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LMP-based Real Time Pricing for Optimal Capacity
Planning with Maximal Wind Power Integration
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Abstract—With the proposed penetration of electric vehicles
and advanced metering technology, the demand side is foreseen to
play a major role in flexible energy consumption scheduling. On
the other hand, over the past several years, there has been a grow-
ing interest for the utility companies to integrate more renewable
energy resources. Such renewable resources, e.g., wind or solar,
due to their intermittent nature, brought great uncertainty to the
power grid system. In this paper, we propose a mechanism that
attempts to mitigate the resulting grid operational uncertainty by
properly exploiting the potentials offered by demand flexibility.
To address the challenge, we develop a novel locational marginal
price (LMP) based pricing scheme that involves active demand
side participation by casting the network objectives as a two-
stage Stackelberg game between the local grid operator and
several aggregators. We use the solution concept of subgame
perfect equilibrium to analyze the resulting game and derive the
optimal pricing scheme. Subsequently, we discuss the optimal real
time conventional capacity planning for the local grid operator
to achieve the minimal mismatch between supply and demand
with the wind power integration. Finally, we assess our proposed
scheme with field data. The simulation results further confirm
the optimality of our scheme and suggest reasonably well long
term performance with simplified heuristic approaches.

Keywords—capacity planning, locational marginal price, real
time pricing, Stackelberg game, smart grid, subgame perfect
equilibrium, wind power integration.

I. INTRODUCTION

To enable a large penetration of renewable energies, the cur-

rent power system is facing the challenges that the designers

haven’t thought of before. Due to the intermittent nature of

renewable energies, i.e., fast yet uncontrollable ramping rate,

their large scale integration need much more reserve capacity

than we have today, even with a perfect prediction. One

promising solution is to explore the flexibility in the demand

side. In particular, with possibly millions of electric vehicles

on the road, and the widely implementation of smart meters

in the next several decades, the flexibility of residential load

would even be 100% with the help of a potential distributed

electricity storage system provided by the electric vehicles

(with level 1 charging). Since the residential load constantly

dominates around 30% of the whole electricity consumption,

an optimistic estimation is that we can achieve around 20%

total demand flexibility in the near future.
In this paper, to design a mechanism using the demand

flexibility to help enable the large penetration of renewables,
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we describe an interaction between a local grid operator and

several aggregators. Each aggregator could stand for several

neighborhoods of end users, a college, or a hospital, etc. In

particular, we notice that the current locational marginal price

(LMP) scheme doesn’t involve any demand side participation.

To encourage such participation, we design a novel pricing

scheme based on the LMP of the conventional power, which,

by careful selection of parameters, will align the aggregators

proper incentives to achieve the desirable overall performance,

i.e., minimizing the mismatch between supply and demand

with the renewable energy integration. We then show how

the parameters can lead to the optimal capacity planning for

conventional power supply.

A. Related Work

We discuss two main bodies of related works. The first

one focuses on renewable energy integration with user par-

ticipation. For example, in [1], Neely et al. used Lyapunov

theory to obtain a centralized optimal queueing system for

allocating renewable energy. In [2], He et al. proposed a

multiple timescale dispatch to integrate wind power. Wu et
al. investigated how to utilize wind power penetration into

the power grid when aggregators use a linear pricing scheme

in [3], and proposed a cost sharing game among end users

for wind power integration in [4]. Different from the previous

work in [1], [2], our focus here is on applying game theory

to design a decentralized demand side management system,

in which aggregators are independent decision makers and are

interested in managing their own loads to minimize individual

energy expenses. Different from [3] and [4], which introduced

an energy consumption game among end users, we propose

a two-stage Stackelberg game to fully characterize the inter-

action between the local grid operator and the aggregators,

and obtain the optimal pricing scheme via analyzing the

corresponding subgame perfect equilibrium.

Another line of investigation considers demand side re-

sponse in pricing scheme design. In [5], Strbac et al. consid-

ered a control framework for the competitive electricity market

with load reduction. Weber et al. proposed a two-level opti-

mization approach to analyze market bidding strategies in [6].

Rassenti et al. showed the impact of demand side bidding in

terms of eliminating price spikes in the deregulated electricity

market in [7]. Bu et al. proposed a game-theoretical decision-

making scheme for electricity retailers considering demand

response in [8]. Philpott et al. analyzed the optimal demand-

side bids in the day-ahead electricity market and noticed an

interesting conclusion that the purchasers have an incentive to

underbid their expected demand so that the day-ahead prices

will be below expected real-time prices in [9]. Different from
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the control perspectives in [5], [6], we use game theory to

analyze the interaction between the local grid operators and

aggregators. Different from [7], [9], which include the demand

side into the bidding process, we align the economic incentives

to the aggregators via a pricing scheme and design a two-stage

Stackelberg game based on it. Furthermore, by analyzing the

game model, we derive the optimal capacity planning for the

local grid operator.

B. Our Contributions

In this paper, we assume that the aggregators are non-profit

organizations and make decisions to maximize the payoffs

of their own group. The local grid operator tries to develop

a publicly known real time pricing scheme based on the

LMP. Through this pricing scheme, the grid operator aligns

incentives to the aggregators and obtains the desirable system

performance. The major contributions of the paper may be

summarized as follows.

• Stackelberg Game Formulation: We formulate the inter-

action between the local grid operator and the aggregators

as a two-stage Stackelberg game, which clearly defines

a leader-follower fashion interaction, and also captures

each end player’s (including both the local grid operator

and all the aggregators) selfish nature.

• LMP-based Pricing Scheme: We design a novel pricing

scheme based on the LMP. Specifically, we incorporate

a linear disturbance term into the LMP, which aligns the

economic incentives to the aggregators, and makes the

interaction a Stackelberg game.

• Equilibrium Analysis: We first use backward induction

to analyze the two-stage Stackelberg game. Then, we

develop the optimal pricing scheme by characterizing the

closed form expression of the linear disturbance term.

Finally, we propose an algorithm to help the local grid

operator make decisions on optimal capacity planning

based on the pricing scheme. We establish that such

planning will minimize the mismatch between supply and

demand given a good wind power prediction.

The rest of this paper is organized as follows. We introduce

the system model, in particular, the local grid operator model

and the aggregator model in Section II. We review the conven-

tional centralized control approach for maximal wind power

integration in Section III. In contrast to the centralized control

approach, we formulate a distributed interactive approach

based on the Stackelberg game formulation in Section IV.

After that, we use backward induction to analyze the two-stage

game and obtain the optimal pricing scheme in Section V.

Section VI concerns simulation studies in which we propose

three heuristic solution approaches and evaluate the long term

performance attained by our design methodology. Finally,

concluding remarks are presented in Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a system with a local grid

operator, several conventional generators, several renewable

energy resources, in particular, wind turbines in this paper,

Local Operator L OperOpLoLLoL p or

Power Flow 
Message Exchange 

Aggregator S-1 

Aggregator 1 

Aggregator 2 

Aggregator S 

Fig. 1. The system model considered in this paper.

and several aggregators. Based on aggregator load forecasting,

there has been extensive work investigating the interaction be-

tween the local grid operator and the generators, that conclude

LMP to be a desirable network pricing methodology, which is

being used in the PJM Interconnection, ERCOT, New York,

and New England markets. In this paper, we consider yet

another interaction in the system, i.e., the interaction between

the local grid operator and all the aggregators. We consider a

real time electricity market, and divide each day into H time

slots. We denote by H = {1, . . . , H} all the time slots in a

day. Typically, a time slot may correspond to an hour, in which

case H is 24. This corresponds to the hour ahead planning for

grid operators. Our approach can be readily generalized to a

time scale of 15 minutes or half an hour. However, a time scale

smaller than 15 minutes would require higher ramping rates

for the conventional generators. We further assume that the

grid operator handles the fluctuations within each time slot by

frequency regulation. In this scenario, we now introduce the

local grid operator model and the aggregator model as follows.

A. Local Grid Operator Model

The grid operator uses the LMP information and designs

the following pricing scheme at time slot h ∈ H:

ph = phm + βh

(∑
s∈S

lhs − ŵh − vhmax

)
, (1)

where

• phm > 0 is the LMP for the conventional generators at

time slot h ∈ H;

• βh > 0 is the incentive control parameter set by the local

grid operator. We derive the explicit form of βh to achieve

the optimal system performance in Section IV;

• S = {1, . . . , S} is the set of S aggregators in the system;

• lhs is the energy consumption profile of aggregator s ∈ S
at time slot h ∈ H. We will further explain its constraints

in Section II-B;

• ŵh ≥ 0 is the predicted wind power at time slot h. In

this paper, we will only consider a single time slot game.

Since the short term wind power prediction is rather

accurate (with around 2% prediction error only [10]),

for simplicity, we take ŵh to be the expected value of

the upcoming wind power wh (i.e., E{wh} = ŵh) and

assume the local grid operator will handle the prediction

error via frequency regulation;
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• vhmax > 0 is the maximal available conventional power

at time slot h without starting up any unscheduled cold

generator.

Overall, the physical intuition of the pricing scheme is very

clear. If the total demand from the aggregators successfully

absorbs the renewable energies and in the meanwhile, keeps

the request of conventional power in an acceptable range

(i.e., not exceeding the maximal available power vhmax), each

aggergator will receive a discount of the electricity price.

However, if the request for conventional power exceeds vhmax,

they are penalized with a higher electricity price.

B. Aggregator Model

Based on the pricing scheme, each aggregator decides its

own decision lhs at time slot h ∈ H, based on its own interest.

The aggregator may only have limited control of its energy

consumption. For example, if an aggregator corresponds to

several neighborhoods of end users, it may not be able to

completely dictate end user activities. However, it may be

able to control some delay-tolerant loads, such as dishwashers,

washing machines, and the charging schedule of electric

vehicles. As such, we impose the following constraints on lhs :

lh,min
s ≤ lhs ≤ lh,max

s . (2)

Note that lh,min
s and lh,max

s could be time-varying. However,

since we only consider a single time slot game in our formula-

tion, a detailed discussion on the time coupling issue is beyond

the scope of this paper. Thus, in our model, we treat them as

constants. However, we perform simulation for a long term run

and the simulation results show that our pricing scheme works

reasonably well with the time coupling constraints, even with

simple heuristic approaches. Finally, we define aggregator s’s

demand flexibility γh
s as

γh
s =

lh,max
s − lh,min

s

2lhs
. (3)

III. CENTRALIZED CONTROL DESIGN

After introducing the local grid operator model and aggrega-

tor model, we are now ready to illustrate the system objective.

In this paper, we ignore the associated transmission and

distribution (T&D) cost, and the generation cost. We assume

the local grid operator only wants to ensure system reliability

and maintain the conventional generation at a desirable level

of vhd ≤ vhmax at time slot h ∈ H. Thus, the system objective

at time slot h ∈ H is to

minimize
lhs , ∀s∈S

(∑
s∈S

lhs − ŵh − vhd

)2

subject to lh,min
s ≤ lhs ≤ lh,max

s , ∀s ∈ S.
(4)

The objective function in problem (4) is convex and quadratic,

and the constraint sets are convex. Therefore, it can be solved

efficiently using various convex programming techniques such

as the interior point method [11]. However, in many cases, the

local grid operator does not have control over aggregators, thus

may not be able to select the energy consumption profiles for

the aggregators. This motivates us to consider a game-theoretic

formulation, in which we treat the aggregators as independent

decision makers.

IV. STACKELBERG GAME DESIGN

A. Local Grid Operator’s Payoff

As we have indicated in Section III, the local grid operator

wants to constantly match the demand with supply. We model

its payoff function g(βh; lhs , ∀s ∈ S) as the expected mismatch

at time slot h ∈ H, i.e.,

g(βh, vhd ; l
h
s , ∀s ∈ S) = −

(∑
s∈S

lhs (β
h)− ŵh − vhd

)2

. (5)

Note that, here we denote lhs by lhs (β
h) to explicitly indicate

that any aggregator s ∈ S will make its own decision based

on βh, since the latter influences the electricity price. In

fact, in this model, we note that there are two parameters

that the local grid operator can control. One is βh to affect

aggregators’ behaviors. The other one is vhd , which is by far

the most important task for current grid operators. In fact,

these two parameters are often coupled in the design space, as

we will see in Section V. Thus, we first assume that the local

grid operator fixes a vhd and obtains the optimal closed form

solution for βh, and subsequently, for the given closed form

βh, we propose an algorithm for optimal capacity planning to

select vhd .

B. Aggregator’s Payoff

To best capture the aggregators’ selfish nature, we model

their payoff functions as their electricity costs. That is, for

aggregator s ∈ S , its payoff function fs(l
h
s ; l

h
−s, β

h) at time

slot h ∈ H is

fs(l
h
s ; l

h
−s, β

h) = −lhs p
h

=− lhs

(
phm + βh

(∑
s∈S

lhs − ŵh − vhmax

))
,

(6)

where lh−s denotes the set of all aggregators’ energy con-

sumption profile excluding aggregator s at time slot h, i.e.,
lh−s = {lhn|n ∈ S \ {s}}. Such payoff formulation implies

that each aggregator’s payoff function depends not only on its

own decision, but also on all the other aggregators’ decisions,

which leads to our following two-stage Stackelberg game.

C. Game Formulation

Aggregators 
(followers) 

Operator 
(leader) Stage I: Local grid operator determines . 

sss Stage II: Aggregators determine their own 
energy consumptions . 

Fig. 2. A Stackelberg game formulation.

As shown in Fig. 2, in this two-stage Stackelberg Game, the

local grid operator is the Stackelberg leader: it first decides

the pricing parameter βh > 0 at time slot h ∈ H in
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Stage I. Subsequently, the aggregators choose their energy

consumption profiles at time slot h ∈ H to maximize their

individual payoffs in Stage II.

V. BACKWARD INDUCTION FOR THE TWO-STAGE GAME

The Stackelberg game falls within the class of dynamic

games, and the common solution concept is the subgame

perfect equilibrium (SPE). Note that the traditional Nash

equilibrium investigates players’ simultaneous actions in a

static game, and hence, is not applicable to our dynamic

model [12]. A general technique for determining the SPE is

the backward induction (see, e.g., [13]). We will start with

Stage II and analyze the aggregators’ behaviors given the

local grid operator’s pricing scheme. Then we will consider

Stage I and analyze how the local grid operator sets the

optimal pricing scheme. The backward induction captures the

sequential dependence of the decisions in the two stages.

A. Energy Consumption Subgame in Stage II

The subgame in stage II is the energy consumption game

among aggregators. We can formally define it as follows:

Energy Consumption Subgame (EC Game):
• Players: The set S of all the aggregators;

• Strategies: For each aggregator s ∈ S , based on the given

pricing scheme set by the local grid operator, chooses its

own energy consumption profile lhs ∈ [lh,min
s , lh,max

s ] at

time slot h ∈ H.

• Payoffs: For each aggregator s ∈ S , its payoff function is

defined as its electricity cost as in (6) at each time slot.

We first consider the concept of best response, which is an

aggregator’s best choice to maximize its own payoff assuming

that all other aggregators’ strategies are fixed.

Definition 1: For an aggregator s ∈ S , its best response is:

lh,bests (lh−s) = argmax
lhs∈[lh,min

s ,lh,max
s ]

fs(l
h
s ; l

h
−s, β

h). (7)

Hereafter, for simplicity, we do not explicitly write out the

constraints for lhs , for all s ∈ S . Note that the payoff function

for each aggregator is quadratic and we can further represent

the aggregator s’s best response as follows:

lh,bests (lh−s)

=argmin
lhs

∣∣∣∣∣lhs −
βh(ŵh+vhmax−

∑
n∈S\{s}l

h
n)−phm

2βh

∣∣∣∣∣ .
(8)

Next, we consider the solution concept of SPE for the two-

stage Stackelberg game.

Definition 2: A strategy profile {lh,∗s , ∀s ∈ S} is a subgame

perfect equilibrium of the Stackelberg game if given any βh >
0, the restricted strategy profile {lhs |βh, ∀s ∈ S} is a Nash

equilibrium for the EC subgame at time slot h ∈ H. That is,

at each time slot h ∈ H, for any pricing parameter βh > 0, no
aggregator s ∈ S can increase its payoff fs(·) by unilaterally
changing its own energy consumption profile lh,∗s .

By definition of SPE, we can obtain each aggregator’s

strategy via computing the Nash equilibrium of the EC sub-
game. Note that the Nash equilibrium is a fixed point of all

aggregators’ best responses, i.e., lh,bests (lh,∗−s ) = lh,∗s for all

s ∈ S . It represents a stable solution of the game. We first

prove the existence and uniqueness of Nash equilibrium for

the EC subgame.

Theorem 1: Given each pricing parameter βh > 0, there

exists a unique Nash equilibrium of the EC subgame.

Proof: Note that, for any given βh > 0, each player’s (i.e.,
aggregator’s) payoff function is concave, and the strategy

space involves a set of linear (hence convex) constraints (i.e.,
lh,min
s ≤ lhs ≤ lh,max

s , ∀s ∈ S). Theorem 1 then readily follows

from [14]. �
Based on the aggregators’ best responses given in (8),

we now consider Stage I of the Stackelberg game, where

we discuss how to design the optimal pricing parameter βh,

and how to plan the desirable capacity vhd for conventional

generators at time slot h ∈ H.

B. Optimal Pricing Strategy in Stage I

To maximize the grid operator’s payoff function at the Nash

equilibrium (lh,∗s , s ∈ S) of the EC subgame, the local grid

operator sets a βh such that∑
s∈S

lh,∗s = ŵh + vhd . (9)

To achieve this goal, we first consider an essential condition,

that is the game without demand flexibility constraints. In this

case, each aggregator s’s best response is simply

lh,bests (lh−s) =
βh(ŵh+vhmax−

∑
n∈S\{s}l

h
n)−phm

2βh
. (10)

By solving a system of S equations given by (10), we can

obtain the closed form Nash equilibrium as

lh,∗s =
ŵh + vhmax − phm/βh

S + 1
, ∀s ∈ S. (11)

Together with the local grid operator’s objective in (9), we

may obtain the optimal parameter βh as

βh =
Sphm

Svhmax − (S + 1)vhd − ŵh
. (12)

Note that, we require βh > 0 for the pricing scheme to

make physical sense. Hence, we need to ensure that

Svhmax − (S + 1)vhd − ŵh > 0. (13)

That is,

vhmax > vhd +
1

S
vhd − 1

S
ŵh. (14)

It’s reasonable to assume that S > 10 and ŵh < 50%vhd
in practice. Thus, we only need 15% backup capacity (i.e.,
vhmax > 1.15vhd ) to ensure βh > 0. In fact, such backup

capacity is also very important and desirable in practice due

to the N-1 reliability criteria [15], [16].

70



5

Based on the closed form expression of βh, we now recon-

sider the general Stackelberg game with demand flexibility

constraints and determine the desirable vhd based on all the

aggregators’ behaviors at equilibrium.
Suppose at equilibrium (lh,∗s , ∀s ∈ S), (9) holds. Then, each

aggregator’s energy consumption profile lh,∗s satisfies

lh,∗s = argmin
lhs

∣∣∣∣∣lhs − ŵh+vhd
S

∣∣∣∣∣ . (15)

We now develop an algorithm to show that there exists a vhd
that leads to a desirable equilibrium satisfying (9) given βh in

its closed form as in (12).

C. Determining the Optimal Conventional Power Supply
We propose an iterative algorithm to determine vhd . By

denoting m = (ŵh + vhd )/S, in our algorithm, we compute a

sequence of m(1),m(2) . . . to approximate m. Our algorithm

could start with any possible m(1), where∑
s∈S

lh,min
s /S ≤ m(1) ≤

∑
s∈S

lh,max
s /S. (16)

Then, given any ε,

• At round r, for each aggregator s ∈ S , it sets

lh(r)s = argmin
lhs

|lhs −m(r)|. (17)

• Set m(r+1) =
∑

s∈S l
h(r)
s /S.

• If |m(r+1) − m(r)| ≤ ε, return vhd = m(r+1)S − ŵh.

Otherwise, start round r + 1.

Theorem 2: The iterative algorithm converges.

Due to the space limitation, the proof of Theorem 2 can be

found in [17]. In our proof, we further show that our algorithm

will converge exponentially fast after a bounded constant

number of rounds. Thus, the optimal capacity planning for the

local grid operator is to set vhd as obtained from the iterative

algorithm and set a corresponding vhmax to maintain βh > 0 as

discussed in Section V-B. Note that there could be multiple (or

even infinitely many) vhd given different m(1) in our algorithm.

We propose three approaches on how to select m(1) in Section

VI.

VI. SIMULATION

Since we have already proved the optimality of our approach

at each single time slot, we want to test its long term

performance in this section. We first introduce the setup for

each part of our simulation, then explain the simulation results.

A. Wind Power Setup
We use hourly wind speed data in West Texas as shown in

Fig. 3(a). Given the wind speed, the generated wind power is

obtained based on the wind power versus wind speed curve

in Fig. 3(b). As we mentioned in Section II-A, the real time

wind power prediction error is around 2%. Therefore, in our

simulation, to focus on the interaction between local grid

operator and aggregators, we simply test our approach with

perfect wind power prediction.
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Fig. 3. Wind power prediction based on wind speed: (a) 10 days wind speed
measured data [18]. (b) Power versus speed curve [19].
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Fig. 4. Typical two peak aggregator’s load.

B. Aggregators Setup

In our simulation, we have 12 aggregators. We set each

aggregator’s peak power randomly around 10 MW. And each

aggregator’s demand over H follows the two peak pattern as

shown in Fig. 4. To characterize the time coupling between

time slots, for each aggregator s ∈ S , we denote its load

prediction at time slot h ∈ H as l̂hs and the actual load as lhs .

Thus, we have the following time coupling constraints:

(1− γh
s )l̂

h
s ≤ lhs ≤ (1− γh

s )l̂
h
s , (18)

ˆlh+1
s = ˆlh+1

s + (l̂hs − lhs ), (19)

where γh
s is aggregator s’s demand flexibility as defined in (3),

which is assumed to be constant over H in our simulation.

C. Local Grid Operator’s Approaches

We compare three heuristic approaches in the simulation:

• Load Following (LF) Approach: In this approach, we do

not consider any incentive or interaction issue. That is

the grid operator simply performs load following as it

currently does.

• Following Renewables (FR) Approach: In this approach,

the grid operator first sets the initial value of m(1) as the

predicted wind power at each time slot and then obtains

the optimal demand based on the aggregators’ energy

consumption profiles at the closest equilibrium.

• Minimal Change (MC) Approach: In this approach, at

each time slot, the grid operator wants a minimal capacity

planing change with respect to the capacity planing at the

previous time slot. That is, at each time slot h ∈ H, it

sets m(1) = (ŵh + vh−1
d )/S.

Fig. 5(a) shows the total demand based on these three

approaches. Taking the time coupling constraint (19) into

account, we can keep the total demand of different approaches
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Fig. 5. Simulation results comparing three approaches, i.e., the load following (LF), the following renewables (FR), and the minimal change (MC) approaches.

over a day almost the same. The LF approach reflects the

predicted demand. Since, in our case, we have around 30%

of wind power penetration, the FR approach describes the

performance of the minimal vhd at each time slot h ∈ H,

while MC approach further explores the demand flexibility

and tries to keep the change of capacity planning between

time slots as small as possible. This is better illustrated in Fig.

5(b), where the capacity planning of the MC approach keeps

unchanged during 9:00 AM to 18:00 PM. Interestingly, the last

two approaches both perform peak shaving in the meanwhile.

The FR approach reduces the peak conventional power by 2%

while the MC approach reduces it by 10.8%. Note, the negative

bars in Fig. 5(b) stand for the case where total demand is less

than the available wind power. In practice, we can always

disconnect some wind turbines. However, we keep them in

the figure to show that our game interaction design can also

contribute to minimize such mismatches.
In fact, a carefully designed algorithm considering the time

coupling constraints will better utilize our game interaction

approach. However, a detailed discussion is beyond the scope

of this paper and we leave it as potential future work.

VII. CONCLUSIONS

In this paper, we propose an LMP based pricing scheme

to align proper incentives to aggregators, based on which,

we further formulate a two-stage Stackelberg game model

to capture the interaction between the local grid operator

and the aggregators. By analyzing the SPE of the game,

we obtain the optimal pricing scheme to achieve desirable

demand. Simulation results further confirm that, although our

design is targeted towards single time slot formulations, it

works reasonably well even with simple heuristic approaches

in a long term run.
This work may be generalized and extended in several

interesting directions. For example, in the future, we would

like to consider the case in which the aggregators may not

want to share information mutually. This may be handled by

considering a game with incomplete information, in which

each player in the game knows only a distribution of the

other players’ states. Also, as mentioned in Section VI, it is of

interest to consider the Stackelberg game over multiple time

slots, in which case we need to reformulate the game as a

repeated sequential one.
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