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We show that the gravitational acceleration can be measured with the matter-wave Ramsey inter-
ferometry, by using a nitrogen-vacancy center coupled to a nano-mechanical resonator. We propose
two experimental methods to realize the Hamiltonian, by using either a cantilever resonator or a
trapped nanoparticle. The scheme is robust against the thermal noise, and could be realized at
the temperature much higher than the quantum regime one. The effects of decoherence on the
interferometry fringe visibility is caculated, including the mechanical motional decay and dephasing
of the nitrogen-vacancy center. In addition, we demonstrate that under the various sources of ran-
dom and systematic noises, our gravimeter can be made on-chip and achieving a high measurement
precision. Under experimental feasible parameters, the proposed gravimeter could achieve 10−10

relative precision.

I. INTRODUCTION

High quality nano(micro)-mechanical resonator is one
of the best testbed for fundamental physics [1], such
as the macroscopic quantum superpositions [2, 3], the
gravity induce wavefunction collapse [4], the boundary
between quantum and classical regimes [5, 6], and etc.
It is found that the large quantum superpositions of
the nano-mechanical resonator could be realized with
the help of cavity modes [7], superconducting circuits
[8, 9], nitrogen-vacancy centers [10–13], and etc. The
quantum-classical boundaries can be tested in these sys-
tems through matter-wave interferometry [8, 14, 15]. On
the other hand, the nano(micro)-mechanical resonator is
also widely used in precision measurement of masses [16],
torsion [17], forces and accelerations [18, 19], because of
its high mechanical Q.

As we know, the interferometry firstly appeared in op-
tics, which was used for prescise measurement. Later, the
matter-wave interferometry was realized with electrons
[20] and neutrons [21], then with larger particles such as
atoms [22, 23] and molecules [24]. Atom interferometry
has evolved from the demonstration of quantum super-
positions into instruments at the cutting edge of precise
measurement, including measurements of platform rota-
tion, the Molar-Planck constant, the fine structure con-
stant [25, 26] and the gravitational acceleration [27–30].
One of the motivations to replace the light with atoms
for interferometry is that the shorter atomic de Broglie
wavelength could make the measured phase shift much
more accurate. Therefore it is natural to anticipate that
the interferometers with macroscopic object, such as the
nano-mechanical resonators, could greatly increase the
measurement precision of the phase shift.

In this paper, we propose a scheme to realize the
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high-precision gravimeter with a nano-mechanical res-
onator hybrid with a nitrogen-vacancy center by using
matter-wave interferometry. We give a physically intu-
itive derivation of the interferometer phase shift. With
the state-of-the-art technologies, we estimate the phase
shift to be 3 orders of magnitude larger than those us-
ing atom interferometry [24, 26, 27]. We briefly analyze
random and systematic noise and find that the relative
measurement precision 10−10 for gravitational accelera-
tion is achievable. Besides, our scheme is solid based and
on-chip. Unlike the gravimeter based on atomic interfer-
ometry, here neither the complex lasers nor the big vibra-
tion isolation system is required. Therefore, our scheme
is suitable for portable gravimeters with a high precision.

II. THE SCHEME

We consider a nano-mechanical resonator hybrid with
a nitrogen-vacancy (NV) center through magnetic field
gradient induced coupling. There are two different se-
tups. The first one, as shown in Fig.1(a), consists of
a nanoscale diamond bead containing a NV center lev-
itated by an optical tweezer in ultrahigh vacuum [31–
34]. A magnetic tip nearby induces a large magnetic
field gradient, and couples the NV center with the center
of mass (CoM) motion of the nano-diamond. The other
setup uses a cantilever resonator [10, 35–39]. As shown
in Fig.1(b), a magnetic tip attached to the cantilever is
used to couple the mechanical mode to an NV center em-
bedded in bulk diamond bellow the cantilever. In both
setups, the mechanical motion can be described by the
same Hamiltonian (1), as we will discuss bellow. In both
cases, the gravity induced dynamical phase is measured
through a Ramsey scheme similar to atom interferometry
[27, 40–42]. We will analyze the phase shift of an oscilla-
tor in the gravitational field coupled to a solid spin, then
this phase shift is revealed by Ramsey interferometry to
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measure the gravitational acceleration.
As an example, we analyze the optically levitated

nano-diamond scheme in detail. The motion of the nano-
diamond in the harmonic potential of the tweezer is cou-
pled to the S = 1 spin of the NV center by a magnetic
field gradient Bg = ∂B/∂z oriented along the z direction,
which can be generated by a magnetic tip. We assume
the trapping frequencies satisfy ωx, ωy � ωz. There-
fore the effects of motion on x and y dirctions are ne-
glected. Then the whole system Hamiltonian, including
the Earth’s gravitational field effects, reads [12]

H = ~DS2
z + ~ωzc†c− 2(λSz −∆λ)(c+ c†), (1)

where D = 2.88 GHz, λ = gNV µBBg
√
~/2mωz and

∆λ = 1
2mg

√
~/2mωz. The Hamiltonian (1) represents

a harmonic oscillator whose CoM motion depends on the
eigenvalue of Sz. We denote the eigenstates with eigen-
value Sz = −1, 0, 1 as | − 1〉, |0〉, and |+ 1〉, respectively.
For each state we can calculate the evolution of the oscil-
lator. Here we use the Feynman path integral approach
[43], following the discussions in Ref. [44] on atomic in-
terferometry.

(a)

|+1〉

|-1〉

∂B

∂z

mg

z
(b)

FIG. 1. (a) An optical trap holds a nano-diamond with a
build-in NV center with both the weakest confinement and
the electron spin quantization along the z axis. A magnetic
gradient along the z axis produces spin-dependent shifts to
the center of the harmonic well. The z axis is oriented along
the vertical gravitational acceleration by tuning the control
system. The CoM of the nano-diamond oscillates around the
two balanced points z±, accumulating a relative gravitational
phase difference ∆φ. At t0 = 2π/ωz this phase can be read
from spin population. (b) A scheme to strongly couple an
NV center with a cantilever. The NV center is embedded
in bulk diamond lattice. A magnetic tip is attached to the
cantilever, which provides the magnetic gradient. This setup
can fulfill our requirement of large magnetic field gradient
and long dephasing time T2, thus can significantly improve
gravitational measurement precision.

The phase diagram of Ramsey interferometry based
on π/2 − π/2 pulse sequence is shown in Fig. 2. We as-
sume that the NV center is initialized to state |0〉, and
CoM motion of the nano-diamond is cooling down to
mK or lower. In the first step, we apply a microwave
pulse corresponding to the effective interaction Hamilto-
nian Hmw = ~Ω(|+1〉〈0|+ |−1〉〈0|+H.c.), where Ω is the
Rabi frequency. In the limit that Ω is much larger than

any other coupling strength in Eq. (1), we can neglect
any other interactions when applying the pulse. With
the pulse duration tp = π/(2

√
2Ω), the NV center elec-

tron spin state becomes (| + 1〉 + | − 1〉)/
√

2, which is a
superposition of |+ 1〉 and | − 1〉 with equal amplitudes.
The two states experience a different force due to the
spin-dependent coupling term 2λSz(c + c†), which leads
to an additional spin-dependent acceleration

g± = ±gNV µB
2m

Bg. (2)

The equilibrium position of the two states is then de-
termined by z± = z0 ± ∆z as shown in Fig.2, where
z0 = g/ω2

z and the displacement

∆z = |g±|/ω2
z . (3)

So after the π/2 pulse the two states will oscillate around
their equilibrium points z± and the two paths will re-
combine after an oscillation period t0 = 2π/ωz. The spin
states after the oscillation period is (|+ 1〉+ ei∆φ| − 1〉).
The phase shift between the two paths due to propaga-
tion can be calculated by their classical actions

∆φ = S[z+(t), t0, g+]− S[z−(t), t0, g−], (4)

with S[z(t), t0, g] denotes the action over the classical
path z(t) of a spring oscillating for one period in the
gravitational field. The classical action is given by

S[z(t), t0, g] =

∫ t0

0

L(z, ż)dt,

L(z, ż) =
1

2
(mż2 − ω2

zz
2) +mgz.

(5)

Evaluating the integral over the classical path of the os-
cillator, where the paths of two spin states

z±(t) = ±∆z(1− cos(ωt)) + z0, (6)

we get the phase shift

∆φ =
16λ∆λ

~2ωz
t0 =

gNV µB
π2~

Bggt
3
0. (7)

To reveal ∆φ we apply another π/2 pulse Hmw = ~Ω(|+
1〉〈0|+ eiφ| − 1〉〈0|) + H.c. with a relative phase φ. After
time tp, the population of the spin state with Sz = 0
becomes

P0(t = t0 + tp) = cos2
(∆φ+ φ

2

)
, (8)

which depends on both the phase shift ∆φ and relative
phase φ in the second π/2 pule. The relative phase φ is
scanned to reveal the interference fringes. In this way,
the gravity induced the phase offset ∆φ can be precisely
measured, leading to precision measurement of the gravi-
tational acceleration g. The above discussion is still valid
when the nano-mechanical resonator is in thermal state
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T

FIG. 2. Phase space diagram of the matter wave interfer-
ometer based on π/2 - π/2 pulse sequence. The nano-object
can either be in the internal NV spin state | + 1〉 (blue) of
| − 1〉 (orange). The lines represent the classical trajectories
originating from one of the space-time points comprising the
initial wave packet.

[12]. Therefore we conclude that the interference is im-
mune to thermal motion.

We now discuss the parameters necessary to obtain
a high precision gravitational acceleration measurement.
Specifically, we need to obtain a large relative phase
shift which is proportional to gravitational acceleration.
From Eq.(7), by setting a large magnetic gradient Bg =
106T/m and the oscillating period t0 = 2 ms . T1 com-
parable to relaxation time of the NV, we can obtain a
phase shift ∆φ = 1.4× 109 which is three orders of mag-
nitude larger than phase shift in cold atom experiment
∆φ = 3.8× 106 [27] and lead to a raise in precision by
three orders of magnitude, if the errors in phase measure-
ment is comparable.

Why our gravimeter based on nano-mechanical matter-
wave interferometry is orders of magnitude preciser than
the cold atom interferometry gravimeter? For a diamond
sphere with radius R ∼ 200 nm, considering the den-
sity 3000 kg/cm3 for diamond, the corresponding mass
is m ∼ 1× 10−16kg, which is 1010 times massive than
sodium atoms, and the oscillating amplitude ∼ 50 nm.
The cantilever nano-mechanical resonator is at least 1016

times massive than sodium atoms frequently used in
interferometry with much smaller oscillating amplitude
∆z. Therefore, our device can be made on chip, and
much smaller than atom interferometry based gravime-
ter. Rewriting phase shift Eq.(7) using Eq.(3)

∆φ =
16πmg∆z

~ωz
, (9)

we can see that a large mass leads to a large phase shift
within the small range of the interferometer (∼ ∆z).

Here we discuss the features of the two proposals. For
the cantilever scheme, the magnetic tip can approach the
NV center < 100 nm and induce a magnetic field gradi-
ent ∼ 1× 107T/m. The dephasing time of the NV in

bulk diamond is exceptional ∼ 2 ms, therefore the main
decoherence effect is the mechanical damping. Recently,
high Q ∼ 8× 108 nanomechnical resonators using elastic
strain engineering [45] has been realized in experiment,
leading to low thermal decoherence rate kBT/~Q exceeds
one oscillation periods.

For the trapped nanoparticle scheme, the coherence
time of NV center can be prolonged to the limit of T1

by decoherence decoupling techniques. In our proposal,
no transition between | ± 1〉 is needed during the prop-
agation, therefore it is convenient to use a continuous
dynamical decoupling which prolong the quantum mem-
ory to T2 ∼ 2 ms. For example, we can use the time-
dependent detuning method described in [46]. Consid-
ering only the states | ± 1〉 during the propagation, the
two-level system with an ambient magnetic field noise
δB(t) is described by

H =
ω0

2
σz + δB(t)σz. (10)

To compensate for this noise, which causes dephasing,
we use a single continuous dynamical decoupling driving
field

HDD = [Ω1 + δΩ1(t)]σx cos(ω0t+ φ(t)), (11)

with Rabi frequency Ω1 � ω0 and Rabi frequency fluc-
tuation δΩ1(t). The time-dependent detuning

φ(t) = 2Ω2/Ω1 sin Ω1t (12)

with Ω2 � Ω1. By carefully tuning the parameters, this
dynamical decoupling scheme can prolong the coherence
time to T2 ∼ 2 ms.

As we can see from the above discussion, each of
the two methods has its own advantages. The opti-
cally trapped nanoparticle has ultra-high quality factor
Q ∼ 1012, and its trapping frequency can be tuned to
optimize the phase shift. Becouse of its high Q, the
proposed scheme could be performed even under room
temperature. The cantilever setup does not require a
laser system to cool or trap the oscillator. Besides,
since the coupled NV is embedded in bulk solid, the de-
phasing time T2 is significantly longer than the one in
nano-diamond. Therefore, the precision of the gravime-
ter could be greatly enhanced, compared with the other
setup.

We have ignored various noise effects in the above es-
timation of phase shift. In the following section, we show
that how to optimize the phase shift after considering
random and systematic noises.

III. NOISE ESTIMATION

A. Fringe visibility and random noise

The decoherence effect will reduce fringe visibility,
leading to increase in amplitude noise terms (shot noise
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and detection noise). Here we explore two main decoher-
ence effects: (1) motional decay of the optomechanical
system; (2) dephasing of the NV center.

In the trapped particle scheme, the motional decay is
associated with photon scattering from the trapping laser
and heating due to random momentum kick with resid-
ual gas particles [2, 3, 47]. The background gas collision
leads to heating with a damping rate γg/2 = (8π)(P/vrρ)
[2], where ρ is the material density, P and v are the
background gas pressure and mean speed, respectively.
For a sphere of radius R = 200 nm, ωz = 2π × 0.5 kHz
and a room-temperature gas with P = 1× 10−9Torr,
the damping rate γg/ωz ∼ 4× 10−10. We define γsc as
the photon scattering induced decay rate. For the dia-
monds with permittivity ε = 1.5, radius R = 200 nm and
trapping wavelength λ0 ∼ 10 µm (CO2 laser), we have
γsc/ωz = (16π3/15)[(ε − 1)/(ε + 2)]R3/λ3

0 ' 3.8× 10−5

[2], which is much larger than γg. Therefore the main
motional decoherence comes from photon scattering with
the maximum decoherence rate Γ = γsc|2λ/~ωz|2. With
parameters in the previous section, λ/~ωz ' 90, we have
Γ/ωz = 0.3 less than 1. To further reduce the scattering
noise, we could lower the maximum separation λ/~ωz by
either reducing the magnetic gradient or increasing trap
frequency. It is also possible to use other trap, e.g. ion
trap [48, 49], where no photon scattering noise exists.

The other detrimental effect on the trapped nano-
diamond scheme is due to the dephasing of the NV center.
The noise is induced by magnetic field fluctuation of the
diamond lattice and coupling to torsional motion [50].
Both effect can be suppressed by the dynamical decou-
pling scheme [46] which prolong the quantum memory to
T2 ∼ 2 ms. For t0 ∼ T2, the fringe contrast is reduced to
1/e ∼ 0.36.

In the cantilever scheme, the decoherence effect can
be significantly reduced. The effect of motional de-
cay of the mechanical oscillator can be estimated by
the damping rate γsc/ωz = 1/Q ∼ 1× 10−8 [45],
and the maximum decoherence in one oscillation period
γsc|2λ/~ωz|22π/ωz ∼ 0.001, which can be ignored. When
the oscillator is cooled to sub-millikelvin temperature
[10, 51, 52], the Brownian motion amplitude ∼ 7 nm is
much smaller than the maximum separation between the
spin up and down states, thus the motional decay caused
by thermal motion is negligible. The pure dephasing time
of the NV center in bulk diamond could be ∼ 10 ms,
which is much longer than the one in the trapped nano-
diamond.

The visibility due to mechanical motion decoherence
and dephasing under different mechanical quality factor
Q = ωz/γsc and the pure dephasing time T2 is plotted in
Fig. 3, where ωz = 2π × 0.5 kHz and λ/~ωz ' 90. Here
we use a simple formula exp(− 2π

Q |2λ/~ω|
2) exp(−t0/T2)

to estimate the visibility. To retain a large visibility, the
quality factor Q should be larger than 1× 105 and the
dephasing time T2 should be longer than 2 ms.

The Ramsey fringe visibility is directly related to the
signal-to-noise ratio, and will appear in the amplitude
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T2/ms
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0.8

FIG. 3. The visibility due to mechanical motion decoherence
and dephasing under different mechanical quality factor Q =
ωz/γsc and the pure dephasing time T2, where ωz = 2π ×
0.5 kHz and λ/~ωz ' 90. The CoM motion temperature of
the oscillator is cooled to T = 0.1 mK by feedback cooling,
therefore the heating effect can be ignored.

noise terms. To reduce the shot noise limit to the mea-
surement precision ∆g/g below 1× 10−10, we need at
least 1× 105 data points for each measurement. For the
atom interferometry, there are N ∼ 1× 106 atoms in the
atom fountain simultaneously contribute to the signal.
As for our scheme, we should fabricate M mechanical
resonators with the same frequency on-chip, which can
perform the measurement at the same time. With the
measurement repeating frequency 1 kHz and M = 100,
we can achieve the precision goal within 2 s. We note
that modern technology makes it possible to fabricate
such solid-based gravimeter on chip.

We assume that the phase shift can be measured with
precision 10 mrad, comparable to atom interferometry.
Based on Eq.(7), we can plot the precision of our gravime-
ter under different experiment parameters, as shown in
Fig. 4. In order to retain a high fringe visibility, the
choice of parameters is limited to the region below the
red line. This is because under the external magnetic
gradient, the thermal motion of the oscillator leads to a
magnetic field fluctuation for the NV center and the de-
phasing of the NV center electron spin. The fluctuation
in magnetic field can be estimated by the root-mean-
square of the mechanical motion times the magnetic gra-
dient, which reads

∆ = Bg

√
kBT

mω2
z

(13)

If the condition ∆ � Ω1 fulfills, the extra dephasing
can be suppressed by dynamical decoupling drive with
Eq.11. This condition limit our choice of the parameters.
We assume that the center of mass motion temperature
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of the trapped nano-diamond is cooled to T = 0.1 mK
by feedback cooling, and the mass of the nanoparticle
is m = 1× 10−16kg. For typical Rabi frequency Ω1 .
100 MHz, we require the magnetic field fluctuation to be
∆ < 10 MHz, which corresponds to the region below the
red line in Fig.4. If the CoM temperature could be cooled
to T < 1 µK, e.g. by cold atom [53], the measurement
precision would be further improved by one to two orders
of magnitudes.

0.1 0.2 0.5 1 2
1×105

2×105

5×105

1×106

2×106

t0/ms

∂
B
/∂
z
(T
/m

)

lg(Δg
g
)

-11

-10

-9

-8

-7

FIG. 4. Precision of the gravity acceleration measurement
under different magnetic field gradient Bg and oscillation pe-
riod t0. We chose t ≤ 2 ms and assume the visibility are high
enough by choosing the parameters to be in the upper right
region in Fig.3. We take the accuracy of the phase shift to
be 10 mrad in the estimation. In addition, we require the
magnetic field fluctuation to be ∆ < 10 MHz, which corre-
sponds to the region below the red line. Within the region,
up to 1× 10−10 relative precision can be achieved at the lower
right corner.

B. Systematic noise

Thanks to the short matter-wave wave length of both
the nanoparticle and cantilever, our scheme has the ad-
vantage of on-chip compared with the atomic gravimeter.
Therefore, the laser system, vibration isolator and other
auxiliary devices shoulde be relatively easy to reach a
high precision. We assume that in our setup the system-
atic error is of the same order of magnitude as the one in
atom interferometry method. The resulting interferom-
eter is accurate enough to allow phase shifts 10 mrad to
be detected, leading to a value of g accurate to one part
in 1× 1010 in our method.

The second order magnetic field gradient induces extra
systematic error. The additional term in Lagrangian is

± 1
2gNV µB

∂2B
∂z2 z

2, which is different for spin up and down.
We can treat it as a shift in trapping frequency ∆ω±/ω =

± 1
8mgNV µB

∂2B
∂z2 . The frequency error contribute to the

measured gravitational acceleration ∆g
g ∼

∆ω
ω . By this

relation, we get the maximum second derivative of the

magnetic field ∂2B
∂z2 . 1.7× 105T/m2 for ∆g

g = 1× 10−10.

In the case of cantilever oscillator, we can embed another
magnetic tip under the NV in the bulk diamond to reduce
∂2B
∂z2 . For trapped nanoparticle scheme, we can eliminate
this effect by simultaneously rotating the trapping di-
rection 180◦ and apply a microwave π-pulse to flip the
spin states after one evolution period t0 and measure the
phase shift at time 2t0. Because the trapping axis is
rotated, the phase shift of the two evolution period ac-
cumulates, while the second order magnetic field induced
phases will be cancelled out.

Other systematic noise includes magnetic field drift,
perturbative terms related to ωx, ωy, anharmonic ef-
fects of the trapping potential, random orientation and
Doppler effect. The magnetic field drift in a timescale
of hours is much larger than the system evolution time
of 1 ms. So in principle, the magnetic gradient can be
determined with relative accuracy e−t/tdrift ∼ 1× 108

or higher if we consider its time dependence. Pertur-
bative analysis shows that for ωx = ωy = 10ωz, the fi-
delity of the evolution stays above 99% even when the
initial state is thermal with an average thermal occu-
pation number is up to 600 [54]. The anharmonic ef-
fects of the trapping potential will be avoided by feed-
back cooling of our oscillator to sub-millikelvin tempera-
tures. The random orientation effect can be corrected by
methods shown in [46]. The Doppler effect may appear
in the spin preparation when the nanoparticle is oscil-
lating in the trap. The corresponding frequency error
could be estimated by δf = f0v/c = f0∆zωz/c, where
∆z is the oscillation amplitude, f0 = 2.88 GHz is the
microwave frequency in use, and c is the speed of light.
With δz ≈ 100 nm and ωz ≈ 2π × 1 kHz, we eventu-
ally have δf ≈ 6× 10−3Hz, which is much smaller than
the typical linewidth of an NV center of ∼ 10 MHz. For
a thermal state of the CoM, with a temperature cooled
to about 1 mK in the trap, the root-mean-square veloc-
ity is about v1 =

√
2kT/m ∼ 0.002 m/s. Therefore the

Doppler shift would not be a concern in our scheme.

IV. CONCLUSION

In conclusion, we have proposed a solid-base on-chip
gravimeter which makes use of the matter-waver interfer-
ence of a mechanical resonator to significantly increase
the precision. We have proposed two equivalent schemes
to couple an NV center to a mechanincal oscillator in
gravitational field. In order to measure the gravitational
acceleration, we have proposed the method to achieve
Ramsey interferometry in this system, where the infer-
ence pattern is depend on the gravitional induced phase
shift. Under the experimental feasible parameters, we
found that the phase shift is three order of magnitudes
greater than the atomic interferometry method. We then
analyze the noise effects, including motional decay of the
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oscillator and the dephasing of the NV center, on the
precision of the gravimeter. It is found that the relative
precision 10−10 is possible under the current experimen-
tal conditions. Finally, we have analyzed the effect of
the second derivative of the magnetic field and provided
methods to compensate it.
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