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Counterdiabatic driving (CD) exploits auxiliary control fields to tailor the nonequilibrium dynamics of a
quantum system, making possible the suppression of dissipated work in finite-time thermodynamics and
the engineering of optimal thermal machines with no friction. We show that while the mean work done by
the auxiliary controls vanishes, CD leads to a broadening of the work distribution. We derive a fundamental
inequality that relates nonequilibrium work fluctuations to the operation time and quantifies the
thermodynamic cost of CD in both critical and noncritical systems.
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Understanding the far-from-equilibrium dynamics of
quantum systems is an open problem at the frontiers of
physics. Yet, tailoring such dynamics is a necessity for the
advancement of quantum technologies. This challenge is
fully embodiedwithin the field of quantum thermodynamics
with potential applications in energy science. Our under-
standing of nonequilibrium behavior of thermodynamic
systems has deepened profoundly owing to fluctuation
theorems (e.g., the Jarzynski equality) and stochastic
thermodynamics [1–6]. For example, the Jarzynski equality
[1] has been used to find the equilibrium free energy of a
system through measurements of the fluctuating nonequili-
briumwork [7], and quite recently, its quantum version [4,5]
has been tested experimentally in a trapped ion system [8]. In
an effort to develop control tools to engineer the dynamics of
thermalmachines, schemes to suppress excitations andwork
fluctuations have been put forward [9–11]. In any physical
implementation, thermal machines such as quantum heat
engines and refrigerators must operate in a finite time to
achieve a nonvanishing output power. This motivates the
study of finite-time thermodynamics that targets the opti-
mization of the trade-off between efficiency and power [12].
In this context, control techniques known as shortcuts to
adiabaticity (STA) have emerged as a disruptive paradigm as
they reproduce the quantum adiabatic dynamics of the
system by suppressing excitations without the requirement
of slow driving [13]. STA have been used to boost the
performance of quantum heat engines by enhancing its
output power at zero friction [14–16] and to suppress work
fluctuations, assisting, for example, the convergence of the
Jarzynski equality [10].
Assessing the cost of implementing STA arises as a

natural question with both fundamental and practical

implications in nonequilibrium statistical mechanics.
Among the different techniques to engineer STA [13],
counterdiabatic driving stands out as a unifying framework
[17–19]. It relies on the use of auxiliary control fields so
that the exact evolution along STA is described by the
adiabatic approximation to the dynamics of the (uncon-
trolled) system, even in arbitrarily fast processes. Since
the introduction of STA, it has been understood that the
amplitude of the auxiliary control field increases as the
duration of the STA is reduced [20–24]. In this Letter, we
elucidate the thermodynamic cost of counterdiabatic driv-
ing by studying how work fluctuations are modified during
STA. We show that the work done by the counterdiabatic
fields vanishes on average. However, we find that STA
modify the work probability distribution and increase work
fluctuations, whose amplitude is set by the quantum geo-
metric tensor of the underlying Hilbert space. Furthermore,
we derive a fundamental nonequilibrium inequality that
relates work fluctuations to the duration of the process.
Shortcuts to adiabaticity by counterdiabatic driving.—

Consider a time-dependent Hamiltonian Ĥ0ðλtÞ with
instantaneous eigenvalues fεnðtÞg and eigenstates
fjnðλtÞig, which depend explicitly on a set of parameters
λt ¼ ½λ1ðtÞ;…; λNðtÞ�. Here, we fix the initial and final
parameters to λ0 ¼ λi and λτ ¼ λf, respectively, where τ is
the time required to complete the protocol. We pose the
problem of driving an initial state jnðλiÞi to a final state in a
given finite time τ, so that the final state is given by jnðλfÞi.
In the following, we simplify the notation of this protocol
dependence, e.g., jnðλtÞi ¼ jnðtÞi. A technique that
achieves this goal is the counterdiabatic driving (CD), also
known as transitionless quantum driving [17,19], that will
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be our focus in this Letter. CD has inspired several
experiments [25,26] and has recently been implemented
in systems with discrete [27] and continuous variables [28].
Given a protocol λt, whenever Ĥ0ðtÞ varies slowly, the
dynamics of the nth eigenstate jnð0Þi in the adiabatic
approximation at time t reads

jχnðtÞi ¼ e−ði=ℏÞ
R

t

0
dt0εnðt0Þ−

R
t

0
dt0ðdλμ=dt0Þhnðt0Þj∂μnðt0ÞijnðtÞi;

ð1Þ

where ∂μ ¼ ð∂=∂λμÞ, and summation over repeated
Greek indices is implicit. The first and second terms in
the exponent of Eq. (1) correspond to the dynamical
and geometric phases, respectively. The primary goal
of CD is to find a Hamiltonian ĤCD for which the
adiabatic approximation to Ĥ0ðtÞ becomes the exact
solution of the time-dependent Schrödinger equation for
ĤCDðtÞ, i.e., ÛCDðt; 0Þjnð0Þi ¼ jχnðtÞi, where ÛCDðt; 0Þ ≔
T exp½−ði=ℏÞ R t

0 dt
0ĤCDðt0Þ� is the time evolution operator

with T being the time-ordering operator. Direct construc-
tion of the time-evolution operator

ÛCDðt; 0Þ ¼
X
n

jχnðtÞihnð0Þj ð2Þ

yields an explicit form of ĤCDðtÞ [17–19]:

ĤCDðtÞ¼ iℏ½∂tÛCDðt;0Þ�Û†
CDðt;0Þ¼ Ĥ0ðtÞþ Ĥ1ðtÞ;

Ĥ1ðtÞ¼ iℏ
X
n

ðj∂tnðtÞihnðtÞj− hnðtÞj∂tnðtÞijnðtÞihnðtÞjÞ:

ð3Þ

We find that Ĥ1ðtÞ is the auxiliary term required to drive the
system from jnð0Þi to jnðτÞi for all n in a given time τ,
maintaining adiabaticity with respect to Ĥ0. As a result, the
CD control Hamiltonian Ĥ1ðtÞ differs from similar
Hamiltonians that appear in the proof of the adiabatic
theorem [29]. We shall assume that the auxiliary term is
switched off at the initial and final stages of the process,
i.e., Ĥ1ð0Þ ¼ Ĥ1ðτÞ ¼ 0. We note that the evolution jχnðtÞi
is nonadiabatic with respect to the full driving Hamiltonian,
whose instantaneous eigenstates satisfy

ĤCDðtÞjΨnðtÞi ¼ EnðtÞjΨnðtÞi: ð4Þ

Work fluctuations under counterdiabatic driving.—We
next study how work fluctuations along CD are modified
with respect to a truly adiabatic process [i.e., the limit of
slow driving when Ĥ1ðtÞ → 0]. To do so, we introduce a
work cost of the system for a microscopic trajectory of
the system. Suppose that we start from the canonical
distribution whose occupation probability in the energy

eigenstate jnð0Þi is p0
n ¼ exp½−βεnð0Þ�=Z, where Z ¼P

n exp½−βεnð0Þ� is the partition function. If we observe
a trajectory starting from jnð0Þi and find the state of the
system to be jΨkðtÞi at time t, the probability of obtaining
that trajectory is given by

p0
npt

n→k ≔ p0
njhΨkðtÞjÛCDðt; 0Þjnð0Þij2

¼ p0
njhΨkðtÞjnðtÞij2; ð5Þ

and the work cost along that trajectory is given by
EkðtÞ − ϵnð0Þ. Note that we need to perform two projective
energy measurements at times t0 ¼ 0 and t to obtain the
probability distribution (5), which is referred to as the two-
point measurement scheme [4–6]. The explicit expression
for the work probability distribution P½WðtÞ� reads

P½WðtÞ� ≔
X
k;n

p0
npt

n→kδfWðtÞ − ½EkðtÞ − εnð0Þ�g: ð6Þ

In the truly adiabatic limit, H1 vanishes and ĤCDðtÞ ¼
Ĥ0ðtÞ for all t, and the transition probability becomes the
Kronecker delta: pt

n→k ¼ δk;n. As a result, the work
probability distribution takes the form

Pad½WðtÞ� ¼
X
n

p0
nδ½WðtÞ −WðnÞ

ad ðtÞ�; ð7Þ

where WðnÞ
ad ðtÞ ≔ ϵnðtÞ − ϵnð0Þ is the work cost along the

adiabatic trajectory.
Because ĤCDðτÞ ¼ Ĥ0ðτÞ, we obtain pτ

n→k ¼
jhkðτÞjnðτÞij2 ¼ δk;n and thus P½WðτÞ� ¼ Pad½WðτÞ�. In
particular, an initial thermal state ρð0Þ ¼ P

np
0
njnð0Þi

hnð0Þj evolves into ρðτÞ ¼ P
np

0
njnðτÞihnðτÞj. Therefore,

at the end of the protocol, all properties about W for CD
become equivalent to those for the adiabatic dynamics.
However, P½WðtÞ� and Pad½WðtÞ� are different at the
intermediate stage. In what follows, we analyze the devia-
tions of the mean and variance of work during CD from
those of the adiabatic dynamics for arbitrary 0 ≤ t ≤ τ.
We first show that the average work cost along the CD

evolution is always equal to the adiabatic value,

hWðtÞi ¼ hWðtÞiad: ð8Þ

We note that from the instantaneous Schrödinger equation
for HCDðtÞ it is possible to derive

½EmðtÞ − εnðtÞ�hnðtÞjΨmðtÞi ¼ hnðtÞjH1jΨmðtÞi: ð9Þ

An explicit evaluation of the right-hand side leads to

hnðtÞjH1jΨmðtÞi ¼ iℏ_λμ
X
kð≠nÞ

hnðtÞj∂μkðtÞihkðtÞjΨmðtÞi:
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Multiplying both sides of this equation by hΨmðtÞjnðtÞi
and summing over the quantum number m labeling the
instantaneous eigenstate of the full driving Hamiltonian,
we find

X
m

pt
n→m½EmðtÞ − εnðtÞ� ¼ 0; ð10Þ

and in particular

X
n;m

p0
npt

n→mf½EmðtÞ − Enð0Þ� − ½εnðtÞ − εnð0Þ�g ¼ 0;

ð11Þ

which proves the equality between the mean work under
CD and the adiabatic work, i.e., Eq. (8). Therefore, we find
no difference between CD and the adiabatic dynamics in
terms of the mean work. However, as we shall see below,
CD alters work fluctuations with respect to the adiabatic
dynamics, and we identify this difference as the thermo-
dynamic cost to implement CD.
We next characterize the CD work fluctuations with

respect to the adiabatic trajectory. Taking the absolute
square of Eq. (9), multiplying by p0

n, and summing over n
and m, we have

X
n;m

p0
npt

n→m½EmðtÞ − εnðtÞ�2

¼ ℏ2
X
n

p0
nh∂μnðtÞjP⊥

n j∂νnðtÞi_λμ _λν

¼ ℏ2
X
n

p0
ng

ðnÞ
μν _λ

μ _λν; ð12Þ

where P⊥
n ¼ 1 − Pn is the projector onto the space orthogo-

nal to that spanned by the state jnðtÞi with Pn ¼
jnðtÞihnðtÞj being the projector onto jnðtÞi. In Eq. (12),

we have identified the metric gðnÞμν ¼ ReQðnÞ
μν with the real

part of the quantum geometric tensor of the jnðtÞi-state
manifold introduced by Provost and Vallee [30]

QðnÞ
μν ≔ h∂μnðtÞjP⊥

n j∂νnðtÞi: ð13Þ

Note that Eq. (13) dictates the quadratic decay of the
square root of the fidelity between two states jnðtÞi and
jnðtþ δtÞi, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðjnðtÞi; jnðtþ δtÞiÞp

≔ jhnðtÞjnðtþ
δtÞij ¼ 1 − gðnÞμν _λ

μ _λνδt2=2þOðδt3Þ. Multiplying Eq. (10)
by 2½εnðtÞ − εnð0Þ�, we have

2
X
n;m

p0
npt

n→m½εnðtÞ − εnð0Þ�½EmðtÞ − εnðtÞ� ¼ 0: ð14Þ

Adding the above equation to the left-hand side of Eq. (12),
we obtain

LHS ¼
X
n;m

p0
npt

n→mf½EmðtÞ − εnð0Þ�2 − ½εnðtÞ − εnð0Þ�2g

¼ hW2ðtÞi − hW2ðtÞiad: ð15Þ

By combining Eqs. (8), (12), and (15), we find that

δðΔWÞ2 ≔ Var½WðtÞ� − Var½WðtÞ�ad ¼ ℏ2
X
n

p0
ng

ðnÞ
μν _λ

μ _λν;

ð16Þ

where Var½W� ≔ R
dWPðWÞW2 − ½R dWPðWÞW�2. This

result is remarkable in that it relates the instantaneous
excess of work fluctuations δðΔWÞ2 to an exclusively
geometric quantity, namely, the quantum geometric tensor

gðnÞμν induced by the protocol λðtÞ. The excess of work
fluctuations quantifies how the work probability distri-
bution along the protocol at time t is broadened with
respect to the adiabatic dynamics as a result of the CD
protocol.
We define

l(ρð0Þ; ρðτÞ) ≔
Z

λτ

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

p0
ng

ðnÞ
μν dλμdλν

r
ð17Þ

as a natural distance between ρð0Þ and ρðτÞ under the CD
dynamics, which enforces parallel transport for each
eigenmode independently. Combining Eqs, (16) and
(17), we obtain

τ ¼ ℏl(ρð0Þ; ρðτÞ)
hδΔWiτ

; ð18Þ

where hfiτ ≔ τ−1
R
τ
0 fðtÞdt denotes the time average and

δΔW ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δðΔWÞ2

p
. As we show in Ref. [31], we can

further bound l(ρð0Þ; ρðτÞ) from below as

l(ρð0Þ; ρðτÞ) ≥ L(ρð0Þ; ρðτÞ) ð19Þ

in terms of the Bures length between two mixed
states Lðρ; σÞ ≔ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; σÞp

, where Fðρ;σÞ≔
ftr½ð ffiffiffi

ρ
p

σ
ffiffiffi
ρ

p Þ1=2�g2 is the fidelity [32,33]. On the other
hand, as we show in Ref. [31], we can bound the excess of
the work fluctuations (16) from above as follows:

δðΔWÞ2 ≤ ðΔECDÞ2 ≔ hH2
CDi − hHCDi2: ð20Þ

Combining Eqs. (18), (19), and (20), we obtain

τ ≥
ℏL(ρð0Þ; ρðτÞ)

hδΔWiτ
≥
ℏL(ρð0Þ; ρðτÞ)

hΔECDiτ
: ð21Þ

This result gives a tighter bound on the duration of
time τ compared with the Mandelstam-Tamm time-energy
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uncertainty relation [32,34,36,37], i.e., τ ≥ ℏL(ρð0Þ;
ρðτÞ)=hΔEiτ, with the role of the time-averaged standard
deviation of energy hΔEiτ replaced by the time-averaged
excess of the work fluctuations hδΔWiτ. This quantity
hδΔWiτ captures the enhancement of the fluctuations in
work done on or by the system as the duration of the
protocol is shortened. We identify this quantity, dictated by
the geometry of the Hilbert space, as the thermodynamic
cost to implement CD. Therefore, inequality (21) gives a
novel type of the quantum speed limit that provides a
quantification of the thermodynamic cost of shortening the
protocol time τ of STA assisted by CD, which entails an
increase in the excess of work fluctuations with respect to
the adiabatic limit.
We note that in the zero-temperature limit and λt follows

the geodesic connecting the initial and final states, the
distance l reduces to the Bures length for pure states [31],
i.e., l(jψð0Þi; jψðτi) ¼ L(jψð0Þi; jψðτi) with jψi denot-
ing the ground state. As a result, the equality is achieved in
Eq. (21) for pure states, i.e.,

τ ¼ ℏL(jψð0Þi; jψðτi)
hδΔWiτ

: ð22Þ

Trapped-ion implementation.—We now consider a
driven harmonic oscillator that can be implemented
by a laser-induced potential in a trapped-ion system.
Specifically, we consider a single 171Ybþ ion confined
in a linear Paul trap, which is a natural platform for
the experimental investigation of nonequilibrium work
fluctuations and STA [8,28]. In the interaction picture
with respect to the quantum harmonic oscillator ĤHO ¼
ℏðω0 − νÞ½â†âþ ð1=2Þ�, the effective Hamiltonian of two
distinct Raman processes (see the Supplemental Material
[31]) can be written as

ĤeffðtÞ ¼ ℏνðâ†âþ½Þ þ ℏ
2
½Ωeff;1ðtÞâ âþΩ�

eff;1ðtÞâ†â†�

−
ℏΩeff;2ðtÞ

2
ðââ† þ â†âÞ; ð23Þ

where ν is the detuning from the two-photon sideband
Raman transitions and the annihilation operator â ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mω0=ð2ℏÞ

p ½q̂þ ip̂=ðmω0Þ� is defined on the motional
mode with the (time-independent) trap frequency ω0, and a
similar relation holds for the creation operator â†. The
strengths of the laser-induced potentials are characterized
byΩeff;1ðtÞ andΩeff;2ðtÞ, which can be controlled by tuning
the strengths and phases of the Raman laser beams [31].
Note that Ωeff;2ðtÞ is real and Ωeff;1ðtÞ can be complex.
Setting Ωeff;1ðtÞ ¼ −ΩðtÞ þ ½i _ωðtÞ=2ωðtÞ� and Ωeff;2ðtÞ ¼
ΩðtÞ with the time-dependent frequency ωðtÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν½ν − 2ΩðtÞ�p

, the above effective Hamiltonian can be
rewritten as a sum of the quantum harmonic-oscillator term
Ĥ0ðtÞ with the effective mass meff ¼ mω0=ν and the
auxiliary counterdiabatic field Ĥ1ðtÞ [38–40] as follows:

ĤeffðtÞ ¼ Ĥ0ðtÞ þ Ĥ1ðtÞ;

Ĥ0ðtÞ ¼
p̂2

2meff
þ 1

2
meffωðtÞ2q̂2;

Ĥ1ðtÞ ¼ −
_ω

4ω
ðq̂ p̂þp̂ q̂Þ: ð24Þ

The condition Ĥ1 ¼ 0 at t ¼ f0; τg leads to the boundary
conditions on ωðtÞ that can be satisfied by a polynomial
ansatz, such as ωðtÞ ¼ ωi þ 10δs3 − 15δs4 þ 6δs5, where
ωf ¼ ωi þ δ and s ¼ t=τ. We use this driving protocol to
analyze the thermodynamic cost of STA engineered via
CD. We numerically calculate hWðtÞi, Var½WðtÞ�, and
hδΔWiτ as functions of the evolution time 0 ≤ t ≤ τ along
STA. The results are shown in Fig. 1. In the numerical
calculation, we choose ωi ¼ 1, ωf ¼ 3 and set m ¼ ℏ ¼
β ¼ 1. The mean work along STA is shown to match
exactly the adiabatic value in Fig. 1(a) in agreement with
Eq. (8). As a result, the effect of the fast driving along STA
is observed only on the work fluctuations and leads to a
broadening of the work probability distribution P½WðtÞ�.
The instantaneous variance of WðtÞ surpasses the adiabatic
value by a quantity that is directly related to the quantum
geometric tensor as shown in Figs. 1(b) and 1(c).
Furthermore, the time-averaged work fluctuations with
respect to the adiabatic trajectory are bounded by the
Bures length between the initial and final states,
L(ρð0Þ; ρðτÞ), as dictated by Eq. (21). It follows that the
thermodynamic cost of implementing the CD scheme is
constrained by the geometry of the Hilbert space. This
imposes a fundamental work-time uncertainty relation that

(a) (b)

(c) (d)

FIG. 1. Thermodynamic cost of counterdiabatic driving (CD).
Numerical calculation for a time-dependent harmonic oscillator.
(a) Instantaneous value of the average work cost. The orange dots
are obtained via CD for τ ¼ 0.8 and the green curve is obtained
from the adiabatic protocol. (b) Time dependence of the variance
of work for different values of the duration τ of the process.
(c) Time dependence of each term in Eq. (16) for τ ¼ 0.8. (d) Time
average of the work fluctuations hδΔWiτ. The green curve is a τ−1
fit with the best fit coefficient found to be 0.653, which is larger
than the Bures length L ¼ 0.476 consistent with inequality (21).
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determines the scaling of work fluctuations with respect to
the duration of the process, as shown in Fig. 1(d).
Quantum critical systems.—Equations (16) and (21)

have direct implications on the work fluctuations of
many-body quantum systems that exhibit quantum phase
transitions by varying a parameter λ of the uncontrolled
system Hamiltonian Ĥ0ðλÞ across a critical value λc at
which the energy gap between the ground and first-excited
state closes. CD can be applied to this situation [21,41–44].
In the neighborhood of the critical point, the emergent
conformal symmetry leads to the divergence of the equi-
librium correlation length ξ ¼ ξ0=jλ − λcjν, where ν is the
correlation-length critical exponent. This power-law behav-
ior sets the scaling of the quantum geometric tensor [45].
As a result, during the STA dynamics induced by CD, the
work fluctuations exhibit a universal scaling that can be
characterized by both the proximity to the critical point and
the system size. While the mean work done by the CD term
remains equal to the adiabatic case, work fluctuations
diverge in the thermodynamic limit. In particular, when
the behavior is dominated by the low-energy excitations,
we obtain

δðΔWÞ2 ∼ N
jλ − λcj2−νd

; ð25Þ

where N denotes the number of particles and d is the
dimension of the system. At the critical point, the scaling
with the system size reads Var½WðλcÞ� − Var½WðλcÞ�ad∼
N2=dν. For the sake of illustration, we consider the quantum
Ising chain, which is a prototypical model for quantum
phase transitions described by the Hamiltonian

Ĥ0½λ� ¼ −
XN
n¼1

ðσxnσxnþ1 þ λσznÞ; ð26Þ

where λ represents an external magnetic field and we
consider periodic boundary conditions σx;zNþ1 ¼ σx;z1 . The
competition between the two terms in the Hamiltonian
leads to a well-known quantum phase transition with λc ¼
�1 between a paramagnetic phase (jλj > 1) and a doubly
degenerate ferromagnetic phase (jλj < 1). The relevant
diagonal elements of the quantum geometric tensor for
Ĥ0½λ� have recently been reported in a closed form [46]. We
consider the symmetric counterdiabatic driving of the
chain, initialized in its ground state, across the critical
point λc ¼ 1with an arbitrary protocol λðtÞ satisfying _λ ¼ 0
at t ¼ 0 and τ, and amplitude 2δ ¼ jλðτÞ − λð0Þj. For exam-
ple, we take λðtÞ ¼ 1þ δ − 6δðt=τÞ2 þ 4δðt=τÞ3 but the
following results hold independently of the concrete form
of λðtÞ. During the evolution, the instantaneous work
fluctuations shown in Fig. 2 exhibit a pronounced peak
in the neighborhood of the critical point, λ ≈ λc, in agree-
ment with Eq. (25). This scaling leads to a divergence of the
time-integrated work fluctuation with the system size N,

i.e., τhδΔWiτ ∼ Nα. A fit to the numerical data leads to the
power-law exponent α ¼ 0.516, which is consistent with
the theoretical value 1=2. The difference can be attributed
to the fact that precisely at the critical point λ ¼ λc the
scaling becomes linear in N with ν ¼ d ¼ 1.
Conclusion.—Shortcuts to adiabaticity have recently

been proposed as a disruptive paradigm in finite-time
thermodynamics to engineer thermal machines that operate
at maximum efficiency (zero friction) and arbitrary output
power. We have analyzed the thermodynamic cost of
implementing the counterdiabatic driving scheme that
provides a unifying framework to engineer such shortcuts.
In particular, we have shown that the mean work done by
the auxiliary counterdiabatic fields vanishes [Eq. (8)], while
the work fluctuations are substantially modified [Eq. (16)].
We have derived a fundamental inequality that constrains
the enhancement of work fluctuations as a function of the
duration of the process [Eq. (21)] and proposed a test with
trapped ions to verify our findings. Our work should find
broad applications in quantum thermodynamics and poten-
tially in energy science and for the advancement of trapped-
ion quantum technology as a test bed for nonequilibrium
statistical mechanics.
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(a) (b)

FIG. 2. Work fluctuations across a quantum phase transition.
(a) Instantaneous work fluctuations during the CD evolution
of a quantum Ising chain as a function of time for different
choices of the duration of the protocol τ ¼ 0.5, 1 and 2 with
δ ¼ 1. (b) Divergence of the time-integrated work fluctuations
with the system size N.
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