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Abstract Stochastic optimization has established itself as a major method to handle
uncertainty in various optimization problems by modeling the uncertainty by a proba-
bility distribution over possible realizations. Traditionally, themain focus in stochastic
optimization has been various stochastic mathematical programming (such as linear
programming, convex programming). In recent years, there has been a surge of inter-
est in stochastic combinatorial optimization problems from the theoretical computer
science community. In this article, we survey some of the recent results on vari-
ous stochastic versions of classical combinatorial optimization problems. Since most
problems in this domain are NP-hard (or #P-hard, or even PSPACE-hard), we focus on
the results which provide polynomial time approximation algorithms with provable
approximation guarantees. Our discussions are centered around a few representative
problems, such as stochastic knapsack, stochastic matching, multi-armed bandit etc.
We use these examples to introduce several popular stochastic models, such as the
fixed-set model, 2-stage stochastic optimization model, stochastic adaptive probing
model etc, as well as some useful techniques for designing approximation algorithms
for stochastic combinatorial optimization problems, including the linear programming
relaxation approach, boosted sampling, content resolution schemes, Poisson approxi-
mation etc. We also provide some open research questions along the way. Our purpose
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is to provide readers a quick glimpse to the models, problems, and techniques in this
area, and hopefully inspire new contributions .

Keywords Approximation algorithms · Stochastic optimization · Combinatorial
optimization

Mathematics Subject Classification 90-02

1 Introduction

Uncertainty is an inevitable facet of almost all important decision problems. It
is presented in a variety of forms and caused by many reasons, such as the errors
and/or noises in data measurements, the model parameters, or the predictions made by
probabilistic predictive algorithms. Various types of problems of handling uncertainty
have been a subject of extensive research in many areas, including computer science
operations research, economics, management science, and social science. Stochastic
optimization is a major method for dealing with uncertainty for optimization problems
by modeling the uncertainty using probability distributions of the input instances.
The field originated from the work of Dantzig [1], and has been studied extensively
and found numerous applications in many areas. A central theme in the field is to
solve stochastic versions of mathematical programming problems (the study of such
problems is often referred to as stochastic programming as well). We refer interested
readers to [2,3].

Recent years have witnessed a surge of interest in solving combinatorial optimiza-
tion problems under uncertainty from the theoretical computer science community.
This is in part due to the dramatic increase in the number of application domains,
such as information extraction systems, data integration systems, sensor networks,
and predictive machine learning algorithms, which produces a huge amount of uncer-
tain data. At the same time, applications (including the above) that require solving
certain combinatorial optimization problems when fed with such data, have to take
the uncertainty into account. This gives rise to a variety of stochastic models and
optimization problems. In this article, we review some recent work on various sto-
chastic versions of classical combinatorial optimization problems. It is well known
that many combinatorial optimization problems are NP-hard. So we can imagine that
the added stochasticity often makes the problems even harder (NP-hard, #P-hard,
or even PSPACE-hard). Therefore, it is very unlikely that these stochastic problems
admit efficient algorithms that can solve them exactly. One principled way to deal
with the computational intractability is to settle for polynomial time approximation
algorithms. We refer interested readers to the books on this field of approximation
algorithms [4,5]. A major focus in this field is to obtain polynomial time algorithms
with provable approximation ratio. For maximization problems, the ratio is defined to
be the ratio between the optimal cost and the cost of our solution (or expected cost,
if any stochasticity or/and randomization1). For minimization problems, it is the ratio

1 We usually use “stochastic/probabilistic” to indicate that the input instance follows certain probability
distribution, while “randomization” to refer to the randomness produced by the randomized algorithms.
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Approximation Algorithms for Stochastic Combinatorial... 3

between the cost of our solution and the optimal cost. Obviously, the ratio is at least
1 and we want it to be as close to 1 as possible.

In this article, we present a selection of recent results in polynomial time approx-
imation algorithms for stochastic combinatorial optimization problems. We have not
attempted to be comprehensive and our selection of problems may be idiosyncratic.
We also include the details of the algorithms and the analysis of approximation ratios
for some problems. None of these results are really new. The expositions for some of
them are simplifications of known results (possibly with slightly worse approximation
ratios sometimes in favor of expositional simplicity). The purpose of doing this is to
give readers a flavor of the models, ideas, and techniques in this new exciting and fast
growing area.

A Few Representative Problems

There are diverse ways in which uncertainty can interact with and influence the
decision process. So, there are several natural corresponding stochasticmodels. Instead
of introducing these abstract models, we choose to be concrete by providing a few
representative problems. We also highlight some interesting motivating applications
for those problems.

Problem 1.1 (Fixed-Set Stochastic Shortest Path) We are given a stochastic graph
where the length μe of each edge e is an independent random variable.2 See Fig. 1
for an example. The objective is to find an s-t path P connecting s and t such that the
probability that the length of P is at most a given thresholdC , i.e., Pr

[∑
e∈P μe � C

]
,

is maximized.3

We can also think μe as the travel time of the edge e (the probability distribution of
μe may be obtained from historic data, or traffic prediction algorithms). We need to
arrive the airport before a specific time in order to catch a flight . The above problem
asks for a path that maximizes the probability that we can arrive on time.

The problem and its variants have been studied in a number of papers since 1980s
(see e.g., [6–11]). Besides the shortest path problem, one can easily formulate similar
problems for other combinatorial optimization problems.Wewill discuss this problem
and its generalizations in more details in Sect. 8.

Note that the solution path P is chosen before the trip, and once chosen, is a fixed
set of edges. We call such problems fixed-set problems. Next, we introduce a problem
in which the decision has to be made in an adaptive manner.

2 For simplicity, we assume the distribution of each random variable is discrete with a finite support. The
complete description of the distribution is given as input.
3 Another natural problem would be to minimize the expected length of the path. However, a moment
reflection shows that the problem can be trivially reduced to deterministic shortest path problem using the
linearity of expectation.
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s t

a b

c d

ab =
1 w.p.0.5
2 w.p.0.5

cd =
2 w.p.0.7
3 w.p.0.3

sa = 3

sc = 2

ad = 2

cd = 3

bt =

dt = 2

1 w.p.0.1
3 w.p.0.9

Realizations ab cd bt Prob
r1 1 2 1 0.035
r2 1 2 3 0.315
r3 1 3 1 0.015
r4 1 3 3 0.135
r5 2 2 1 0.035
r6 2 2 3 0.315
r7 2 3 1 0.015
r8 2 3 3 0.135

Fig. 1 A stochastic graph. There are three edges with uncertain lengths and 23 = 8 possible realizations
in total

Problem 1.2 (Adaptive Stochastic Knapsack) We are given a knapsack with fixed
capacity C and a set of items. The size and the profit of each item are uncertain and
only their probability distributions are known to us in advance. We only know the
actual size and profit of an item when we insert it into the knapsack. Our goal is
to design an adaptive policy that maximizes the expected total profit of items that
can be put into the knapsack. More specifically, the adaptive policy should determine
which item to insert next based on the remaining capacity and the set of available
items.

The above problem has a very natural motivating example in stochastic scheduling.
Suppose we want to schedule a subset of n jobs on a single machine. We have a
fixed deadline and we want to gain as much profit as possible before the deadline.
The precise processing time and profit of each job are random variables, and the true
values are only revealed until the job is completed.

The problem is a classical problem in stochastic combinatorial optimization. It was
studied back in 1970s in the stochastic control and operations research literature, and
some interesting special cases were identified and solved optimally (see e.g., [12–15]).
The problemhas a very different nature from thefixed-set problems, inwhich a solution
to it is an adaptive policy, instead of a set. Even to specify the optimal policy may
need exponential space (see Sect. 3 for details). The problem is likely to be PSPACE-
hard (a variant of the problem has been shown to be PSPACE-hard [16]). Designing
good approximation algorithms for this problem and its generalizations has received
considerable attention in recent years, which we review in more details in Sect. 3.

In the fixed-set stochastic shortest path problem, we make our final decision in
one shot, while in the stochastic knapsack problem, we make decisions in an adaptive
fashion. Another popularmodel that interpolates the above twomodels is the two-stage
stochastic model with recourse. We provide an example below.

Problem 1.3 (Two-stage Stochastic Set Cover) We are given a set U of ground ele-
ments and theweighted familyF of subsets ofU .Wewould like to choose some subsets
S ⊆ F of minimum total weight to cover all elements inU (i.e., each element ofU is
contained in some subsets of S). This is the classical deterministic set cover problem.
In the two-stage stochastic model, there are two stages (by its name). In the first stage,
we do not know the actual demand (i.e., the set of elements we need to cover), but only
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a distribution D of it.4 We can select a few subsets SI ⊆ F at the first stage. In the
second stage, the actual demand setU ′(U ′ ⊆ U ) is revealed. However, our first-stage
decision SI may not be able to coverU ′, and we can select some extra subsets SII ⊆ F
to cover the remaining elements of U ′. The catch is that the weight of each subset in
F in the second stage is λ times more expensive than in the first stage (λ > 1 is called
the inflation factor).5 The goal is to minimize the expected cost over both stages.

The above 2-stage model naturally captures the applications in which the decision
has to be made before knowing the demand, and some more expensive recourse action
can be taken afterwards. For example, suppose there is a company which needs to set
up its facilities. Before building the facilities, they only know the partial knowledge
about the demands. After setting up the facilities, they receive the real demand. If the
demand exceeds the capability of the current facilities, the company can set up more
facilities, which is usually more expensive, to meet the extra demand.

The two-stage stochastic optimization model has been a major topic in both the
stochastic programming literature (see e.g., [2]), and in the stochastic combinatorial
optimization literature, which we will discuss in more details in Sects. 6 and 7.

All the above three problems assume the stochastic information is given as the input.
However, in many real-life problems, there is no readily available stochastic informa-
tion. All we have are some presumed probabilistic6 models with unknown parameters
(e.g., the cost is distributed normally with unknown mean and variance). We are
allowed to take samples (or wemay already have some historical samples) to obtain the
distributional information (e.g., to learn the parameters of the probabilisticmodel). The
learning step has traditionally concerned the statistical learning community, and was
separated from the optimization stage in many cases. However, there have been sev-
eral interesting recent research problems that attempt to bring the learning step and the
optimization step together.Weprovide an example below.More can be found in Sect. 9.

Problem 1.4 (Combinatorial Bandit-Arm Selection) We have a bandit with n arms,
where the i-th arm is associated with an unknown reward distribution supported on
[0, 1] with mean θi . Upon each sample (or “pull”) of a particular arm, we receive a
reward, which is an i.i.d. sample from the underlying reward distribution. We sequen-
tially decide which arm to be pulled next and then collect the reward by sampling that
arm. The top-k arm identification problem is to identify a subset of k arms with the
maximum total mean using as few samples as possible.

Instead of the simple cardinality constraints, we can consider other combinatorial
constraints over the arms as well. For example, suppose there is a matroid constraint
over the set of arms and we need to select a basis of the matroid. The model was
proposed recently by Chen at al. [17].

4 We may assume that each element e ∈ U is associated with a probability pe ∈ [0, 1], which means e
is presented in the demand set with probability pe independently. The current technique can handle more
general distributions. See Sect. 6.
5 It is easy to see that if λ � 1, the first stage is meaningless and we only need to make the decision in the
second stage.
6 We use “probabilistic” and “stochastic” interchangeably, except when there is a convention to follow
(e.g., “stochastic process,” “stochastic optimization,” “probabilistic graphical model” etc.).
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We highlight an interesting motivating application of the top-k arm identification in
crowdsourcing. In recent years, crowdsourcing services become increasingly popular
for providing labeled data for many machine learning tasks. In such a service (e.g.,
Amazon Mechanical Turk7), the requester submits a batch of microtasks (e.g., unla-
beled data) and the workers from the crowd are asked to complete the tasks. Upon
each task completion, a worker receives a small monetary reward. Since some work-
ers from the crowd are noisy and unreliable, it is important to choose more reliable
workers. We can model the reliability of a worker by a Bernoulli distribution. One
way to choose reliable workers is to test each worker by a few golden samples (i.e.,
data with the known correct labels). One such test corresponds to a pull of the arm.
Clearly, it is desirable to select the best K workers using as few samples as possible.

The reader may have already noticed the deterministic versions of the above prob-
lems are mostly classical combinatorial optimization problems, which are quite well
understood. However, the stochasticity has drastically changed the nature of these
problems. The study of the approximability formany of stochastic combinatorial prob-
lems is still an active research area and there are many open problems. We attempt to
list some of them along the way.

We note that the body of literature on the topic is already large and has been growing
quite fast. There are certainly other important stochastic combinatorial optimization
problems that do not belong to any of the above four classes. Depending on how the
stochasticity interacts with the decision process in new applications, it is possible to
formulate new classes of meaningful models and problems.Wemention some of them
in Sect. 9.

The outline of this article is as follows: We first review some standard terminolo-
gies in Sect. 2. In the next few sections, we discuss a few problems and techniques
in details. In particular, we discuss the stochastic knapsack problem (Problem 1.2)
in Sect. 3, the stochastic matching problem in Sect. 4, and the contention resolution
scheme with its applications to stochastic probing in Sect. 5. The above three sec-
tions are about adaptive stochastic problems. In the next two sections, we discuss two
important techniques, the linear programming (LP) technique (Sect. 6) and the boosted
sampling technique (Sect. 7) for two-stage stochastic optimization with recourse. In
Sect. 8, we introduce the Poisson approximation technique, which can be used to deal
with the sum of random variables in both fixed-set problems and stochastic knapsack.
In Sect. 9, we briefly discuss a few other important models in the literature.

2 Preliminaries

We first review some standard terminologies. For a minimization problem, we say
an algorithm achieves an approximation factor of α(α � 1), if

E[SOL]/OPT � α,

where SOL denotes the cost of the solution found by the algorithm, OPT denotes the
optimal cost, and the expectation is over the randomness of the problem instance and

7 https://www.mturk.com.
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the algorithm (if it is randomized). For amaximization problem, an algorithm achieves
an approximation factor of α(α � 1), if OPT/E[SOL] � α.

A polynomial time approximation scheme (PTAS) is an algorithm which takes an
instance of a maximization problem and a parameter ε and produces a solution whose
cost is at least (1 − ε)OPT, and the running time, for any fixed ε, is polynomial
in the size of the input. If ε appears as an additive factor in the above definition,
namely the cost of the solution is at least OPT− ε, we say the algorithm is an additive
PTAS. In many cases, a PTAS (such as an O

(
n1/ε

2)
time algorithm) is not efficient in

practice. However, obtaining a PTAS for a problem is of significant theoretical interest
and importance, as it is the best approximation ratio we can achieve in polynomial
time for NP-hard (or harder) problems. We say a PTAS is a fully polynomial time
approximation scheme (FPTAS) if the running time is polynomial in the size of the
input and 1

ε
. FPTAS can be quite efficient in practice.

For a deterministic combinatorial optimization problem A, the exact version of
a problem A asks for a feasible solution of A with weight exactly equal to a given
number K . An algorithm runs in pseudopolynomial time for the exact version if the
running time of the algorithm is bounded by a polynomial of n and K .

The following standard Markov inequality will be used frequently.

Proposition 2.1 (Markov inequality) Let X be a random variable and E[X ] be its
expectation. For any α > 1, it holds that

Pr[X � αE[X ]] � 1/α.

A finite matroid M is a pair (V, I), where V is a finite set (called the ground set)
and I is a collection of subsets of V . Each element in I is called an independent set.
A maximal independent set is called a basis. Moreover, M = (V, I) satisfies the
following three properties:

1. ∅ ∈ I;
2. if A ⊆ B and B ∈ I, then A ∈ I; and
3. for all A, B ∈ I with |A| > |B|, there exists an element e ∈ A\B such that

B ∪ {e} ∈ I.
Matroids generalize several important combinatorial objects, such as all subsets of a
set with cardinality at most k, all forests in a graph, all linear independent subsets of
a set of vectors. For more information about the theory of matroids, see, e.g., [18].

3 Adaptive Stochastic Knapsack

In this section, we consider Problem 1.2 the adaptive stochastic knapsack problem.
First, we recall in the deterministic knapsack problem, we have a set of n item I. The
i th item has a value vi and size si . Our objective is to choose a maximum value set of
items that fits into a knapsack of capacity C .

In the stochastic knapsack problem, the values {vi } and sizes {si } of items are non-
negative independent random variables with known distributions. For simplicity, we
assume the distributions are discrete. One needs to insert the items one by one. Once
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one item is inserted, its value and size are revealed (drawn from the distribution), and
we procure its value. If the realization of an item causes the overflow of the knapsack,
we stop and the overflowing item contributes zero value. Our goal is to design a policy
to insert items and maximize the expected total value of items successfully placed
in the knapsack. Without loss of generality, we can assume that the values {vi } are
deterministic, and the capacity of the knapsack is C = 1.

We need to explain what is a policy. A non-adaptive policy is simply an ordering
of items to insert. We also consider adaptive policies, which are more general. An
adaptive policy is formally defined by a mappingP : 2I ×R

+ → I specifying which
item to insert next, given the subset of items still available and the total remaining
capacity. We can think about a policy as a decision tree. At every node of the tree,
the policy specifies which item to insert next, and the directed edges leaving this node
correspond to the different possible realizations of the size of this item. See Fig. 2 for
an example. We can see the decision tree corresponding to an adaptive policy may
have a linear height, and thus an exponential size. This means that we may not be
able to represent the optimal policy in polynomial space. So, it is not even clear if the
problem is in NP. In fact, Dean et al. [19] showed that a close variant of the above
problem is PSPACE-hard.

Now, we present a constant factor approximation algorithm due to [16]. Before
stating the algorithm, we first need some definitions and simple observations. For
each item, it is convenient to consider the mean truncated size

μi = E[min{s1, 1}].

For a set of item, we define size(S) = ∑
i∈S si , μ(S) = ∑

i∈S μi and val(S) =∑
i∈S vi . We make the following simple claim.

Claim 3.1 For any fixed set S of items, Pr[size(S) < 1] � 1 − μ(S).

Proof By the definition of mean truncated size and Markov inequality, we can
see that Pr[size(S) � 1] = Pr[min{size(S), 1} � 1] � E[min{size(S), 1}] �
E

[∑
i∈S min{si , 1}

] = μ(S).

Lemma 3.2 For any adaptive policy P , let S be the (random) set of all items that
P tries to insert. We have E[μ(S)] � 2, where the expectation is taken over the
executions of the policy.

Fig. 2 A decision tree corresponding to an adaptive policy
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Proof (sketch) Denote the truncated item size by s̃i = min{si , 1}. For any policy P ,
let St denote the first t items chosen by P . We define Xt = ∑

i∈St (s̃i − μi ). It is
easy to verify Xt is a martingale.8 Since X0 = 0, we get E[Xt ] = E[X0] = 0 due
to the martingale property. Thus, E[Xt ] = E[∑i∈St s̃i ] − E[μ(St )] = 0. Moreover,
the process stops once size(St ) > 1 or there is no item left. Hence,

∑
i∈St s̃i � 2 is

always true. Taking the expectation, we can see E[μ(St )] � 2.

3.1 The Greedy Algorithm

We divide the items I into two sets: light items L with μi � σ and heavy itemsH
with μi > σ , where σ is a constant to be specified later. Assume L = {1, 2, 3, · · · }
such that v1

μ1
� v2

μ2
� · · · . Denote by Mk = ∑k

i=1 μi . Let n∗ be the maximum number
such that Mn∗ � 1. We define two important quantities

mG =
n∗∑

i=1

vi (1 − Mi ) and m1 = max
i∈I

{vi Pr[si � 1]}.

The algorithm is the following:

Algorithm 1: Greedy algorithm

Step 1 Calculate m1,mG ;
Step 2 if m1 � mG then
Step 3 Insert the item which yields m1 = vi Pr[si � 1];
Step 4 else
Step 5 for i = 1 → n∗ do
Step 6 Insert item i ;
Step 7 If the knapsack overflows, break.

3.2 Analysis

Now, we analyze the approximation ratio of the greedy algorithm. First, we show
the expected value of the algorithm can be lower bounded by mG and m1.

Lemma 3.3 Let GRD be the expected value obtained by Algorithm 1. It holds that
GRD � m1 and GRD � mG.

Proof If m1 � mG , the expected value of the algorithm is exactly m1. Otherwise, we
can see

GRD =
∑

k�1

vk Pr

[
k∑

i=1

si � 1

]

=
∑

k�1

vk Pr

[
k∑

i=1

s̃i � 1

]

.

8 {Xt } is a martingale if E[Xt+1 | Xt ] = Xt .
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10 J. Li, Y. Liu

By Markov inequality, Pr
[∑k

i=1 s̃i > 1
]

�
∑k

i=1 μi = Mk, for any k � n∗. Hence,

GRD �
∑n∗

k=1 vk(1 − Mk) = mG .

The remaining task is to lower bound m1 and mG by the optimal value OPT. We
handle light items and heavy items separately. We first deal with light items L. We
define a function Φ(c) as follows:

Φ(c) =
{

max
∑

i∈L
vi xi : 0 � xi � 1,

∑

i∈L
μi xi � c

}

. (3.1)

We can seeΦ(c) is the best fractional relaxation of the knapsack problemwith capacity
c using only light items. A crucial observation is the following lemma, which places
an upper bound for any adaptive policy.

Lemma 3.4 Let OPTL be the expected value obtained by the optimal policy for the
problem where we only have light items. Then, we have OPTL � Φ(2).

Proof (sketch) Let us fix an arbitrary adaptive policy. We should interpret xi as the
probability that item i is successful placed in the knapsack by the policy. So,

∑
i∈L vi xi

is the expected total value obtained by the policy. According to Lemma 3.2, it holds
that

∑
i∈L μi xi = E[μ(S)] � 2, where S is the set of items successfully placed in

the knapsack. This constraint holds for any policy including the optimal one. Hence,
the optimal policy has expected value at most Φ(2).

It is well known that the optimal fractional solutionΦ(c) for the knapsack problem:
We simply pack items in the decreasing order of vi

μi
, with only the last item possibly

packed fractionally. In particular,Φ(c) is a piecewise linear and concave function with
the following explicit form:

∀k ∈ L,∀δ ∈ [0, μk),Φ(Mk−1 + δ) =
k−1∑

i=1

vi + vk

μk
δ.

Lemma 3.5 mG � 1−σ
2 Φ(1) � 1−σ

4 Φ(2) � 1−σ
4 OPTL.

Proof We prove the lemma by picture.mG corresponds to the area under the staircase.
Φ(1) is twice of the area of the dark-shaded triangle ABC. Compare them in Fig. 3.
The part of the triangle which is not covered by mG consists of small triangles whose
heights sum up to at most Φ(1), and the base of each triangle is μi � σ . Therefore
mG � 1−σ

2 Φ(1). The second inequality is due to the concavity of Φ and the last
follows from Lemma 3.4.

Lemma 3.6 For any policy P , we use H ⊂ H to denote the subset of heavy items
that are successfully placed in the knapsack. Note that H is a random set. Then
E[val(H)] � 2

σ
m1.

Proof Whenever the policy P attempts to insert an element, it succeeds with proba-
bility at most Pr[si � 1]. Let S be the set of heavy item that P attempts to insert. Thus
we have Pr[i ∈ H ] � Pr[P attempts to insert i]Pr[si � 1] = Pr[i ∈ S]Pr[si � 1].
From Lemma 3.2, we know E[μ(S)] � 2. Finally, we can see that
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Fig. 3 The fractional knapsack solution Φ(c). The light-shaded area corresponds to mG . As Φ(c) is
concave, the curve Φ(c) is above the segment AC (This figure is cited from [16])

E[val(H)] =
∑

i

vi Pr[i ∈ H ] �
∑

i

vi Pr[i ∈ S]Pr[si � 1]

� m1

∑

i

Pr[i ∈ S] = E[|S|]m1 � 2

σ
m1.

The last inequality follows from the definition of heavy element, μi � σ for each
i ∈ S.

Theorem 3.7 For σ = 1/3,OPT � 12GRD. So, Algorithm 1 is a 12-approximation.

Proof Consider the optimal adaptive policy, and denote the set of items successfully
inserted as S = L ∪ H . Therefore, by Lemma 3.5, E[val(L)] � OPTL � 4

1−σ
mG ,

and by Lemma 3.6, E[val(H)] � 3
σ
m1. Combining with Lemma 3.3, we obtain that

OPT = E[val(L)] + E[val(H)] � 4

1 − σ
mG + 2

σ
m1 � 12GRD.

3.3 Historical Notes, Variants, and Generalizations

The adaptive stochastic knapsack was first studied by Dean et al. [16]. The above
greedy algorithm and the analysis are essentially due to them. With some extra effort,
one can in fact show the greedy algorithm achieves an approximation factor of 7. Note
that the greedy algorithm is in fact a non-adaptive policy, andwe compare it against the
optimal adaptive policy (which may not have a polynomial size representation). The
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12 J. Li, Y. Liu

crux of the analysis, which allows us to upper bound the optimal value, is Lemma 3.4.
Although the approach is very similar to the linear programming relaxation technique
used to approximate deterministic NP-hard problems, they have essential difference.
In the deterministic case, we have the integer constraints on the variables, and we relax
them. In our case, the variables should be interpreted as certain probabilities, which
can be fractional. But we only have some necessary (but not sufficient) constraints on
the probabilities (in the above problem, the constraint is

∑
i∈L μi xi � 2). In Sect. 4,

we will see another example of this idea.
In the journal version of their paper [20], Dean et al. presented a randomized variant

of the greedy algorithm which can achieve a factor of 32/7. In the same paper, they
proposed another useful idea that can further improve the approximation factor. Note
that in expectation, the number of heavy items that can be inserted successfully is
bounded by a small constant. Hence, it is possible to enumerate all possible ways to
insert heavy items (by enumerating the decision tree). Using this idea, they managed
to improve the approximation factor to 3.

The idea of enumerating the decision trees was carried further by Bhalgat et al. [21].
They showed that there exists a special class of policies called block-adaptive poli-
cies which, combined with their discretization technique, allows one to enumerate all
possible decision trees for such policies in polynomial time. They used this idea to
obtained a bi-criterion PTAS: their policy can achieve an expected value of (1−ε)OPT,
and the knapsack capacity may be violated by at most ε, for any constant ε > 0. Typi-
cally, such a result can not be achieved by the LP technique. Using this result, Bhalgat
obtained a (2 + ε)-approximation, which is currently the best known approximation
factor for the adaptive stochastic knapsack problem. Their approach is further simpli-
fied and generalized in [8], using the Poisson approximation technique, which we will
detail in Sect. 8.

3.3.1 Stochastic Knapsack with Correlations and Cancellations

Gupta et al. [22] considered a generalization, in which the value and the size of a
job can be correlated (described by a joint distribution), and we can cancel a job in
the middle. They provided an approximation algorithm with an approximation factor
of 8, based on a new time-indexed LP relaxation. They also considered a further
generalization, called the non-martingale bandit problem, and provided a constant
factor approximation algorithm. Using the Poisson approximation technique, Li and
Yuan [8] obtained a bi-criterion PTAS for the stochastic problemwith correlations and
cancellations. They also showed that the bi-criterion PTAS can be easily converted
into polynomial time (2 + ε)-approximation if we only allow cancellations. Ma [23]
again used the LP technique, but with a different LP which corresponds to a dynamic
program, and obtained a polynomial time algorithm that finds a (2 + ε)-approximate
adaptive policy for stochastic knapsack with correlations or cancellations if all the
possible sizes of any item are integers. We conclude the discussion of the stochastic
knapsack problem with the following obvious open questions:

OpenQuestion 1 Is there a PTAS for the adaptive stochastic knapsack problem (with-
out violating the capacity constraint)?
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Note that it is known that certain variants of stochastic knapsack are PSPACE-
hard to approximate within some constant factors [16,19]. However, these results do
not preclude an affirmative answer of the above question. Obtaining a better than 2
approximation ratio is also a very interesting open question, which seems to require
new ideas. In fact, even for the basic version of the adaptive stochastic knapsack,
where the sizes are random but the values are deterministic, whether the problem is
PSPACE-hard is still open.

3.3.2 Stochastic Orienteering Problem

Stochastic orienteering is a generalization of stochastic knapsack. It is defined as
follows:

Problem 3.8 (Stochastic Orienteering) We first introduce the deterministic version.
We are given a metric (V, d), where V is the set of vertices and d is the distance
metric, a budget B and an initial vertex r ∈ V . Each vertex has a job associated with
a reward and processing time. We assume that the travel time between two vertices
u and v is proportional to d(u, v). The goal is to compute a path starting from r that
visits a subset of vertices and run the jobs on these vertices, so as to maximize the
total reward, subject to the constraint that the travel time plus the job processing time
do not exceed the budget B.

In the stochastic version, the reward and the processing time of each job are random
variables. The distributions are also given as input. The goal now is to compute an
adaptive policy that maximizes the expected total reward.

We can easily see that if all the distances are 0, the problem reduces to the sto-
chastic knapsack problem. The problem is introduced in Gupta et al. [22]. They also
showed that when the rewards are deterministic, there is a policy which is an O(1)
approximation to the best non-adaptive policy (that is to visit the vertices in a fixed
order) while it is an O(log log B) approximation to the best adaptive policy. It was
attempting to believe that there is a non-adaptive policy which is a constant approxi-
mation of the best adaptive policy. Somewhat surprisingly, Bansal and Nagarajan [24]
showed the gap between the best adaptive policy and the best non-adaptive policy is
at least Ω

(
(log log B)1/2

)
, if the rewards are deterministic.

4 Stochastic Matching

In this section, we consider the following adaptive stochastic matching problems.
We will provide a simple constant factor approximation algorithm using the LP-
rounding technique. In Sect. 5, wewill present a significant extension of this technique,
called the contention resolution scheme, which can be used to handle several other
combinatorial constraints as well.

4.1 Problem Definition

Problem 4.1 (Adaptive Stochastic Matching) We are given a probabilistic graph
G(V, E) on n nodes. We would like to find a maximum weighted matching in this
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14 J. Li, Y. Liu

graph. For each edge (u, v), we are given a probability value puv , a weight wuv . Each
vertex u is associated with a positive integer tu (the patience level). To find out whether
the edge (u, v) is present in G or not, we can “probe” the pair (u, v) (assuming that u
and v are still unmatched). If the edge (u, v) indeed exists (which happens with prob-
ability puv is independent of other edges), it gets irrevocably added to our matching
M . Moreover, we can probe at most tu edges incident to vertex u (tu can be thought as
the patience level of vertex u). Our goal is to design an adaptive probing policy that
maximizes the expected total weight of the matching M .

The problem is motivated by the kidney exchange program, which we now briefly
describe. The problem and some of its variants also find important applications in the
popular online dating application and online advertisement assignment (see [25] for
more details).

A Motivating Example: Kidney Exchange The United Network for Organ Sharing
(UNOS) launched in year 2000 the famous kidney exchange program, which has
saved thousands of lives [26].9 We briefly describe the program and how it can be
modeled as the stochastic matching problem. Suppose a family member of the patient
would like to donate a kidney to the patient but the kidney is incompatible with the
patient’s body. The idea is to identify two incompatible patient/donor pairs such that
each donor is compatible with the other pair’s patient, and then perform the kidney
exchange between the two pairs. We can think each patient/donor pair as a vertex, and
there is an edge between two vertices if the compatibility allows for an exchange. Of
course, our goal is to find a large matching. To decide compatibility, three main tests
must be performed. The first two tests, the blood-type test and the antibody screen,
are fairly easy to perform, while the third, called crossmatching, is the most critical
one, yet very expensive and time consuming. However, the compatibility can only
be determined by this test. Therefore, if the crossmatch test is passed for a pair, the
transplant should be performed immediately. Thus, we can estimate the probability
that two pairs are compatible based on the initial two tests, model it by a probabilistic
edge. A crossmatch test corresponds to a probe on an edge. If the probe is successful,
we should include this edge in our matching (i.e., the exchange should be performed).
The patience level for each vertex is also very natural: It models the fact that a patient
will eventually die without a successful match.

4.2 Algorithm

Similar as the stochastic knapsack problem, we use a linear program to upper bound
the optimal profit, and to guide our algorithm.Consider the followingLP: for anyvertex
v ∈ V , ∂(v) denotes the edges incident to v. Variable ye denotes the probability that
edge e = (u, v) gets probed in the adaptive strategy, and xe = pe · ye denotes the
probability that u and v get matched in the strategy.

9 The founder of the program, Alvin E. Roth, won the Nobel Prize in Economics in 2012, partly due to the
implementation of the program.
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maximize
∑

e∈E
we · xe

s.t.
∑

e∈∂(v)

xe � 1, ∀v ∈ V,

∑

e∈∂(v)

ye � tv, ∀v ∈ V,

xe = pe · ye, ∀e ∈ E,

0 � ye � 1, ∀e ∈ E . (4.1)

Claim 4.2 The optimal solution of the above LP is an upper bound of the optimal
expected profit of any adaptive policy, which we denote as OPT.

We first solve the LP to the optimal and let {y∗
e }e∈E denote an optimal solution to

this linear program. Let x∗
e = pe · y∗

e .
Our rounding algorithm proceeds as follows. Fix a constant α � 1, to be specified

later. The algorithm picks a uniformly random permutation π : E → E on all edges.
Then, it inspects the edges in the order of π . We say an edge e = (u, v) is safe if both
u and v are unmatched and both tu and tv are larger than zero. Whenever it is safe to

probe the next edge e ∈ E , the algorithm does so with probability y∗
e
α
. If edge e indeed

exists, we include e in the matching. Otherwise, we decrease the patience levels of
both endpoints of e by 1. Note that the algorithm skips all unsafe edges at the time
they appear in π . See Algorithm 2 for the pseudocode.

Algorithm 2: Stochastic matching

Step 1 Pick a permutation π on edges E uniformly at random;
Step 2 For, each edge e in the ordering π do
Step 3 If e = (u, v) is not safe then do not probe it;
Step 4 If e is safe then probe it with probability ye/α, else do not probe it.

4.3 Analysis

The approximation guarantee is summarized in the following theorem:

Theorem 4.3 For α = 4, Algorithm 2 achieves an approximation factor of 8 against
any adaptive policy for the stochastic matching problem.

We start with a simple lemma, which bounds the probability of the safeness of an
edge when it is considered by the algorithm.

Lemma 4.4 For any edge (u, v) ∈ E, at the point when (u, v) is considered under π ,

(a) the probability that vertex u loses its patience is at most 1
2α , and

(b) the probability that vertex u is matched is at most 1
2α .
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Proof We begin with the proof of part (a).
Let random variable U denote the number of probes incident to vertex u by the

time edge (u, v) is considered in π .

E[U ] =
∑

e∈∂(u)

Pr[edge e appears before (u, v) in π and e is probed]

�
∑

e∈∂(u)

Pr[edge e appears before (u, v) in π ] · y
∗
e

α
=

∑

e∈∂(u)

y∗
e

2α
� tu

2α
.

The first inequality above follows from the fact that the probability that edge e is
probed (conditioned on π ) is at most y∗

e /α. Since π is a uniformly chosen random
permutation on E , edge e appears before (u, v)with probability 1/2. Hence the second
equality follows. The last inequality is by the second constraint of LP (4.1).

By Markov inequality, the probability that vertex u has timed out when (u, v) is
considered equals

Pr[U � tu] � E[U ]
tu

� 1

2α
.

This proves part (a). The proof of part (b) is almost identical: We consider the event
that an edge is matched and replace y∗

e and tu by x∗
e and 1, respectively, and use the

first constraint of LP (4.1).

Having Lemma 4.4, the proof of Theorem 4.3 is quite simple now.

Proof of Theorem 4.3 Given that an edge e ∈ E is safe when considered, the expected
profit from e is

we pe y
∗
e /α = wex

∗
e /α.

Consider the point when e = (u, v) is considered. By a union bound, we can see that

Pr[e is safe] � 1 − Pr[u loses patience] − Pr[v loses patience] − Pr[u is matched]
− Pr[v is matched]

� 1 − 1/2α − 1/2α − 1/2α − 1/2α = 1 − 2/α.

Hence, the total expected profit is

∑

e

we
x∗
e

α
Pr[e is safe] �

∑

e

wex
∗
e
1 − 2/α

α
� 1 − 2/α

α
OPT.

Plugging in α = 4 gives an approximation ratio of 8, as desired.
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4.4 Related Results and Variants

The problem was first formulated by Chen at al. [27]. They provided a 4-
approximation for the unweighted version of the problem (we = 1 for all edges
e). In fact, they showed that the greedy policy of choosing the edge e with highest
pe to probe achieves an approximation factor of 4. Their analysis is directly on the
relations between the decision trees of the optimal policy and that of the greedy policy.
Adamczyk [28] improved their analysis and showed that the greedy algorithm is in fact
a 2-approximation for unweighted stochastic matching. Note that this is tight since
the greedy algorithm is a 2-approximation even in the deterministic setting. However,
this greedy algorithm (and other simple greedy schemes) can be seen to be arbitrarily
bad for the weighted version. The above algorithm is from Bansal et al. [25]. They
also provided a more nuanced 4-approximation (3-approximation for bipartite graphs)
based on the dependent rounding technique [29]. Very recently, Adamczyk et al. [30]
improved the ratio to 2.845 for bipartite graphs and Baveja et al. [31] obtained a
3.224-approximation for general graphs.

OpenQuestion 2 Is there a polynomial time approximation algorithm for the adaptive
(unweighted or weighted) stochastic matching problem that can achieve an approxi-
mation ratio α with α < 2?

4.4.1 Online Stochastic Matching

In an influential paper, Karp et al. [32] proposed the following online matching
problem: There is a bipartite graph G(U, V ; E), where the vertices in U are given,
and the vertices in V arrive one by one in an online fashion. When a new vertex
v ∈ V arrives, the edges incident on v are also revealed. We need to match v to an
available vertex inU irrevocably, or leave v unmatched (in this case, we cannot match
v later). Karp et al. gave a very simple and elegant randomized algorithm that achieves
a competitive ratio of 1 − 1/e, which is optimal if the order of arrivals of vertices in
V are chosen by an adversary. A major motivation application of the online matching
problem is online advertising. Here, each node in U represents an advertiser/bidder
and each node in v represents an ad slot/keyword.

The online stochastic matching problem is a stochastic variant of the online match-
ing problem, which was initially studied by Feldman et al. [33]. In this model, the
bipartite graph is known, but the sequence of arrivals are i.i.d. samples from a given dis-
tribution (instead of chosen by an adversary). Under some technical assumption, they
gave a 0.67-competitive algorithm, beating the optimal 1−1/e-competitiveness known
for adversarial arrivals [32]. Some improved bounds on this model were obtained [34–
36]. The current best competitive ratio is 0.706 due to Jaillet and Lu [35], and the best
upper bound of competitive ratio of any online algorithm is 0.832 due to Manshadi
et al. [36]. Goel and Mehta [37] considered a slight different model in which the
arrival sequence is a random permutation (known as random permutation model).
They showed a greedy algorithm achieves a (1−1/e) competitive ratio. The ratio was
improved to 0.653 by Karande et al. [38] and 0.696 by Mahdian and Yan [39]. The
origin of the random permutation model is the popular secretary problem, which we
review briefly in Sect. 9.
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18 J. Li, Y. Liu

Mehta and Panigrahi [40] considered another related model where even the distri-
bution is not given in advance, rather it arrives online. More precisely, when a new
vertex v in V comes, we know a set of {puv}u∈U values. We have to assign v to an
available vertex u in U , and then with probability puv the assignment is successful.
If the assignment is not successful, we cannot assign v again, but u is still available
for later arrivals. It is easy to see a simple greedy algorithm can achieve a competitive
ratio of 1/2. Mehta and Panigrahi improved the ratio to 0.567 for equal and vanishing
probabilities (i.e., puv = p for all (u, v) ∈ E and p → 0). They also showed that
there is even no (1− 1/e) competitive algorithm for the problem. Recently, Mehta et
al. [41] considered the more general case for unequal and vanishing probabilities, and
presented a 0.534-competitive online algorithm, beating the trivial 1/2 factor.

4.4.2 The Adword Problem and Online Stochastic LP

A closely related problem is the Adwords Problem, which has important applica-
tions to sponsored search auctions. The problem is defined as follows. There are n
advertisers andm keyword queries. The advertiser i has a budget Bi . In each time slot,
a query j comes and we need to allocate query j to some advertiser i ∈ [n]. Let bi j
be the bid by advertiser i for query j . We use indicator variable xi j to denote whether
j is allocated to i . The revenue generated by the algorithm is

∑
i min(Bi ,

∑
j bi j xi j ).

We can see that the problem reduces to the online matching problem if Bi = 1
and bi j = 0 or 1. The seminal paper by Mehta et al. [42] started the investigation of
the problem and presented an optimal (1 − 1/e) competitive algorithm in the worse
case setting. Various stochastic settings (i.i.d. arrivals, random permutation models)
have been studied extensively. The problem has been referred to as online stochastic
packing LP in the literature (one can think the variables of an LP comes online, and the
value of each new coming variable has to be determined immediately). An important
quantity in the problem is the so-called budget-to-bid ratio γ = mini Bi/maxi j bi j .
The ratio is usually very large in the online advertising applications, and hence it would
be interesting to see if we can achieve better competitive ratios in this case. In fact, it
is possible to achieve a competitive ratio of (1− ε) provided that γ is large enough (in
terms of ε, n,m). Agrawal et al. [43] proved that γ should be at least Ω(ε−2 logm) in
the random permutationmodel. After a series of papers [43–45], Kesselheim et al. [46]
presented an optimal algorithm which achieves the condition established by Agrawal
et al. In a recent elegant work, Agrawal and Devanur [47] generalized the result to a
broader class of online stochastic convex optimization, using Fenchel duality and the
onlinemirror descent algorithmdeveloped in online learning.Gupta andMolinaro [48]
considered a different generalization to both packing and covering constraints. They
also made extensive use of the results from online learning.

5 Adaptive Stochastic Probing Problem

In this section, we consider the following general problem defined by Gupta and
Nagarajan [49]. V is a set of elements and I is a family of subsets of V . We say (V, I)

is a downward closed set systems if for any I ∈ I, if I ′ ⊆ I , then I ′ ∈ I. Many
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combinatorial constraints are downward closed, such as matroid, knapsack, matching,
and any intersection of them.

Problem 5.1 (Stochastic Probing) The stochastic probing problem is defined over a
universe V of elements with weights we for each e ∈ V . For each element e ∈ V ,
there is a probability pe, indicating the probability that e is active. Each element is
independent of all other elements.We are also given two downward closed set systems
(V, Iout) and (V, Iin), which are called the outer packing constraint and the inner
packing constraint, respectively. We can adaptively probe the elements. If element e
is probed and happens to be active (with probability pe), we should choose e into
our solution irrevocably. We require that the set Q of elements we can probe must
be in Iout and the set of chosen active elements must be in Iin. Our goal is to design
an adaptive policy which can choose a (random) set S ⊂ V of active elements, the
expected weight of S is maximized.

The above problem naturally generalizes the stochastic matching problem: We can
encode the patience level constraint by the outer packing constraint (I is the set of
all subgraphs which satisfies deg(v) � tv). The inner packing constraints dictates that
the chosen set of edges form a matching (I is the set of all matchings). The result in
[49] applies to several important combinatorial packing constraints, such as matroid
constraints, k-systems, k-column sparse packing integer programs. A key tool used
here is an elegant abstraction of a class of LP rounding schemes, called contention
resolution schemes, introduced by Chekuri et al. [50].

5.1 Contention Resolution Schemes

A very popular and powerful methodology for designing approximation algorithms
is to solve an LP relaxation first, and then round the fractional LP solution to an integral
one. In the context of submodular maximization, Chekuri et al. [50] proposed a class
of rounding schemes called contention resolution (CR) schemes which can be used
to obtain constant approximations for the submodular maximization problem under
several combinatorial constraints.

Now, we define what is a CR scheme. There are a set N of n elements and the set of
feasible solutions can be captured by a downward closed set system I ⊂ 2N . LetP(I)

be the polytope of the LP relaxation of the problem (so I ⊆ P(I)). We solve the LP
to obtain a fractional optimal LP solution x ∈ P(I). We would like to round x to an
integral near-optimal solution π(x) ∈ I via the following process π . For 0 � b � 1
and x ∈ P(I), we use R(bx) ⊆ N to denote the random set obtained by choosing
each element e ∈ N with probability bxe.

Definition 5.2 (CR Scheme) A (b, c)-balanced CR scheme π for a downward closed
set system I is a scheme such that for any x ∈ PI , the scheme returns a set π(I ) ⊆
I = R(bx) with the following property:

1. π(I ) ∈ I;
2. Pr[e ∈ π(I ) | e ∈ I ] � c for every element i .
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A scheme is said to be monotone if Pr[e ∈ π(R1)] � Pr[e ∈ π(R2)] whenever
i ∈ R1 ⊆ R2. A scheme is said to be ordered if there is a permutation σ on N so that
for any I = R(bx) ⊆ N , the output of the scheme π(I ) is the maximal independent
subset of I obtained by considering elements in the order of σ .

A CR scheme π(I ) is in fact an algorithm that takes I as input and returns π(I ).
The first property guarantees that π(I ) is a feasible solution in I. The second property
says that conditioning on e ∈ I, e is selected by π with probability at least c. Hence,
we can see that each element e is selected by the CR scheme with probability at
least bcxe. Hence, if we want to maximize a linear function

∑
e wexe s.t. x ∈ I, we

can immediately obtain a bc-approximation from a (b, c)-balanced CR scheme for I.
Monotone and ordered CR schemes will be particular useful for the stochastic probing
problem.

We know efficient CR schemes for several important combinatorial constraints. For
example, for any 0 < b � 1, there is a (b, (1 − e−b/b)) CR schemes for matroids, a
(b, 1 − kb) ordered CR scheme for k-systems.10 See many more examples in [50].

Moreover, CR schemes have a very nice property that they can be combined for
different constraints if they are all monotone. For example, if there is a monotone
(b, c1)-CR scheme π1 for PI1 and a monotone (b, c2)-CR scheme π2 for PI2 , one
can combine them to obtain a monotone (b, c1c2)-CR scheme π for PI1∩I2 , where
π(x) = π1(x) ∩ π2(x). We can easily extend it to the intersection of more constraints
as well.

5.2 Algorithm and Analysis for Stochastic Probing

Now, we show how a CR scheme enters the picture of the stochastic probing prob-
lem. In particular, we show the following general theorem. Plugging in the known
results about CR schemes, we can get constant approximations for stochastic probing
with various different inner and outer constraints.

Theorem 5.3 Consider an instance of the stochastic probing problem. Suppose the
following hold:

1. There is a (b, cout)-CR scheme πout for P(Iout);
2. There is a monotone (b, cin) ordered CR scheme πin for P(Iin);
Then, there is a polynomial time approximation algorithm which can achieve an
approximation factor of b(cout + cin − 1).

Given an instance of the stochastic probing problem with inner constraint (V, Iin)
and outer constraint (V, Iout), we consider the following LP relaxation:

10 In a k-system (V,I), for any S ⊆ V , every maximal independent set of S has a size at least 1/k times
the size of the maximum independent subset of S. Matroids are 1 systems, matchings on bipartite graphs
are 2-systems, and the intersection of k-matroids are k-systems.
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Maximize
∑

e∈V
wexe

s.t. xe = peye, ∀e ∈ V,

x ∈ P(Iin),
y ∈ P(Iout).

We assume that the above LP relaxation can be solved efficiently. This LP relaxation
generalizes (4.1) for stochastic matching, in which the first two constraints can be seen
as the out constraint. Moreover, we can easily obtain an analogue of Claim 4.2.

Claim 5.4 The optimal value of LP is at least the optimal value OPT of the stochastic
probing problem.

Now, we present the algorithm here.

Algorithm 3: Stochastic probing

Step 1 Solve the LP relaxation and obtain the optimal LP solution (xe, ye);
Step 2 Pick I ⊂ 2V by choosing each e ∈ V independently with probability

bye;
Step 3 Let P = πout(I );
Step 4 Order elements in P according to the permutation given by the ordered

CR scheme πin;
Step 5 for i = 1 → |P| do
Step 6 if S ∪ {ei } ∈ Iin then
Step 7 Probe ei ;
Step 8 If ei is active, let S ← S ∪ {ei }.

Now, we analyze the performance of the algorithm. We want to show the expected
value of our solution E[w(S)] is large compared to the optimal LP value

∑
e wexe.

Let J ⊂ V be the (random) set of active elements. Let I ⊂ 2V be the (random) set. We
picked in step 2, and P be the set we selected using πout in step 3. From the algorithm,
we can easily see that our solution S = πin(P ∩ J ).

Lemma 5.5

Pr
I,J,πout,πin

[e ∈ S] = Pr
I,J,πout,πin

[e ∈ πin(πout(I ) ∩ J )] � b(cout + cin − 1)xe.

Proof (sketch) First, we can see that Pr[e ∈ I∩ J ] = bye · pe = bxe by the definition of
I . By the definition of CR schemes, we have Pr[e ∈ P = πout(I ) | e ∈ I ∩ J ] � cout.
As P ⊂ I , thus

Pr[e ∈ πin(P ∩ J )]
= Pr[e ∈ πin(P ∩ J ) ∧ e ∈ I ∩ P ∩ J ]
= Pr[e ∈ I ∩ P ∩ J ] − Pr[e /∈ πin(P ∩ J ) ∧ e ∈ I ∩ P ∩ J ]
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= Pr
π

[e ∈ P|e ∈ I ∩ J ] Pr
I,J

[e ∈ I ∩ J ] − Pr[e /∈ πin(P ∩ J ) ∧ e ∈ I ∩ P ∩ J ]
� bxe · cout − Pr[e /∈ πin(P ∩ J ) ∧ e ∈ I ∩ P ∩ J ].

The remaining part is to show K = Pr[e /∈ πin(P∩ J )∧e ∈ I∩P∩ J ] � (1−cin)·bxe.
It is not hard to see that

K � Pr[e /∈ πin(I ∩ J ) ∧ e ∈ I ∩ J ] = Pr[e /∈ πin(I ∩ J ) | e ∈ I ∩ J ]Pr[e ∈ I∩ J ]
� (1 − cin) · bxe,

where the first inequality is due to the monotonicity of πin and the final inequality is
by the definition of the CR schemes.

Now, it is straightforward to show Theorem 5.3. Indeed, we can see that

E[w(S)] =
∑

e

we Pr[e ∈ S] � b(cout + cin − 1)
∑

e

wexe � b(cout + cin − 1)OPT.

5.3 Related Problems and Results

5.3.1 Bayesian Online Selection

A closely related model is the Bayesian online selection problem (BOSP), defined
as follows. We are given a set of elements V . Each element e is associated with a
non-negative random variable Xe with known distributions. The family of feasible
solutions I ⊆ 2V (encoded by some combinatorial constraint). We can adaptively
choose to observe the elements one by one. Once we see the true value of Xe, we
have to decide irrevocably whether to choose the element.11 The goal is designing
a policy which chooses a feasible subset S ∈ I, and maximizes the expected total
value E

[∑
e∈S Xe

]
. In some setting, the order is chosen by an adversary instead of

the policy. Chawla et al. [51] proposed a simple mechanism, called sequential posted
pricing mechanism (SPM), for Bayesian single-parameter auctions. SPMs are closely
related to, and in fact serve as importantmotivations for the stochastic probing problem
and BOSP. See [8,49,51–55].

5.3.2 Prophet Inequality

In fact, the special case of BOSP where we can only choose one element was
studied by Krengel et al. back in 1970s [56]. They provided a selection algorithm
which returns a single element of expected value at least half of E[maxe∈V Xe], i.e.,
half of the expected value obtained by an offline algorithmwhich knows the realization
upfront. More precisely, let e be the element that their algorithm returns. It holds that

11 We observe the true value of Xe before wemake the decision. This is a key difference from the stochastic
probing problem.
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E[Xe] � 1

2
E[max

e∈V Xe].

Such equalities are often called the prophet inequalities. Recently,Kleinberg andWein-
berg [55] significantly generalized the above result for the general matroid constraints
(the constraint of choosing one element is just a uniform matroid of rank 1).

5.3.3 Online CR Schemes

Recently, Feldman et al. [53] introduced an extension of CR schemes, called online
contention resolution schemes (OCRS). An OCRS is almost the same as the original
CR scheme, except that the adversary chooses the order of the elements in I , and the
OCRSneeds to decide irrevocablywhether to choose the element. They provideOCRS
for a number of combinatorial constraints, such as matroids, matchings, knapsacks,
and their intersections, and applied to BOSP, stochastic probing, and SPM. See their
paper for more details.

6 Two-Stage Stochastic Optimization: LP Approach

In this section, we consider two-stage stochastic optimization models. In particular,
we study the two-stage recourse models: In the first stage, only distributional infor-
mation is available, and one commits on some initial actions. In the second stage, the
actual data is revealed and we can take additional actions (called recourse actions)
to augment the initial solution to a feasible solution. The cost for the recourse action
can be more expensive than the initial action. The stochastic set cover problem (Prob-
lem 1.3) is a typical example in this model.

Let us recall the notations. LetU be the set of ground elements and S the weighted
family of subsets ofU . The actual demand (i.e., the set of elements we need to cover)
follows a distribution D. We can select SI ⊆ S as the first-stage action. In the second
stage, the actual demand set A ⊆ U (A ∼ D) is revealed. We can select some extra
subsets SII

A ⊆ S as the recourse to cover the remaining elements of A. The inflation
factor is λ > 1, that is a set in the second stage is λ times more expensive than in the
first stage. We call a possible demand set A ⊆ U a scenario. Let pA be the probability
of scenario A. The goal is to minimize w(SI) + EA[w(SII

A)].
We use the following LP relaxation. xS denotes whether the set S is chosen in the

first stage, and yA,S denotes whether the set S is chosen in scenario A.

Minimize
∑

S∈S
wSxS + λ

∑

A,S∈S
pAwS yA,S

s.t.
∑

S:e∈S
xS +

∑

S:e∈S
yA,S � 1, ∀A, e ∈ A,

xS, yA,S � 0, ∀S, A.

The above LP is usually called a stochastic LP. The first constraint indicates that
the combined first- and second-stage actions are a set cover for any scenario A. If there
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are only a polynomial number of scenarios and all {pA} are given explicitly, we can
solve the stochastic LP in polynomial time. However, in most applications, there can
be an exponential number of scenarios given in an implicit manner. For example, each
element is in A with certain probability independent of others. A more general and
more challenging model is the so-called black-box model, in which we are only given
a procedure from which we can sample the scenarios from D. We cannot even write
down the stochastic LP explicitly for the black-box model. Nevertheless, Shmoys and
Swamy [57] showed that there is a polynomial time approximation scheme for solving
the LP by taking at most polynomial number of samples from the black box if λ is
bounded by a polynomial of the input size. Their algorithm is an adaptation of the
ellipsoid algorithm. Later, they presented another approximation schemes based on
the sample average approximation (SAA) method. SAA is a very natural approach
for stochastic optimization. We simply sample N scenarios from the black box. Then,
we solve sample-average problem, which is a deterministic problem. Shmoys and
Swamy [58] showed that we only need a polynomial number of samples, under some
mild conditions. Charikar et al. [59] provided an alternative and somewhat simpler
proof for the same result. In fact, their approach is more general: It does not only hold
for stochastic LP, and can also be used for the computational intractable problems,
where only an approximation algorithm for the deterministic sample-average problem
is known.

Now,we come back to the stochastic set cover problem.We assume the polynomial-
scenario model. For the black-box model, we only pay an extra factor of (1 + ε) for
any constant ε > 0 based on the above discussion.

Theorem 6.1 There is a 2(ln n + 1) factor approximation algorithm, where n is the
number of elements.

Proof We first consider the standard LP relaxation for set cover with universe U .

minimize
∑

S∈S
wSxS s.t.

∑

S:e∈S
xS � 1, ∀e ∈ U ; xS � 0, ∀S ∈ S.

Let the optimal LP value be LP(U ). It is long known that a standard independent
rounding algorithm can find an integral set cover with cost at most O(log nLP(U ))

with high probability. Using the exponential clock algorithm byBuchbinder et al. [60],
one can get an integral set cover with cost at most (ln n + 1) LP(U ), with probability
1. Denote this algorithm by A. Let α = ln n + 1.

For any element e and scenario A, we can see that either
∑

S:e∈S xS � 1/2 or∑
S:e∈S yA,S � 1/2. Consider E = {e : ∑

S:e∈S xS � 1/2}.{2xS} is a feasible
fractional solution for the set cover instance with universe E . Running algorithm A,
we get an integral solution covering E with cost at most αLP(E) � α

∑
S 2xSwS . In

the second stage, suppose the scenario is A. {2yA,S} is a feasible fractional solution
covering all elements in A \ E . Hence, we can get an integral solution covering A \ E
with cost at most αLP(A \ E) � αλ

∑
S 2yA,SwS . So, the overall expected cost is

at most α
∑

S 2xSwS + αλ
∑

A pA
∑

S 2yA,SwS . Thus we have a 2α-approximation
algorithm for stochastic 2-stage set cover problem.
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7 Two-Stage Stochastic Optimization-Boosted Sampling

In this section, we introduce another classical technique for dealing with two-stage
stochastic models, called boosted sampling, introduced by Gupta et al. [61]. We use
the minimum rooted Steiner tree problem as an example to illustrate the technique.

Problem 7.1 (Two-Stage Stochastic Rooted Steiner Tree) In the deterministic rooted
Steiner tree problem, we are given an edge-weighted graphG(V, E)with edge weight
w : E → R

+ satisfying triangle inequality and a root r ∈ V . We are also given a
set of terminals S ⊆ V , and we want to choose a tree of the minimum total weight
to connect all terminals and the root r . In the two-stage stochastic model, there is a
probability distribution D on the set of terminals. A set of edge E0 may be bought in
the first stage under cost {we}e∈E . In the second stage, the real set S ∼ D of terminals
is revealed and we may need to buy some extra edges ES so that E0 ∪ ES is a feasible
solution. However, we need to pay σwe for edge e in the second stage, where σ > 1 is
the inflation factor (which is also an input). The goal again is to minimize the expected
cost of the solution, that is w(E0) + ES[σw(ES)].

7.1 Cost-Sharing Functions

Wewill make a crucial use of cost-sharing functions in the analysis of the algorithm.
Consider the deterministic Steiner tree problem. There is a client in each terminal. We
would like to figure out a way to divide the cost of the Steiner tree among the client
set S. Now, we formally define what is a cost-sharing function. Suppose there is an α-
approximation algorithmA that solves the Steiner tree problem.Moreover, we require
existence of a polynomial time algorithm AugA (called augmentation algorithm) that
can augment a solution A(S) to a feasible solution for S′ for S ⊂ S′.

Definition 7.2 The function ξ : 2V × V → R is a β-strict cost-sharing function if
the following properties hold:

1. (Positivity) For a set S ⊂ V , ξ(S, j) > 0 only for j ∈ S.
2. (Fairness) For a set S ⊂ V ,

∑
j∈S ξ(S, j) � w(OPT(S)).

3. (Strictness) If S′ = S ∪ T for S ∩ T = ∅, then
∑

j∈T ξ(S′, j) � 1
β

× cost of
augmenting the solution A(S) to a solution of S′ using AugA.

Define ξ(S, A) = ∑
j∈A ξ(S, j).

In some cases, AugA can be obtained by zeroing out the costs of elements picked
in A(S) and run A again. In this case, we typically have β = α. In general case, β

is usually larger because it is usually easier to find a better approximation algorithm
than to find a better augment algorithm. Now, we provide a cost-sharing function for
the Steiner problem, which will be useful later.

Theorem 7.3 There is a 2-approximation algorithm A with a 2-strict cost-sharing
function ξ for the rooted minimum Steiner tree problem.
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Proof Given a set of terminals S, A compute a minimum spanning tree on S ∪ {r}. It
is well known that the cost ofA(S) is within 2 times the cost of the optimal minimum
Steiner tree of S.

WithA, we determine the value of ξ(S, j) according toA. For any set S and vertex
j , if j ∈ S, set ξ(S, j) = w(p j , j)/2, where p j is the parent of j in the spanning
tree A(S); if j /∈ S, set ξ(S, j) = 0. Clearly,

∑
j∈S ξ(S, j) = ∑

j∈S w(p j , j)/2 =
w(A(S))/2 � w(OPT(S)). So we have shown the fairness.

To show the strictness, we first define AugA. Let S′ = S ∪ T . AugA first zeros
out the edges in A(S) and then run Prim’s algorithm. The solution obviously include
A(S). For each terminal j ∈ T , let p j be its parent in A(S ∪ T ). Consider the
execution of Prim, edge ( j, p j ) is added by AugA as well. So the cost of augmenting
the solution A(S) to a solution for S′ is exactly

∑
j∈T w( j,p j ). We can also see that∑

j∈T ξ(S′, j) = 1/2
∑

j∈T w( j,p j ), which shows β = 2.

We can in fact use the approximation algorithm proposed in [62] and the same
cost-sharing function as above.

Theorem 7.4 There is a 1.39-approximation algorithm, along with a 2-strict cost-
sharing function for the rooted minimum Steiner tree problem.

If the problem is that you are given two sets S, T separately and required to obtain
a solution for S ∪ T , you can first compute an α-approximation solution Φ(S) for S,
then augment it to a solution of S ∪ T , Φ(S ∪ T ), using AugA. As

w(Φ(S ∪ T )) − w(Φ(S)) � βξ(S ∪ T, T ) � βξ(S ∪ T, S ∪ T )

� βw(OPT(S ∪ T ))

and

w(Φ(S)) � αw(OPT(S)) � αw(OPT(S ∪ T )),

Φ(S ∪ T ) is a (α + β)-approximation solution for S ∪ T .

7.2 Stochastic Steiner Trees

Now, let us come back to the two-stage stochastic Steiner tree problem. Consider
the following algorithm.

Algorithm 4: Boost-and-sample

Step 1 Draw �σ� independent sample scenarios D1, · · · , D�σ� from the
distribution D. Let D = ∪i Di ;

Step 2 Run the algorithm A to construct an α-approximation F0 for terminals
D as the first-stage solution;

Step 3 In second stage, when S is realized, run AugA to compute FS such that
F0 ∪ FS is a feasible Steiner tree for S.
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Now, we analyze the performance of the above algorithm.

Theorem 7.5 Let A be an α-approximation algorithm for minimum rooted Steiner
tree problem that admits a β-strict cost-sharing function. Then Boost-and-Sample is
an (α + β)-approximation algorithm for the 2-stage stochastic Steiner tree problem.

Proof Let F∗
0 be the first-stage component of the optimal solution, and F∗

S be the
second-stage component for scenario S. Hence the optimal cost is

Z∗ = w(F∗
0 ) + σ ES[w(F∗

S )].

Now consider the cost of Boost-and-Sample. Without loss of generality, assume σ is
an integer. We use Sols(S) to denote the set of feasible solutions for terminal set S.

Consider the first stage. Define F̂1 = F∗
0 ∪ F∗

D1
∪ · · · ∪ F∗

Dσ
. Thus F̂1 ∈ Sols(D).

Moreover, we can see that

ED[w(F̂1)] � w(F∗
0 ) +

∑

i

ED[w(F∗
Di

)] = w(F∗
0 ) + σ EDi [w(F∗

Di
)] = Z∗.

SinceA is an α-approximation algorithm, the expected cost of our first-stage solution
satisfies ED[w(F0)] � αED[w(F̂1)] � αZ∗.

Next consider the second stage, which is slightly trickier. Note that S follows the
same distribution as any Di . The key is to consider an alternate process to generate the
sets Di and S: Draw σ + 1 scenarios D̂1, · · · , D̂σ+1 from the distribution D, choose
a random K uniformly from {1, 2, · · · , σ + 1}, and set S = D̂K and D = ∪i �=K D̂i .
Now let D̂ = ∪σ+1

i=1 D̂i and D̂−i = ∪l �=i D̂l . Intuitively, D has σ copies of Di , but

D̂ has σ + 1 copies. So ED̂[w(OPT(D̂))] is not much larger than ED̂[w(OPT(D))].
Moreover, S is simply one of the σ + 1 copies. The cost for connecting S should be
only 1/(σ + 1) of w(OPT(D̂)). We provide the details below.

Recall FS is the set of edges we add in the second stage. According to the β-
strictness, we can see w(FS) � βξ(D ∪ S, S \ D). By the fairness, we can see that∑σ+1

i=1 ξ(D̂, D̂i \ D̂−i ) � w(OPT(D̂)). From the process, we can see ξ(D∪ S, S \ D)

is just a random term on the left hand side of the above inequality. Hence, we obtain
that

ED,S[ξ(D ∪ S, S \ D)] � 1

σ + 1
ED̂[w(OPT(D̂))].

Moreover, by the sub-additivity, it holds that

ED̂[w(OPT(D̂))] � w(F∗
0 ) +

σ+1∑

i=1

E
[
w

(
F∗
D̂i

)]
� σ + 1

σ
Z∗.

Combining the above inequalities, we get ES[σw(FS)] � βZ∗. Overall, the total
expected cost is at most (α + β)Z∗.
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7.3 Related Results

Using the boosted sampling technique, Gupta et al. [61] provided constant fac-
tor approximation algorithms for several two-stage stochastic optimization problems,
including Steiner tree, vertex cover, facility location, and Steiner network. Note that
their framework works even if D is given by the black-box model. However, if we
assume the nodes are independent, they showed that it is possible to obtain improved
approximation algorithms.

The work has generated a number of followups. We mention a very small subset
here. Gupta and Pál [63] studied the unrooted version of the two-stage stochastic
Steiner tree problem, and provided the first constant factor approximation algorithm.
The problem is exactly the same as we defined before, except that there is no root r .
This case is technically more challenging since the problem is not sub-additive any
more.

Gupta and Kumar [64] generalized the above result by providing the first constant
factor approximation algorithm for the two-stage stochastic Steiner forest problem,12

using a primal-dual LP approach. In fact, the cost-sharing function in the last section
is closely related to the dual variable. In a very recent work, Gupta and Kumar [65]
showed a simple greedy algorithm for Steiner Forest problem with an approximation
ratio of 96with 2880-strict cost-sharing function,which implies a 2976 approximation
for the two-stage stochastic Steiner forest problem.

In another generalization, Gupta et al. [66] considered the two-stage stochastic
Steiner tree problem with non-uniform inflation factors, i.e., the cost of each edge
in the second stage may be inflated by a different factor. They provided the first
poly-logarithmic approximation factor and showed an approximation hardness of
Ω(log log n).

7.4 Other Two-Stage or Multi-Stage Models

Ravi and Sinha [67] and Immorlica et al. [68] initiated the study on approximation
algorithms for two-stage stochastic combinatorial optimization with recourse. They
provided approximation algorithms for several problems for the polynomial scenario
and independent-activation settings. Later, various techniques, such as boosted sam-
pling, stochastic LP, SAA, were developed for handling the black-boxmodel.We refer
interested readers to [69] for an early survey. In Table 1, we list the current best known
approximation ratios for the two-stage stochastic models of several other classic com-
binatorial problems. Note that here the objective is to minimize the expected overall
cost.

Many of the above results have been generalized to k stages for arbitrary constant
k. See e.g., [58,63,72]. There are also several closely related models proposed in the
literature. We review some of them here.

12 In a Steiner forest instance, we are given an edge-weighted undirected graph G and a set of vertex pairs
{(si , ti )}i∈[m]. We need to choose a subset T of edges such that si and ti are connected for all i ∈ [m].
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Table 1 Best known approximation ratios for two-stage stochastic optimization problems with recourse

Problem Black-box model Independence model

Steiner Tree (rooted, CU) 3.55 [63] 3.55 [63]
Steiner Tree (unrooted, CU) 6 [63,70] 5 [63,70]
Steiner Tree (unrooted, N) O(log6 n log log n) [71] O(log6 n log log n) [71]
Steiner Forest (CU) 2976 [63,65] 5 [63,70]
Vertex Cover (Ar) 2 + ε [72] 2 + ε [72]
Facility Location (Ar) 2.369 + ε [72] 2.369 + ε [72]
Set Cover (Ar) (1 + o(1)) ln n [72] (1 + o(1)) ln n [72]

The objective function is the total expected cost. CorrelatedUniform (CU):All the elements share a common
inflation factor λA in each scenario A. Non-uniform (N): Each element e may have its own inflation factor
λe , independent of different scenarios. Arbitrary (Ar): The inflation factor λe,A of element e may depend
on both e and scenario A. In all settings, the maximum inflation factor is at most a polynomial

7.4.1 Two-Stage Robust Optimization

Robust optimization takes a more conservative viewpoint in decision making under
uncertainty. The goal in robust optimization is to minimize the worst-case cost over
all possible scenarios, instead of minimizing the average cost over scenarios, as done
in stochastic optimization problems. The setting of a two-stage robust optimization
problem is almost the sameas the two-stage stochastic optimization counterpart, except
that there is no probability distribution over the scenarios, and the objective is to
minimizew(x)+maxA fA(x, yA). Here x is the first-stage action and yA is the recourse
action for scenario A. Suchmodel and its variations have also been studied extensively
in the last decade.We refer interested readers to the following papers and the references
therein [73–78].

7.4.2 Two-Stage Risk-Averse Stochastic Optimization

The problem setting is exactly the same as Sect. 6 except that the goal is tominimize
the expected total cost subject to the constraint

Pr
A
[ 2nd stage cost for scenario A > θ ] � ρ.

Here, θ and ρ are input parameters as well. Such constraints are called threshold
probability constraints, or chance constraints, and used to model risk-averse behaviors
of the decision maker.

Such chance constraints can be captured using similar LP relaxation as well. For the
black-box model, Swamy [79] proposed an FPTAS for solving such LP and showed
how to round the LP for several combinatorial problems.

8 Fixed-Set Problems and Stochastic Knapsack: Poisson Approximation

In this section, we introduce the Poisson approximation technique and apply it to
the fixed-set stochastic optimization problems, and the adaptive stochastic knapsack
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problems. The technique is very useful to handle the distribution of the sum of inde-
pendent random variables (not necessarily identical), which appears quite frequently
in various stochastic optimization problems.

We first illustrate the technique by considering the fixed-set stochastic shortest path
in Problem 1.1. The result can be generalized to a wide class of fixed-set problems
(see [8]).

Recall each edge e has a non-negative random length μe. The objective is to find
an s-t path P such that Pr[∑e∈P μe � C], is maximized. Without loss of generality,
we can assume C = 1 and all μes take values from [0, 1]. For ease of notation, for a
set S of edges, we write μ(S) = ∑

e∈S μe. Let S∗ denote the optimal feasible set and
OPT = Pr[μ(S∗) � 1] the optimal value.

Theorem 8.1 For any ε > 0, there is a polynomial time approximation algorithm for
finds an s-t path S such that

Pr[μ(S) � 1 + ε] � Pr[μ(S∗) � 1] − ε,

where S∗ is the optimal path.

We start by a lemma saying that if the Pr[μ(S) � 1] is not negligible, E [μ(S)] can
not be very large.

Lemma 8.2 Suppose each edge e has a non-negative randomweightμe taking values
from [0, 1]. Then, for any set S of edges, and 1

2 > ε > 0, if Pr[μ(S) � 1] � ε, then
E [μ(S)] � 3/ε.

Intuitively, if C [μ(S)] is very large, μ(S) should be large with high probability
(hence Pr[μ(S) � 1] should be very small). The proof is not difficult and can be found
in [8].

If OPT � ε, then there is nothing to do since any feasible solution achieves the
desired approximation guarantee. Hence, we focus on the other case where OPT > ε.
We call an edge e heavy edge ifC[μe] > ε10.Otherwisewe call it light. ByLemma8.2,
we can see that the number of heavy edges in S∗ is at most 3

ε11
.

8.1 Enumerating Heavy Elements

We enumerate all possible set of heavy edges with size at most 3/ε11. There are at
most n3/ε

11
such possibilities. Suppose we successfully guess the set of heavy edges

in S∗. In the following parts, we mainly consider the question that given a set H of
heavy edges, how to choose a set L of light edges such that their union S is a feasible
solution, and Pr[μ(S) � 1 + ε] is close to optimal.

8.2 Dealing with Light Elements

Unlike heavy edges, there could be many light edges in S∗. Handling such edges
involves two techniques. The first is the discretization, which transforms each distri-
bution to one with a constant size support in [0, 1].
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The second key ingredient is the Poisson approximation technique. We apply a
theorem of LeCam [80], which shows that the distribution of the sum of the discretized
weights of light edges is very close to a compound Poisson distribution, which can be
completely determined by a constant dimensional vector (which we call the signature
of L).

Then, we enumerate all possible signatures (there are only polynomial number of
them), and check whether there is an s-t path S = L ∪ H (where H is the set of heavy
edges we enumerate, and L is the set of light edges in S), such that the signature of L
is the enumerated signature.

8.3 Discretization

We discuss how to discretize the size distributions for edges, using parameter ε.
We say that edge e realizes to a “large” size if μe > ε4. Otherwise we say that e

realizes to a “small” size. We use μ̃e to denote the size after discretization and π̃e its
distribution. The discretization consists of following two steps:

1. Small-size region: In the small-size region, μ̃e follows a Bernoulli distribution,
taking only values 0 and ε4. The probability values Pr[μ̃e = 0] and Pr[μ̃e = ε4]
are set such that E[μ̃e | μe � ε4] = E[μe | μe � ε4].

2. Large-size region: If μe realizes to a large size, we simply discretize it as follows:
Let μ̃e = �μe

ε5
�ε5 (i.e., we round a large size down to a multiple of ε5). We denote

the set of the discretized sizes by S = {s0, s1, · · · , sz−1} where s0 = 0, s1 =
ε5, s2 = 2ε5, s3 = 3ε5, · · · , sz−1. Note that s1 = ε5, · · · , s1/ε−1 = ε4 − ε5 are
also included in S, even though their probability is 0. It is straightforward to see
that |S| = z = O(1/ε5). This finishes the description of the discretization.

It is not difficult to show the behavior of the sum of their discretized distributions
is very close to that of their original distributions.13 The proof of the following lemma
is completely standard and omitted here.

Lemma 8.3 Let S be a set of edges such that E [μ(S)] � 3/ε. We have that

1. Pr[μ(S) � 1] � Pr[μ̃(S) � 1 + ε] + O(ε);
2. Pr[μ̃(S) � 1] � Pr[μ(S) � 1 + ε] + O(ε).

8.4 Poisson Approximation

Weuse π̃e to denote the distribution of the discretized edge weight μ̃e, i.e., π̃e(si ) =
Pr[μ̃e = si ]. For an edge e, we define its signature to be the vector

Sg(e) = (
πe(s1), πe(s2), πe(s3), · · · , πe(sz−1)

)
,

13 As ε → 0, the discretized distribution clearly converges to the original distribution in the weak topology
(e.g., in Lévy–Prokhorov metric or transportation metric, see [81]).
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where πe(s) =
⌊
π̃e(s) · n

ε6

⌋
· ε6

n for all nonzero discretized size s ∈ S \ {0} =
{s1, s2, · · · , sz−1}. For a set S of edges, its signature is defined to be the sum of the
signatures of all edges in S, i.e.,

Sg(S) =
∑

e∈S
Sg(e).

We use Sg(S)k to denote the kth coordinate of Sg(S). By Lemma 8.2,
∑z−1

k=1 Sg(S)k ·
sk = ∑z−1

k=1/ε Sg(S)k · sk � 3/ε. Thus Sg(S)k � 3/ε5 for all k. Therefore, the number

of possible signatures is bounded by
(
3n/ε11

)|S|−1
, which is polynomial in n.

We will show shortly that it suffices to enumerate all possible signatures for light
edges. For this purpose, we need a notation to measure the difference between two
distributions, called the total variation distance (also call statistical distance), defined
as follows (for discrete distributions):

�
(
X,Y

)
=

∑

k

∣∣∣Pr[X = k] − Pr[Y = k]
∣∣∣.

Obviously, if �(X, Y ) = 0, two distributions are identical. The following lemma
shows that if the signatures of two sets are the same, the total variation distance
between their distributions is very small.

Lemma 8.4 Let S1, S2 be two sets of light edges such that Sg(S1) = Sg(S2) and
E

[
X̃(S1)

]
� 3/ε, E

[
X̃(S2)

]
� 3/ε. Then, the total variation distance between

X (S1) and X (S2) satisfies

�
(
X̃(S1), X̃(S2)

) =
∑

s

∣∣Pr
[
X̃(S1) = s

] − Pr
[
X̃(S2) = s

] ∣∣ = O(ε).

The following Poisson approximation theorem by Le Cam [80], rephrased in our
language, is essential for proving Lemma 8.4. Suppose we are given a K -dimensional
vector V = (V1, · · · , VK ). Let λ = ∑K

i=1 Vi . We say a random variable Y follows the
compound Poisson distribution corresponding to V if it is distributed asY = ∑N

j=1 Y j ,
where N follows Poisson distribution with expected value λ:

Pr(N=k) = λke−λ

k! , for k � 0,

(denoted as N ∼ Pois(λ) ) and Y1, · · · ,YN are i.i.d. random variables with Pr[Y j =
0] = 0 and Pr[Y j = k] = Vk/λ for k ∈ {1, · · · , K } and j ∈ {1, · · · , N }.
Lemma 8.5 [80] Let X1, X2, · · · be independent random variables taking integer
values in {0, 1, · · · , K }, and let X = ∑

Xi . Let πi = Pr[Xi �= 0] and V =
(V1, · · · , VK ), where Vk = ∑

i Pr[Xi = k]. Suppose λ = ∑
i πi = ∑

k Vk < ∞. Let
Y be the compound Poisson distribution corresponding to vector V . Then, the total
variation distance between X and Y can be bounded as follows:
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�
(
X,Y

)
=

∑

k�0

∣
∣∣Pr[X = k] − Pr[Y = k]

∣
∣∣ � 2

∑

i

π2
i .

Proof of Lemma 8.4 For an edgeb,we letμe be the randomvariable that Pr
[
μe = s

] =
πe(s) for s = s1, s2, · · · , sz−1, and μe = 0 with the rest of the probability mass. Sim-
ilarly, we use μ(S) to denote

∑
b∈S μe for a set S of edges. By definition of μe, we

have that Δ
(
μe, μ̃e

)
� ε/n for any edge b. Since S1 and S2 contain at most n edges,

we can show that

�
(
X(S1), X̃(S1)

)
� ε and �

(
X(S2), X̃(S2)

)
� ε.

First, for any S such that E
[
X̃(S)

]
� 3/ε, we can see that

∑
b∈S Pr

[
μ̃e �= 0

]
�

E
[
μ̃(S)

]
/ε4 � 3/ε5. If we apply Lemma 8.5 to both X(S1) and X(S2), we can see

they both correspond to the same compound Poisson distribution, say Y , since their
signatures are the same. Moreover, since the total variation distance is a metric, we
have that

�
(
μ̃(S1), μ̃(S2)

)
� �

(
μ̃(S1), μ(S1)

)
+ �

(
μ(S1),Y

)
+ �

(
Y, μ(S2)

)

+�
(
μ(S2), μ̃(S2)

)

� 2ε + 2
∑

b∈S1

(
Pr

[
μe �= 0

])2 + 2
∑

b∈S2

(
Pr

[
μe �= 0

])2 + ε

= O(ε).

This finishes the proof of the lemma.

8.5 Algorithm for Fixed-Set Problems

Now, we present our approximation algorithm for the fixed-set stochastic shortest
path problem.

Algorithm 5: Fixed-set stochastic shortest path

Step 1 Discretize the size distributions of for all light edges;
Step 2 Enumerate all possible heavy edge sets H with E

[
X̃(H)

]
< 3/ε;

Step 3 for each such H do
Step 4 Enumerate all possible signatures Sg;
Step 5 for each such Sg do
Step 6 Try to find an s-t path S = H ∪ L , such that Sg(L) = Sg;

Step 7 Pick the path S with the largest Pr[μ(S) � 1 + ε].
In step (6), we can use the pseudopolynomial time algorithm for the exact ver-

sion of the shortest path problem to find a set L with the signature exact equal to
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Sg. This can be done by standard dynamic programming.14 Since Sg is a vector with
O(ε−5) coordinates and the value of each coordinate is bounded by O(n), it can be
encoded by an integer which is at most npoly(1/ε). Thus the pseudopolynomial time
algorithm actually runs in poly(n, npoly(1/ε)) time, which is a polynomial. We also
need to compute the value Pr[μ(S) � 1 + ε]. The problem is in fact #P-hard [82].
However, we can use the FPTAS developed in [83] to obtain a (1 ± ε)-approximated
estimation, which suffices for our purpose. There are a polynomial number of com-
binations of heavy edges. So it is not hard to see the algorithm runs in npoly(1/ε) time
overall.

It is fairly straightforward to show that the algorithm achieves the guarantee stated
in Theorem 8.1. Suppose we have guessed the heavy edges H∗ of the optimal solution
S∗, and the signature of the light edges of S∗ = H∗ ∪ L∗. Suppose the path we found
is S = H∗ ∪ L . Using 8.3, we can see that the original distribution μ(L) (μ(L∗)
resp.) is close to the discretized distribution μ̃(L) (μ̃(L) resp.). By Lemma 8.4, μ̃(L)

is close to the μ̃(L∗). Hence, we can see that the distribution of μ(L) is close to that
of μ(L∗). Hence, S behaves very similar to S∗.

Astute readers may have realized that we did not use much special properties about
the combinatorics of the shortest path problem except a pseudopolynomial time algo-
rithm that solves the exact version. In fact, we can generalize the above result to
all combinatorial optimization problems which admit a pseudopolynomial time algo-
rithm for the exact version, including spanning tree, k-median on trees, knapsack.
Moreover, instead of maximizing Pr[μ(S) � 1], we can consider the more general
expected utility maximization problem. See the detailed results in [7,8].

8.6 Poisson Approximation for Adaptive Stochastic Knapsack

The Poisson approximation technique can also be used to obtain bi-criterion PTAS
for the adaptive stochastic knapsack problem and its generalizations. This is some-
what surprising since it is not even clear at first sight where to apply the Poisson
approximation technique, which can only handle the sum of a fixed set of random
variables.

We need an important notion, called block-adaptive policies, introduced by Bhalgat
et al. [21]. In a block-adaptive policy, instead of inserting the items one at a time, we
insert a subset (a.k.a., block) of items at a time. In terms of the decision tree of a policy,
each node in the tree corresponding to the insertion of a block of items.

A remarkable property proved in [21] is that there exists a block-adaptive policy,
which corresponds to a decision tree with only O(1) nodes that can approximate the
optimal policy, modulo an ε fraction of profit and an ε fraction of knapsack capacity.
The result is further generalized to stochastic knapsackwith arbitrary subset constraints
[8], which allows us to handle cancellation of jobs15 and precedence constraints.

14 We allow non-simple paths. The exact version of simple path is NP-hard since it generalizes the
Hamiltonian path problem.
15 In this generalization, for stochastic knapsack with cancellations, we can think each item as a job and
its (random) size as the length of the job. We can cancel the job before it is finished. We do not get any
profit from the canceled job.
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Hence, it suffices to consider only block-adaptive policies. Since there are only constant
number of nodes in the decision tree, we can enumerate all different topologies of the
decision tree. Now, for each node of the tree (which corresponds to a block of items),
we can use Poisson approximation technique to approximation the distribution of the
sum of random variables in the block. More concretely, after fixing the topology of
the decision tree, we can enumerate the signatures of all blocks in polynomial time.
Then, we can use a dynamic program to search a block-adaptive policy, whichmatches
the enumerated signature. In the analysis, we need to show that if two block-adaptive
policies have the same tree topologies and same signatures for every node of the tree,
two policies must behave similarly (in particular, obtain almost the same expected
profit).

Using the above idea, we can obtain a policy which can produce a profit at least
(1 − ε)OPT using (1 + ε)C capacity (i.e., a bi-criterion PTAS), for the adaptive
stochastic knapsack problem, even when job cancellation is allowed. Even though the
above idea is clean, the details are quite technical, and we refer interested readers to
[8].

8.7 Related Work

8.7.1 Expected Utility Maximization and Threshold Probability Maximization

In Sect. 8, we consider the fixed-set stochastic shortest path problem, where our
goal is to maximize the threshold probability Pr[μ(S) � 1]. This is a very special case
of the following more general expected utility maximization problem.

Problem 8.6 (Expected Utility Maximization) Suppose we have n elements, each
having a non-negative random weight μe. We would like to choose a subset S, subject
to some combinatorial constraint. Consider a utility function U : R

+ → R
+. If the

cost of the solution is x , we obtain a utility value U(x). The goal is to find a solution S
which maximizes the expected utility E[U(μ(S))], where μ(S) is the (random) cost
of the solution S, i.e., μ(S) = ∑

e∈S μe.

Consider the utility function: U(x) = 1 for x ∈ [0, 1] and U(x) = 0 for x > 1.
It is easy to see that E[U(μ(S))] = Pr[μ(S) � 1]. Hence, maximizing the expected
utility is equivalent to maximizing the threshold probability. The expected utility is
known to be very versatile in expressing diverse risk-averse or risk-prone behaviors.
For example, we can use a increasing concave utility function to capture the risk-averse
behaviors. The theory was axiomatized by von Neumann and Morgenstern in 1940s
[84,85] (known as von Neumann– Morgenstern expected utility theory in economics
literature).

Li and Deshpande [7] first studied the expected utility maximization problem in
the context of stochastic combinatorial optimization. They considered general com-
binatorial constraints and utility functions. Specifically, they can handle the class of
combinatorial constraints, which admit pseudopolynomial time algorithms. Examples
include spanning tree, matching, simple path, matroid, knapsack. We can also obtain
Theorem 8.1 as a corollary.
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Their approach is very different. The high level idea is very simple.We first observe
that for the exponential utility function U(x) = αx for any α ∈ C , the problem
essentially reduces to a deterministic optimization problem. Indeed, fix an arbitrary
solution S and a number α. Due to the independence of the elements, we can see
that E[U(μ(S))] = E[αμ(S)] = E[α

∑
e∈S μe ] = E[∏e∈S αμe ] = ∏

e∈S E[αμe ].
Now, we consider a more general utility function U . For simplicity, we assume U is
essentially supported in a bounded interval. Then, for utility function U , we try to use
a short exponential sum to approximate U . More concretely, we want an exponential

sum C(x) = ∑L
i=1 ciΦ

x
i with L being a constant, which satisfies

∣∣∣U(x) − C(x)
∣∣∣ �

ε, ∀x � 0. If we can do so, instead of directly optimizing E[U(μ(S))], we can
optimize E[C(μ(S))], which can be done using dynamic programming. The remaining
thing is to approximate a function by a short exponential sum. In general, this is not
possible for an arbitrary function over the entire R. However, we only need to do it
for a bounded interval. Then, we can utilize a theorem by Jackson in approximation
theory combined with some other tricks to find such an approximation. See [7] for the
details.

For increasing concave utility functions, Bhalgat and Khanna [86] obtained the
first PTAS, if the exact version of the deterministic counterpart can be solved in
pseudopolynomial time. They proved a utility equivalence theorem and showed that
it suffices to enumerate only a polynomial number of “configurations.” In full version
of [7], the authors reproduced the same result for increasing concave utility functions
using the function approximation paradigm we just described.

8.7.2 Fixed-Set Stochastic Shortest Path

Nikolova et al. [11] studied the fixed-set stochastic shortest path for Gaussian,
Poisson and exponential distributions. For Gaussian distributed edges, it is easy to see
that the length of a path is also Gaussian distributed with the mean/variance being
the sum of the means/variances of individual edges. Now, we can view the problem
as a two-dimensional optimization problem, one for the mean, and the other for the
variance. Imagine the mean-variance plane. Each point in the plane correspond to the
(mean, variance) pair of a path. Consider the convex hull H of these points (they call
it the path polytope). It is not hard to show that maximizing the threshold probability
is equivalent to maximizing

(

1 −
∑

i∈S
E[μi ]

)/√∑

i∈S
Var[μi ],

which is quasi-convex on the path polytope. As a consequence, the quantity, thus the
threshold probability, is maximized at a vertex of the path polytope (under certain tech-
nical condition). The vertices of H can be enumerated in O(nlog n) time due to a result
in parametric shortest path by Carstensen [87]. Hence, by enumerating the vertices of
H , they obtained an exact O(nlog n) time algorithm formaximizing the probability that
the length of the path is at most 1, i.e., Pr(w(S) � 1), assuming all edges are normally
distributed and there is a path with its mean at most 1. Later, Nikolova [10] extended
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the result to an FPTAS for any problem under the same Gaussian assumptions, if the
deterministic version of the problem can be solved in polynomial time.

8.7.3 Fixed-Set Stochastic Knapsack

In the fixed-set stochastic knapsack problem, we are given a knapsack of capacity
1, and a set of items, each with a random size si and a deterministic profit vi , and an
overflow probability γ . We are asked to pick a subset S of items such that

Pr

(
∑

i∈S
si � 1

)

� γ

and the total profit
∑

i∈S vi is maximized.
Kleinberg et al. [82] first considered the fixed-set stochastic knapsack problemwith

Bernoulli-type distributions and provided a polynomial time O(log 1/γ ) approxima-
tion. For item sizes with exponential distributions, Goel and Indyk [88] provided a
bi-criterion PTAS, and for Bernoulli-distributed items they gave a quasi-polynomial
approximation scheme. Goyal and Ravi [89] showed a PTAS for Gaussian distributed
sizes. Bhalgat et al.[21] applied the discretization technique to both adaptive stochastic
knapsack and fixed-set stochastic knapsack. For the later, they provide a bi-criterion
PTAS: for any constant ε > 0, there is a polynomial time algorithm that can find a
solution Swith the profit as the least optimumand Pr(

∑
i∈S xi � 1+ε) � γ +ε. Using

the result for expected utilitymaximization, the same result can be also obtained by the
utility function approximation approach [7] or the Poisson approximation approach [8]
with somewhat simpler proofs and better running times.

For both fixed-set stochastic shortest path and fixed-set stochastic knapsack, the
current best approximations are bi-criterion additive PTASes. Sowe have the following
obvious open questions.

Open Question 3 S∗ is the optimal solution for the fixed-set stochastic shortest path
problem. For any ε > 0, whether there is a polynomial time approximation algorithm
that finds an s-t path S, such thatPr[μ(S) � 1] � Pr[μ(S∗) � 1] − ε.

Open Question 4 S∗ is the optimal solution for the fixed-set stochastic knapsack
problem. For any ε > 0, whether there is a polynomial time approximation algorithm
that finds a set of item S with the profit as the least optimum and Pr(

∑
i∈S xi � 1) �

γ + ε.

We finally note that a recent result by Daskalakis et al. [90] is closely related to the
above problems. Their problem can be stated in the following abstract form: Given a
random vector X generated by a known product distribution over {0, 1}n and a thresh-
old value 0 � θ � 1, output a non-negative vector w ∈ R

n with ‖w‖1 = 1, which
maximizes Pr[w · X � θ ]. They provided an additive PTAS under certain technical
condition. Their technique borrows ideas from the study of linear threshold func-
tions in complexity theory and makes use of the Berry–Esseen theorem (a quantitative
version of the central limit theorem). Removing their technical condition is also an
interesting open problem.
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9 Other Stochastic Models

9.1 Stochastic Universal Approximation

Supposewewant to distribute a file from the source s to a set T of nodes in a network
G. Ifwe know T , thenwe can just compute a Steiner tree connecting T∪{s}. Karger and
Minkoff [91] considered the maybecast problem which is another stochastic version
of the Steiner tree problem.

Problem 9.1 (Maybecast Problem) Each node i chooses to contact the source (we say
i is active) with probability pi independently. We need to fix a path Pi to s for each
node i . If the node i is active, all edges in Pi become active. Our goal is to minimize
the expected total number of active edges.16

Karger and Minkoff [91] showed that the shortest path tree heuristic can be very
bad (Ω(

√
n) factor worse than the optimum) and also obtained a constant factor

approximation algorithm for the problem by reducing the problem to the r -gathering
problem, which is a variant of facility location problem with capacity lower bound for
each open facility.

The maybecast problem is closely related to the notion of the universal approxi-
mation introduced in [92]. We take the universal Steiner tree problem for example. In
this problem, we still need to fix a path Pi to s for each node i . However, we do not
assume each node becomes active in a probabilistic manner. Instead, we take a worst
case (or robust approximation) perspective, by bounding the approximation ratio for
any subset of S. More precisely, we want to minimize

max
S⊆V

cost(∪i∈S Pi )
cost(OPT(S))

,

where OPT(S) is the optimal Steiner connecting S ∪ {s}. Since the line of research
does not involve any stochasticity, we do not go into the details and refer interested
readers to [92,93] and the references therein.

9.2 Secretary Problem

The secretary problem is a classical stochastic sequential decision problem, intro-
duced by Dynkin in 1960s [94]. The basic version is a very simple to state, yet the
result is stunning at first glance, which makes the problem quite popular even in
public media. Suppose we would like to hire the best secretary out of n applicants.
The applicants are interviewed one by one in random order. After the interview of
each applicant, a decision whether to hire the applicant must be made immediately
and irrevocably. During the interview, we know the rank of the applicant among all
applicants interviewed so far. The goal is to maximize the chance that we hire the

16 If we use multicast to distribute the file to all active nodes, the number of active edges is proportional
to the total transmission cost.
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best one. There is very simple strategy that can guarantee the probability is at least
1/e, irrespective of how large n is. It works as follows: It first interviews the first n/e
applicants without hiring any of them. Then, it hires the first one who is the best one
among the applicants interviewed so far. The ratio 1/e is tight for large n.

Kleinberg [95] studied a generalization of the problem, in which we want to select
k candidates and maximize their sum. He provided an algorithm that can achieve
a competitive ratio of 1 − O(

√
1/k), which is asymptotically optimal. Babaioff et

al. [96] studied a significant generalization, called the matroid secretrary problem, in
which the selected set must be an independent set in a given matroid. The problem has
attracted a lot of attentions (see e.g., [97–102]). For several special types of matroids,
constant approximations are known. However, for a general matroid, the current best
approximation is O(log log r) [99,101], where r is the rank of the given matroid.

Open Question 5 Is there a constant factor approximation algorithm for the matroid
secretary problem?

The secretary problem has important applications in mechanism design, and played
a similar role as the prophet inequalities we mentioned in Sect. 5.3. However, they
are very different from the technical perspective. For example, the aforementioned
matroid prophet inequality has a 2-approximation [55].

9.3 Stochastic Multi-Armed Bandit

Multi-armed bandit problems nowadays refer to many different variants which are
too large to survey. They are mostly sequential decision making problem featured
with an exploration and exploitation trade-off. The most basic version is the following
problem: We are given n arms. The i-th arm is associated with an unknown reward
distribution supported on [0, 1] with mean θi . If we pull the arm, we get an i.i.d.
sample from the distribution. There are T rounds. In each round, we can choose one
arm to pull. Our goal is to minimize the regret, which is defined to be the difference
between the total reward obtained by our algorithm over the T round, and the reward
we can obtain if we keep playing the best arm. For this basic problem and its numerous
extensions, we can obtain an o(T ) regret.17 Instead of playing one arm, we may play
a combinatorial set of arms in each round. This is the combinatorial bandit problem.
There are numerous other extensions and variations. We refer interested readers to
[103,104] for more comprehensive treatments.

9.3.1Markovian Bandit

Another extremely important class of stochastic multi-armed bandit problems we
have notmentioned yet is theMarkovian bandit problems.Here, the reward distribution
of each arm follows from a Markov chain. Suppose the chains and the transition

17 There are several variations of the definition of regret. For the basic version we mention here, we can
achieve an O(

√
T ) regret. For some other variant (such as pseudo-regret), it is possible to achieve better

guarantee (such as logarithmic regret).
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probabilities are known. Upon a play of an arm, the state of the arm changes according
to the transition probabilities of the corresponding Markov chain. We would like to
design an adaptive policy to play the arms and maximize the expected reward. A
celebrated result in this domain isGittins index [105] due to JohnGittins, who obtained
a polynomial time solution for maximizing the expected discounted reward. In fact,
Gittins’ solution is a very simple-looking greedy solution, which assigns each state
of the Markov chain a fixed number (the Gittins index), and always play the arm with
the current largest index. Several simpler proofs of the result are discovered later (see
e.g., [106]) and covered in several text books.Bertsimas andNiño-Mora [107] provided
a unified view of several problems that admit similar efficient greedy-like algorithms,
via the notion of extended polymatroid. However, many variants are PSPACE-hard,
shown by Papadimitriou and Tsitsiklis [108]. There is also a body of work studying
approximation algorithms with provable approximation factors for these problems.
See [23,109–112] and the references therein. In fact, some bandit models generalizes
the stochastic knapsack we considered in the beginning (see e.g., [23,112]).

9.3.2 Bandit-Arm Selection

Now, we briefly review some problems and results related to Problem 1.4 we intro-
duced in Sect. 1. Such problems are also called pure exploration multi-armed bandit
problems. The most basic version is the best arm identification problem, in which the
goal is to select the single best arm. Bechhofer [113] first formulated the problem
for Gaussian arms in 1954. There has been a resurgence of interest for the prob-
lem in the last decade [114–120]. Mannor and Tsitsiklis [120] showed that for any
algorithm that returns the correct answer with probability at least 1 − δ, it requires

Ω
(∑n

i=2 �−2
i ln δ−1

)
samples in expectation for any instance, where Δi is the dif-

ference between the mean of the best arm and that of the i th arm. Chen and Li [114]
obtained the current best upper bound

O

(

�−2
2 ln ln�−1

2 +
n∑

i=2

�−2
i ln δ−1 +

n∑

i=2

�−2
i ln ln min(n,�−1

i )

)

.

The above bound is worst-case optimal since there is a matching worst-case lower
bound for each of the three terms. In fact, the first term is nearly instance optimal18

(see [114] for the details), hence not improvable. The second term is instance optimal
due to the lower bound in [120]. Only the third term is worst-case optimal.

OpenQuestion 6Obtain a nearly instance optimal algorithm for the best arm identifi-
cation problem. We conjecture that the optimal bound is of the form �−2

2 ln ln�−1
2 +

L(I), where L(I) is an instance-wise lower bound.

The worst-case sample complexity in the Probably Approximately Correct (PAC)
setting is also well studied. In the PAC setting, the algorithm should return an arm

18 Instance optimality means that the upper and lower bounds match for every instance. Worst-case
optimality means that the upper and lower bounds match for an infinite class of instances.
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whose mean is at most ε worse than the optimal one with probability at least 1 − δ.
There is a matching (worst case) lower and upper bound Ω(n ln δ−1/ε2) [115,120].
The generalization to selecting the top-k arms has also been studied extensively for the
last few years (see e.g., [116,118,121–127]). Recently, Chen et al. [17] initiated the
study of the combinatorial pure exploration problem, which generalizes the cardinality
constraint to more general combinatorial constraints (e.g., matroid).

9.4 Clustering Stochastic Points

There are two popular models for stochastic points in a metric space. In the existen-
tial uncertainty model, each node v is presented at a fixed point with probability pv ,
which is independent of other point. In the locational uncertainty model, the location
of a node follows some given distribution. Cormode and McGregor [128] considered
the k-center clustering problem19 for the locational model in a finite metric graph, and
gave a bi-criterion constant approximation. The result was improved later to a true
constant factor approximation by Guha and Munagala [129]. Munteanu [130] stud-
ied the 1-center problem (a.k.a. the minimum enclosing ball problem) for stochastic
points in fixed dimensional Euclidean space and provided a PTAS. Recently, Huang et
al. [131] obtained a PTAS for the more general j-flat center problem (i.e., the center
is a j-flat, i.e., a j-dimensional affine subspace) for stochastic point, using an exten-
sion of the powerful geometric notation ε-kernel coreset, introduced by Agarwal et
al. [132], to the stochastic setting. In the (k, j)-projective clustering problem, we are
asked to choose k j-flat, such that the maximum distance for any point to its closest
j-flat is minimized. Extending the above results to other clustering problems (e.g., the
k-center problem R

d with k = O(1), d = O(1)) is an interesting future direction.

10 Concluding Remarks

Due to the limit of space and the authors’ knowledge, this survey is by no means
comprehensive. We apologize in advance for the omission of any important results.
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