, respectively. G is called a generalized path graph
(see Fig. 3 for an example), if
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Fig. 3 A generalized path
graph G in G2

4

1. There exists exactly one vertex vS ∈ Z
d
n with �O(vS) = �I(vS) + 1, and exactly

one vertex vT with �I (vT ) = �O(vT ) + 1;
2. All vertices in Z

d
n − {vS,vT } satisfy Euler’s condition: �I (v) = �O(v);

3. If (u,v) is a directed edge in G, then (v,u) �∈ G.

We refer to vS and vT as the starting and ending vertices of G, respectively. Every
such subgraph G induces a map FG from the edge set of Gd

n to {0,1}: for each (u,v)

in Gd
n , FG(u,v) = 1 if (u,v) is a directed edge in G; and FG(u,v) = 0 otherwise.

We now define the search problem GGd : the input is a binary string of length |Gd
n |,

which encodes the map FG of a generalized path graph G. The starting vertex of G

is known to be 1 = (1, . . . ,1) ∈ Z
d
n , and we need to find its ending vertex. For d ≥ 2,

the following reduction from problem GGd to GPd was given in [1]: from any input
string FG of GGd , where G is a generalized path graph in Gd

n , one can construct a
simple path P (and thus, FP ) in Gd

4n+1, such that

1. The starting vertex of P is 1 = (1, . . . ,1) ∈ Z
d
n;

2. Once the ending vertex of P is found, the ending vertex of G can be located
immediately;

3. For every edge (u,v) ∈ Gd
4n+1, the value of FP at (u,v) only depends on at most

4d bits of FG.

By using Lemma 1 of [18], we have the following relationship between QQ d
GG and

QQd
GP, the quantum query complexity of GGd and GPd , respectively:

Lemma 9 For all d ≥ 2, QQ d
GG(n) ≤ O(d) · QQd

GP(4n + 1).

Therefore, to prove Lemma 2, we only need to find a reduction from KPd to
GGd+1. To this end, we first describe a construction that, given any input string FP

of KPd (where P is a simple path in Kd
n ), builds a generalized path graph G in Gd+1

dn .
In the presentation, we use p,q, r to denote vertices in Z

d
n (vertex set of Kd

n ) and
u,v,w to denote vertices in Z

d+1
dn (vertex set of Gd+1

dn ). We start with some notation.
Suppose u,v ∈ Gd+1

dn are two vertices that differ in only one coordinate, say the
ith coordinate, and e = (v − u)/|vi − ui |. Let

E(u,v) = {(u,u + e), (u + e,u + 2e), . . . , (v − e,v)}
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denote a set of directed edges. Let 
 be the following map from Z
d
n to Z

d+1
dn :


(p) = 
(p1,p2, . . . , pd) =
(

p1,p2, . . . , pd,

d∑
i=1

pi − (d − 1)

)
.

Clearly, 
 maps (1,1, . . . ,1) ∈ Z
d
n to (1,1, . . . ,1) ∈ Z

d+1
dn .

Let P = p1p2 · · ·pk be a simple path in Kd
n with p1 = 1. We first apply 
 on P

to get a sequence of k vertices v1v2 · · ·vk in Gd+1
dn , where vi = 
(pi ) for all i ∈ [k].

Now consider two consecutive vertices u = vi and w = vi+1 in the sequence. There
must exist an index t ∈ [d] such that ut �= wt and ui = wi for all other i ∈ [d]. We let
v = (u1, u2, . . . , ut−1,wt , ut+1, . . . , ud−1, ud, ud+1) and use �(u,w) to denote the
following path from u to w by going through v:

�(u,w) = E(u,v) ∪ E(v,w).

Finally, we finish the construction of G by setting G = ⋃k−1
i=1 �(vi ,vi+1).

Now we prove that this construction indeed gives us a reduction from KPd to
GGd+1. First, we show that G is a generalized path graph. This follows directly from
the lemma below:

Lemma 10 For each edge (u,w) ∈ Gd+1
dn , if (u,w) ∈ �(vm,vm+1) for some m, then

(u,w), (w,u) /∈ �(vr ,vr+1) for all r : 1 ≤ r �= m ≤ k − 1.

Proof Since P is a simple path in Kd
n , we have pi �= pj , and thus, vi �= vj for all

i, j : 1 ≤ i �= j ≤ k. On the other hand, there exists exactly one t ∈ [d + 1] such that
ut �= wt .

Now suppose there exists an integer r : 1 ≤ r �= m ≤ k − 1 such that (u,w) or
(w,u) ∈ �(vr ,vr+1). We have two cases:

1. t = d + 1: then vm+1 = vr+1 = (w1,w2, . . . ,wd,
∑d

i=1 wi − (d − 1));
2. 1 ≤ t ≤ d : then vm = vr = (u1, . . . , ut−1, u

′
t , ut+1, . . . , ud, ud+1), where u′

t =
ud+1 + (d − 1) − ∑

1≤i �=t≤d ui .

For both cases, we get a contradiction. �

It is easy to show that if v∗ is the ending vertex of graph G, then 
−1(v∗) must be
the ending vertex of P . To finish the reduction, we prove the following two lemmas.

Lemma 11 Let (u,v) be an edge in Gd+1
dn with ud+1 �= vd+1. Vertex u satisfies

1 ≤ ui ≤ n for all i ∈ [d]. Let p ∈ Z
d
n be the vertex in Kd

n such that pi = ui for
all i ∈ [d]. Then FG(u,v) only depends on the answers to the following questions
concerning FP :

Is there a vertex q ∈ Z
d
n such that FP (q,p) = 1? If there is, which one?

Proof For integers r,m1,m2 ∈ Z and s ∈ {±1}, we say (r, s) is consistent with
(m1,m2) if (1) m1 ≤ r < m2 and s = +1; or (2) m2 < r ≤ m1 and s = −1.
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Let s = vd+1 −ud+1 ∈ {±1}. The lemma follows directly from the following state-
ment: FG(u,v) = 1 if and only if

1. There exists a q ∈ Z
d
n such that FP (q,p) = 1; and

2. (ud+1, s) is consistent with (
∑d

i=1 qi − (d − 1),
∑d

i=1 pi − (d − 1)).

Clearly, whether these two conditions hold only depends on the answers to the two
questions above. �

Lemma 12 Let (u,v) be an edge in Gd+1
dn with ut �= vt for some index t ∈ [d]. u

and v satisfy 1 ≤ ud+1 + (d − 1) − ∑
1≤i �=t≤d ui ≤ n, and 1 ≤ ui, vi ≤ n for all

i ∈ [d]. Let p be the vertex in Kd
n such that pi = ui for all i : 1 ≤ i �= t ≤ d , and

pt = ud+1 + (d − 1) − ∑
1≤i �=t≤d ui . Then FG(u,v) only depends on the answers to

the following two questions concerning FP :

Is there a vertex q ∈ Z
d
n such that FP (p,q) = 1? If there is, which one?

Proof Let s = vt − ut ∈ {±1}. The lemma follows directly from the following state-
ment: FG(u,v) = 1 if and only if

1. There exists a q ∈ Z
d
n such that FP (p,q) = 1; and

2. (ut , s) is consistent with (pt , qt ).

Whether these two conditions hold only depends on the answers to the two ques-
tions above. �

We know in Kd
n , every vertex has exactly d(n − 1) neighbors. So Lemmas 11

and 12 together imply that, to evaluate FG(u,v) for any edge (u,v) ∈ Gd+1
dn , one

only need to make O(
√

d(n − 1)) queries to the binary string FP using Grover’s
search [25]. Following the idea of Theorem 1.14 in [26], we have

Lemma 13 For all d ≥ 1, QQd
KP(n) ≤ O(

√
dn) · QQd+1

GG (dn).

Lemma 2 then follows from Lemmas 9 and 13.
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