
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014 125

Privacy-Preserving Authenticated
Key-Exchange Over Internet

Andrew Chi-Chih Yao and Yunlei Zhao

Abstract— Key-exchange, in particular Diffie–Hellman key-
exchange (DHKE), is among the core cryptographic mecha-
nisms for ensuring network security. For key-exchange over the
Internet, both security and privacy are desired. In this paper,
we develop a family of privacy-preserving authenticated DHKE
protocols named deniable Internet key-exchange (DIKE), both
in the traditional PKI setting and in the identity-based setting.
The newly developed DIKE protocols are of conceptual clarity
and practical (online) efficiency. They provide useful privacy
protection to both protocol participants, and add novelty and
new value to the IKE standard. To the best of our knowledge, our
protocols are the first provably secure DHKE protocols that addi-
tionally enjoy all the following privacy protection advantages:
1) forward deniability, actually concurrent non-malleable statis-
tical zero-knowledge, for both protocol participants simultane-
ously; 2) the session transcript and session-key can be generated
merely from DH-exponents (together with some public values),
which thus cannot be traced to the pair of protocol participants;
and 3) exchanged messages do not bear peer’s identity, and do
not explicitly bear player role information.

Index Terms— Authentication, Diffie–Hellman, key exchange,
security, privacy, deniability, restricted random oracle.

I. INTRODUCTION

THE Internet Key-Exchange (IKE) protocols [27], [29]
are the core cryptographic protocols to ensure Internet

security, which specify key exchange mechanisms used to
establish shared keys for use in the Internet Protocol Secu-
rity (IPsec) standards [30]. The IPsec and IKE are intended
to protect messages communicated in the IP layer, i.e.,
“layer 3” of ISO-OSI, which process the transmission of mes-
sages using the network addresses possibly without knowing
end-user peers’ identities. The IKE and IPsec can in turn be
used to offer confidentiality, authentication and privacy for
communication protocols in the higher layers of ISO-OSI.

Manuscript received December 4, 2012; revised May 31, 2013; accepted
November 9, 2013. Date of publication December 3, 2013; date of cur-
rent version December 23, 2013. This work was supported in part by the
National Basic Research Program of China (973 Program) under Grants
2007CB807900, 2007CB807901, and 2014CB340600, in part by the National
Natural Science Foundation of China under Grants 61033001, 61061130540,
61070248, 61332019, and 61272012, in part by the Innovation Project of
Shanghai Municipal Education Commission under Grant 12ZZ013, and in
part by the Joint Project of SKLOLS. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. C.-C.
Jay Kuo. (Corresponding author: Y. Zhao.)

A. C.-C. Yao is with the Institute for Interdisciplinary Information
Sciences, Tsinghua University, Beijing 100084, China (e-mail: andrewcyao@
tsinghua.edu.cn).

Y. Zhao is with the Software School, Fudan University, Shanghai 200433,
China, and also with Key Laboratory of Aerospace Information Security
and Trusted Computing, Ministry of Education (Wuhan University) and
State Key Laboratory of Information Security (Beijing), China (e-mail:
ylzhao@fudan.edu.cn).

Digital Object Identifier 10.1109/TIFS.2013.2293457

The standard of IKE has gone through two generations.
The first generation IKEv1 [27] uses public-key encryption as
the authentication mechanism. The second generation IKEv2
[29] uses signatures as the authentication mechanism, with the
SIGMA protocol [31] serving as the basis.

The IKEv2 protocol is based on DHKE [20], and works in
the “post-specified peer” setting [29], where the information of
who the other party is does not necessarily exist at the session
initiation stage and is learnt by the party only after the protocol
run evolves (even just in the last round). Actually, this is quite
a common case for KE protocols in practice, particularly for
the purpose of preserving players’ privacy. For example, the
key-exchange session may take place with any one of a set
of servers sitting behind a (url/ip) address specified in the
session activation; Or, a party may respond to a request (for a
KE session) coming from a peer that is not willing to reveal
its identity over the network and, sometimes, even not to
the responder before the latter has authenticated itself (e.g.,
a roaming mobile user connecting from a temporary address,
or a smart-card that authenticates the legitimacy of the card-
reader before disclosing its own identity) [13].

For key-exchange protocols, both security and privacy are
desired. Actually, providing a certain level of privacy protec-
tion serves as one of the major criteria underlying the evolution
of a list of important industrial standards of KE protocols,
which is particularly witnessed by the evolution of IKE [29]
that is based on the SIGMA protocol [31]. Among privacy
concerns, deniability is an essential privacy property, and has
always been a central concern in personal and business com-
munications, with off-the-record communication serving as an
essential social and political tool [18], [19], [21], [23], [39].
Given that many of these interactions now happen over digital
media (email, instant messaging, web transactions, virtual
private networks), it is of critical importance to provide these
communications with “off-the-record” or deniability capability
to protocol participants.

Traditional deniability only considers the privacy of the
honest prover against a possibly malicious verifier, and
requires that the interactions between them be computationally
simulatable, i.e., computational zero-knowledge (ZK) [25].
That is, given a session transcript, the malicious verifier
cannot prove that the honest prover was ever involved in the
conversation. However, as clarified by Di Raimondo et al.
in [18], there are scenarios in which deniability is actually
a concern to the receiver’s privacy as well. What we would
like to happen is that if the prover acts honestly during the
protocol, it also should not be able at a later stage to claim
the messages are authentic in order to violate the privacy of the

1556-6013 © 2013 IEEE

126 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

verifier. This property is called forward deniability, as it has
some affinity to the notion of forward secrecy. It is shown
in [18] that computational ZK does not guarantee forward
deniability, but statistical ZK does.

Whenever deniability of messages is desired, in general, we
can just run a deniable authentication protocol [23] for each
message to be sent. However, the beauty of using deniable
key-exchange is that if the key-exchange protocol is deniable,
then all the transactions (of public messages) using the session-
key produced by the key-exchange protocol can be deniable
for both the protocol participants. Moreover, for the IKE
protocol that is the core cryptographic protocol to ensure
Internet security, offering deniability by IKE running at the IP
layer within the IPsec standard [30] is much more desirable,
because it enables various privacy services to be offered at the
higher layers with uncompromised quality. Note that a privacy
problem at the IP layer can cause irreparable privacy damage at
the application layer. For example, an identity connected to an
IP address, if not deniable, certainly nullifies an anonymous
property offered by a fancy cryptographic protocol running
at the application level. (If deniability is not desired, for
some cases, then a non-repudiable proof, e.g., a signature, can
always be issued at the application level.)

Despite its seemingly conceptual simplicity, designing
“sound” and “right” key-exchange protocols turns out to be
extremely error prone and can be notoriously subtle. Also, the
analysis of even a simple cryptographic protocol in intricate
adversarial settings like the Internet can be a luxury and
dauntingly complex task [10], [32]. The reader is referred to
the comprehensive book by Boyd and Mathuria [7] for a good
survey about key-exchange protocol constructions and various
attacks. The reason for this is the high system complexity and
enormous number of subtleties in protocol design and analysis
(surrounding the various trade-off among security, privacy and
protocol efficiency).

A. Our Contributions

In this work, develop a family of privacy-preserving (par-
ticularly, deniable) authenticated DHKE protocols, named
deniable Internet key-exchange (DIKE), in the traditional PKI
setting and in the identity-based setting. The newly developed
DIKE protocols are of conceptual clarity, practical (online)
efficiency, provide useful privacy protection to both protocol
participants, and add novelty and new value to the IKE
standard [27], [29] and the SIGMA protocol [31].

The security of DIKE is analyzed in accordance with
the Canetti-Krawczyk framework (CK-framework) [12] with
post-specified peers in the random oracle (RO) model. We
also make discussions on a list of concrete yet essential
security properties of DIKE, most of which are beyond the
CK-framework. We then define CNMSZK for DHKE , along
with detailed clarifications and justifications. To our knowl-
edge, our formulation of CNMSZK for DHKE stand for the
strongest definition of deniability, to date, for key-exchange
protocols. The CNMSZK property of our protocols is analyzed
in the restricted random oracle model [45], under an exten-
sion of the knowledge-of-exponent assumption [17] named

concurrent knowledge-of-exponent (CKEA) that might be of
independent interest.

II. PRELIMINARIES

If A is a probabilistic algorithm, then A(x1, x2, · · · ; ρ) is
the result of running A on inputs x1, x2, · · · and coins ρ. We let
y ← A(x1, x2, · · · ; ρ) denote the experiment of picking ρ at
random and letting y be A(x1, x2, · · · ; ρ). If S is a finite set
then |S| is its cardinality, and (x1, · · · , xν)← S, ν ≥ 1, is the
operation of picking ν elements uniformly and independently
from S (that is, each value xi , 1 ≤ i ≤ ν, is taken uniformly
and independently from the set S). If α is neither an algorithm
nor a set then x ← α is a simple assignment statement. By
Pr[E : R1; · · · ; Rn] we denote the probability of event E ,
after the ordered execution of random processes R1, · · · , Rn .
A string means a binary one, and for arbitrary strings e1 and
e2, e1||e2 denotes the concatenation of e1 and e2. For any
hash function H , we usually write H (x1||x2|| · · · ||xk) simply
as H (x1, x2, · · · , xk).

Let G′ be a finite Abelian group of order N , and G = 〈g〉
be a unique subgroup of G′, generated by the generator
g, of prime order q . Denote Zq = {0, 1, · · · , q − 1} and
Z∗q = {1, 2, · · · , q − 1}. Denote by 1G the identity element of
G′ and by G \1G = G−{1G} the set of elements of G except
1G . In the specification of this paper, w.l.o.g., we assume G′
is the multiplicative group Z∗p of order N = p− 1 for a large
prime p, and G is the unique subgroup of order q for some
prime divisor q of N = p − 1. Typically, the length of q ,
denoted |q| = k (usually presented in unary as 1k), is treated
as the security parameter. The value t = (p − 1)/q is called
the cofactor. The specification can be trivially applicable to the
groups based on elliptic curves. In elliptic curve systems, G′ is
the group of points E(L) on an elliptic curve E defined over
a finite field L, and G is a subgroup of E(L) of prime order
q . For elliptic curve based groups, the cofactor t is typically
very small.

Definition 2.1: Letting G be a cyclic group of prime order
q generated by an element g, for two elements X = gx , Y =
gy in G, where x, y ∈ Zq , we denote by C DH (X, Y) =
gxy mod q mod p (the mod operation is usually omitted for
presentation simplicity). An algorithm is called a CDH solver
for G if it takes as input any elements (X, Y) ∈ G2 (and
also the system parameters p, g, q) and its goal is to output
the value of C DH (X, Y). We say the computational Diffie-
Hellman (CDH) assumption holds in G if for any probabilistic
polynomial-time (PPT) CDH solver, the probability that on any
pair of random elements (X = gx , Y = gy)← G2 (i.e., each
of x and y is taken uniformly at random from Zq), the solver
computes the correct value C DG(X, Y) is negligible (in k).
The probability is taken over the random coins of the solver,
and the choice of X, Y uniformly at random in G (and also
the random choice of the system parameters (p, g, q)). �

The gap DH assumption (GDH) [41] essentially says that
in the group G, computing C DH (X, Y), for (X, Y) ← G2,
is strictly harder than deciding if Z = C DH (U, V) for an
arbitrary triple (U, V , Z) ∈ G3.

Definition 2.2: (Gap Diffie-Hellman (GDH) Assumption
[41]): Let G be a cyclic group generated by an element g

YAO AND ZHAO: PRIVACY-PRESERVING AUTHENTICATED KEY-EXCHANGE OVER INTERNET 127

Fig. 1. Deniable Internet key-exchange (the main mode).

of order q , and a decision predicate algorithm O be a (full)
Decisional Diffie-Hellman (DDH) Oracle for the group G
and generator g such that on input (U, V , Z), for arbitrary
(U, V) ∈ G2, oracle O outputs 1 if and only if Z =
C DH (U, V). We say the GDH assumption holds in G if for
any PPT CDH solver for G, the probability that on a pair
of random elements (X, Y) ← G2 the solver computes the
correct value C DH (X, Y) is negligible (in k), even when the
algorithm is provided with the (full) DDH-oracle O. �

III. DIKE IMPLEMENTATION AND

ADVANTAGEOUS FEATURES

Let (A = ga, a) (resp., (X = gx , x)) be the public-key
and secret-key (resp., the DH-component and DH-exponent)
of the initiator Â, and (B = gb, b) (resp., (Y = gy, y)) be the
public-key and secret-key (resp., the DH-component and DH-
exponent) of the responder player B̂, where a, x, b, y are taken
randomly and independently from Z∗q . Let H, HK : {0, 1}∗ →
{0, 1}|q| be hash functions, which are modeled as random
oracles in security analysis. Here, for presentation simplicity,
we have assumed H, HK are of the same output length. In
practice, they may be of different output lengths.

The deniable Internet key-exchange protocol, for the main
mode of IKEv2 [27], [29], [30], is depicted in Figure 1
(page 127), where C E RTÂ (resp., C E RTB̂) is the public-key
certificate of Â (resp., B̂) issued by some trusted Certificate
Authority (CA) within the underlying public-key infrastruc-
ture, and sid is the session-identifier that is assumed to be set
by some “higher layer” protocol that “calls” the KE protocol
and ensures no two sessions run at a party are of identical
session-identifier [13]. Throughout this work, we assume no
proof-of-knowledge/possession (POK/POP) of secret-key is
mandated during public-key registration, but the CA will
check the non-identity sub-group (i.e., G \ 1G) membership
of registered public-keys. Also, each party checks the G \ 1G

membership of the DH-component from its peer.

A. Some Advantageous Features of DIKE

The DIKE protocol enjoys remarkable privacy protection
for both protocol participants. Note that all the authentic mes-
sages, P O K (B̂, y) and N M Z K (b, y) (resp., N M Z K (a, x)),

from B̂ (resp., Â) can be computed merely from its peer’s
DH-exponent x (resp., y) and one’s own public messages.
Furthermore, one party sends the authentic messages involving
its secret-key only after being convinced that its peer does
“know” the corresponding DH-exponent. This ensures deni-
ability for both of the protocol participants simultaneously.
To the best of our knowledge, this is the first provably secure
DHKE protocol in the literature that enjoys deniability for
both protocol participants simultaneously. Indeed, we can view
the authentic message P O K (B̂, y) as a proof-of-knowledge
(POK) of the DH-exponent y for the DH-component Y sent
by B̂ , that is in turn bounded to the identity B̂. In this
sense, the first three round message can be viewed as a non-
malleable zero-knowledge (NMZK) [22], [25] for proving the
joint knowledge of both a and x , and the combination of the
first, the third and the fourth rounds can be viewed as an
NMZK for proving the joint knowledge of both b and y.
IKEv2 and SIGMA do not enjoy these privacy properties,
due to the underlying signatures used. Note also that the
DIKE protocol works in the post-specified-peer setting, and
the messages from one party do not bear the information of
its peers’s ID and public-key.

Besides some hashing operations and the validation
of peer’s public-key certificate, the player Â computes
(Y q , Y a, Y x) and (X, Bx), and the player B̂ computes
(Xq , Xb, X y) and (Y, Ay). Note that the computation
of (Y q , Y a, Y x) (resp., (Xq , Xb, X y)) in parallel actu-
ally amounts to roughly 1.5 modular exponentiations. The
DH-component X (resp., Y) can always be off-line
pre-computed by Â (resp., B̂). Moreover, if the peer’s identity
is pre-specified, Â (resp., B̂) can further off-line pre-compute
the value Bx (resp., Ay). That is, the total computation
involved at each player side is about 3.5 exponentiations
with parallel computation (resp., 5 exponentiations without
parallel computation), and the on-line computation involved
at each player side can be only 1.5 exponentiations with
parallel computation (resp., 3 exponentiations without parallel
computation). We note that if the underlying signatures used in
SIGMA are implemented with the Digital Signature Standard
(DSS) [24], the total computation involved at each player side
in SIGMA is about 4.5 exponentiations with the simultaneous
exponentiation (SE) technique [37]1 (resp., 5 exponentia-
tions without the SE technique) at each player side in total,
and the online computation involved at each player side is
about 2.5 exponentiations with SE (resp., 3 exponentiations
without SE). For communication complexity, by waiving the
use and exchanges of signatures, our deniable IKE enjoys
improved communication complexity in comparison with that
of SIGMA.

Our DIKE protocol is of well compatibility with
IKEv2/SIGMA and the (H)MQV protocols [32], [34]. By
compatibility with SIGMA/IKEv2, we mean that in case
some players are not of discrete logarithm (DL) public-
keys, they still can use the Sign-then-MAC mechanism of

1By simultaneous exponentiations, we mean that the product of two
exponentiations can be evaluated in about 1.5 exponentiations (rather than
2 separate exponentiations) [37].

128 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

SIMGA/IKEv2 to authenticate messages from them. In more
details, in this case, any one of the last two messages
in our deniable IKE (both for the main mode and for
the aggressive mode) can be replaced by the correspond-
ing message flow in SIGMA/IKEv2. By compatibility with
(H)MQV, we mean that both (H)MQV and DIKE work for
players of DL public-keys, and can be of the same system
parameters.

IV. ANALYSIS OF DIKE IN THE CANETTI-KRAWCZYK

POST-SPECIFIED PEER FRAMEWORK

A. Brief Description of the CK-Framework

The following brief description of the CK-framework is
almost verbatim from [32] (for full details the reader is referred
to [12], [13]).

A key-exchange (KE) protocol is run in a network of
interconnected parties where each party can be activated to run
an instance of the protocol called a session. Within a session
a party can be activated to initiate the session or to respond
to an incoming message. As a result of these activations,
and according to the specification of the protocol, the party
creates and maintains a session state, generates outgoing
messages, and eventually completes the session by outputting
a session-key and erasing the session state. A session may
also be aborted without generating a session key. A session
may also be expired, and for an expired session the session-
key is also erased. A KE session is associated with its holder
or owner (the party at which the session exists), a peer (the
party with which the session key is intended to be established),
and a unique session identifier. For presentation simplicity,
for DHKE protocols, the following two assumptions are made
in the basic CK-framework: (i) the activation of a session at
a party always specifies the name of the intended peer (i.e.,
working in the “pre-specified peer model”); and (ii) a session
is defined by a tuple (Â, B̂, X, Y), where Â is the identity
of the holder of the session who sends the DH-component
X , B̂ the peer who sends the DH-component Y . The peer
that sends the first message in a session is called the initiator
and the other the responder. Usually, the peers to a session
are denoted by Â and B̂; either one may act as initiator or
responder. The session (B̂, Â, Y, X) (if it exists) is said to be
matching to the session (Â, B̂, X, Y).

A note on session identifiers in reality. It is suggested by
Canetti et al. in [12] that the application invoking KE protocol
instances should supply the unique session identifier sid for
each session, and the setting mechanism of session identifiers
is beyond the CK-framework. In practice and particularly in
IKEv2, two participants first exchange random nonces prior to
the actual protocol session run, and then use the concatenation
of these nonces as the corresponding session identifier. This is
a common approach, as suggested by Choo et al. in [14], for
setting session identifiers for two-party protocols like IKEv2
and the DIKE protocol developed in this work. An alternative
would be to use an externally generated SID, such as a counter,
but the use of such an SID would be inconvenient [14].
However, when it comes to multi-party protocols (e.g., group
key exchange) without broadcasting messages, the situation is

not so clear, as demonstrated by Choo et al in [14]. The reader
is referred to [14] for the subtleties of setting up unique session
identifiers for group KE in reality.

Attacker model. The attacker, denoted A , is an active
concurrent man-in-the-middle (CMIM) adversary with full
control of the communication links between parties. A can
intercept and modify messages sent over these links, and
can delay or prevent their delivery, inject its own messages,
interleave messages from different sessions, etc. (Formally,
it is A to whom parties hand their outgoing messages
for delivery.) A also schedules all session activations and
session-message delivery, and can register a list of public-
keys (for players already controlled by A at the onset of its
attack).

In addition, in order to model potential disclosure of secret
information, the attacker is allowed to have access to secret
information via session exposure attacks of four types:
state-reveal queries, session-key queries, secret-key queries,
and party corruptions. A state-reveal query is directed at a
single session while still incomplete (i.e., before outputting the
session key), and its result is that the attacker learns the session
state for that particular session (which may include, for exam-
ple, the DH-exponent corresponding to the DH-component).
A session-key query can be performed against an individual
session after completion but before expiration, and the result
is that the attacker learns the corresponding session-key.
A secret-key query can be performed against any uncor-
rupted party, and the result is that the attacker learns the static
secret-key of that party. Finally, party corruption means that
the attacker learns all information in the memory of that party,
including the long-term static secret-key (corresponding to the
public-key) as well as session states and session keys stored
at the party; in addition, from the moment a party is corrupted
all its actions may be controlled by the attacker.2 A session is
called exposed, if this session or its matching session suffers
from any of the above four types of session-exposure attacks.

The security of session keys generated in unexposed ses-
sions is captured via the inability of the attacker A to
distinguish the session key of a test session, chosen by
A among all complete sessions of the protocol between
uncorrupted players, from a random value. When A chooses
the test session it is provided with a value v which is chosen
as follows: Firstly, a random bit b is tossed. If b = 0 then v is
the real value of the session key, otherwise v is a random
value chosen under the same distribution of session keys
produced by the protocol but independent of the value of the
real session key. After receiving v the attacker may continue
with the regular actions against the protocol; at the end of
its run A outputs a bit b′. The attacker succeeds in its
distinguishing attack if (1) the test-session is not exposed,
and (2) the probability that b = b′ is non-negligibly larger
than 1/2.

Definition 4.1 (Secure KE (SK-security)): A polynomial-
time attacker with the above capabilities is called a

2We remark that, the basic CK-framework does not distinguish between
static secret-key reveal and party corruption. In this sense, our actual formal-
ization is w.r.t. an enhanced version of the CK-framework.

YAO AND ZHAO: PRIVACY-PRESERVING AUTHENTICATED KEY-EXCHANGE OVER INTERNET 129

KE-attacker. A key-exchange protocol π is called secure
[12] if for any KE-attacker A running against π it holds:

1) If two uncorrupted parties complete matching sessions
in a run of protocol π under attacker A then, except for
a negligible probability, the session key output in these
sessions is the same.

2) A succeeds (in its test-session distinguishing attack)
with probability not more than that 1/2 plus a negligible
function. �

Adapting SK-security to the post-specified peer setting.
Recall that the CK-framework [12] assumes: a party that is
activated with a new session knows already at activation the
identity of the intended peer to the session. By contrast, in
the “post-specified peer” setting (particularly for the IPsec
and IKE protocols [27], [29], [30]), the information of who
the other party is does not necessarily exist at the session
initiation stage. It is actually learnt by the party only after the
protocol run evolves. Fortunately, as shown by Canetti et al. in
[13], adapting the SK-security [12] to the post-specified peer
setting only requires some minor modifications (related to the
mechanism of defining matching sessions): (1) To distinguish
concurrent sessions (run at each party), each session bears a
unique session-identifier sid; (2) Supposing (Â, sid, B̂) be a
completed session (at the party Â) with peer B̂, the session
(B̂, sid) is called the matching session of (Â, sid, B̂), if
either (B̂, sid) is not completed or (B̂, sid) is completed with
peer Â. For more details, the reader is referred to [13].

B. SK-Security Analysis of DIKE With Post-Specified Peers

We consider a version of the DIKE protocol (depicted in
Figure 1) with exposable DH-exponents and pre-computed
DH-components. Specifically, for a state-reveal query
against an incomplete session at a party, the value returned
to the attacker A is specified to be the corresponding
DH-exponent generated by the party for that session. Further-
more, we assume each uncorrupted player pre-computes (and
stores) DH-components, which can be exposed to the attacker
prior to the actual sessions in which these pre-computed
DH-components are to be used.

In this section we prove that the DIKE protocol with expos-
able DH-exponents and pre-computed DH-components is SK-
secure in the CK-framework with post-specified peers, under
the gap Diffie-Hellman (GDH) assumption in the random
oracle model. At the core of the proof is the following lemma,
which essentially says that the attacker can successfully finish
an unexposed session in the name of some uncorrupted player
only if that uncorrupted player (impersonated by the attacker)
does indeed send the authenticated value, say, N M Z K (a, x)
or N M Z K (b, y), in the corresponding matching session.
In the following analysis, we denote by ˜N M Z K or ˜P O K
the authentic messages sent by the attacker, and by N M Z K
or P O K the authentic message sent by an uncorrupted
player.

Lemma 4.1: For the DIKE protocol 〈Â, B̂〉 (depicted in
Figure 1) with pre-computed and exposed DH components
and exponents, where the players Â and B̂ may be the same,
the probability of the following events is negligible under the

GDH assumption in the random oracle model assuming that
H : {0, 1}∗ → {0, 1}k is a RO (recall that k = |q|):
• Event-1. The attacker A successfully finishes an

unexposed session of session identifier sid with an uncor-
rupted player B̂ in the name of uncorrupted player Â
(actually, any uncorrupted player), where the session is
referred to as (B̂, sid, Â), in which B̂ sends Y = gy in
the second round and A sends ˜N M Z K (a, x) in the third
round of this session, while the uncorrupted player Â did
not send ˜N M Z K (a, x) in any session.

• Event-2. The attacker A successfully finishes an
unexposed session of session identifier sid with an uncor-
rupted player Â in the name of uncorrupted player B̂
(actually, any uncorrupted player), where the session is
referred to as (Â, sid, B̂), in which Â sends X = gx

in the first round and A sends ˜N M Z K (b, y) in the
fourth round, while the uncorrupted player B̂ did not send
˜N M Z K (b, y) in any session.

Notice that, for Lemma 4.1, we only assume H to be a
random oracle. In contrast, the function HK can be any secure
key derivation function (KDF).

Proof (of Lemma 4.1). In the following security analysis,
for presentation simplicity and without loss of generality, we
assume A is involved with at most s many sessions, and
simply assume the session-identifier sid ∈ {1, · · · , s}, where
s is polynomial in k = |q|.

Proof of Event-1. Specifically, supposing Event-1 occurs
with non-negligible probability, we construct another efficient
algorithm S′ that, on inputs (A, Y) ← G2 (where each of
(A, Y) is taken randomly and independently from G) and with
access to the DDH-oracles OA and OY , outputs C DH (A, Y)
also with non-negligible probability, which violates the GDH
assumption.3 Here, OA (resp., OY) stands for a special DDH-
oracle, which on queries of the form (A, γ , δ) ∈ G3 (resp.,
(Y, γ , δ) ∈ G3) outputs whether δ = C DH (A, γ) (resp., δ =
C DH (Y, γ) or not. The algorithm S′ runs the attacker A as
a subroutine, and works as follows:

S′ generates and sets the public-key and secret-key pairs for
all uncorrupted players except the uncorrupted player Â. For
the uncorrupted player Â, S′ just sets its public-key to be A
(i.e., the value given to S′ as input). Note that S′ does not
know the secret-key of Â, i.e., the discrete logarithm of A.
S′ chooses j uniformly at random from {1, · · · , s}, and sets
the DH-component to be sent in the second round of the j -th
session to be Y (i.e., the value given to S′ as input), while
DH-components (to be generated by uncorrupted players) in
all other sessions will be generated by S′ itself. In the session
run, in case A makes a query (of the four types of session-

3The input of the public-key A to S′ is for presentation simplicity. In
general, the input to S′ should be the certificate C E RTÂ of the uncorrupted

player Â (besides the randomly chosen Y). Notice that we are assuming a
very weak system setup assumption, where POP/POK of secret-key is not
mandated during public-key registration, which is an advantageous property
of our protocol. In this case, from public-key A the simulator S′ can actually
get the certificate C E RTÂ by himself (in the name of Â). An alternative
approach is to let S′ incorporate the secret-key of the certificate authority
(CA) and generate players’ certificates by S′ itself. With this approach, S′ is
still of polynomial time, violating the GDH assumption.

130 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

exposure attacks) against the j -th session, or the j -th session
is not of the form (B̂, j, Â) for some uncorrupted player B̂,
S′ just aborts (recall we have assumed that sid ∈ {1, · · · , s}).
However, all the queries made by A against any session other
than the j -th session will be answered by S′. Specifically, S′
can give the attacker A the secret-keys of all uncorrupted
players other than the uncorrupted player Â, and all the
(pre-computed) DH-components and DH-exponents to be used
in all sessions other than the chosen j -th session. Also, as S′
generates DH-exponents and DH-components honestly in all
the sessions other than the j -th session (that is supposed to
be unexposed), it can answer session-key queries against these
sessions, no matter what the key derivation function HK is.

For each session (Â, i, B̂) run by uncorrupted Â, where
1 ≤ i �= j ≤ s and Â plays the session initiator and
the attacker A plays the role of the session responder in
the name of B̂ in this (say, the i -th) session, S′ works just
as the honest player Â does in the first, the second and
the fourth round (by using the DH-exponent xi generated
by itself for this session). But in the third round of this
session (that is dependent on the secret-key a of Â which
S′, however, does not know), S′ simulates as follows. Denote
by Xi = gxi the DH-component sent by S′ in the first round,
and by Yi the DH-component sent by the attacker A in the
second round in the name of B̂. S′ ensures the consistency
of RO-answers related to N M Z K (a, xi) = H (i, Â, Xi , Yi ,
C DH (A, Yi), C DH (Xi , Yi)), with the assistance of the
DDH-oracle OA, as follows (recall that xi is gener-
ated by S′ itself): S′ first checks whether the RO, H ,
has been previously defined on the point (i, Â, Xi , Yi ,
C DH (A, Yi), C DH (Xi , Yi)). This is done by checking all
RO-queries to H of the form (i, Â, Xi , Yi , αi , Y xi

i) for some
αi ∈ G, and testing whether αi = C DH (A, Yi) with the
assistance of the DDH-oracle OA. If H has been defined
on the point (i, Â, Xi , Yi , C DH (A, Yi), C DH (Xi , Yi)), then
S′ just sets N M Z K (a, xi) to be the already defined value
H (i, Â, Xi , Yi , C DH (A, Yi), C DH (Xi , Yi)); otherwise, S′
just sets N M Z K (a, xi) to be a value taken uniformly at
random from {0, 1}k . S′ sends {i, Â, C E RTÂ, N M Z K (a, xi)}
to A as the third-round message of the i -th session. In case
that N M Z K (a, xi) is set to be a random value in {0, 1}k ,
from this point on, whenever the attacker makes a RO-query
to H of the form (i, Â, Xi , Yi , α

′
i , (Yi)

xi) for some α′i ∈ G,
S′ checks whether α′i = C DH (A, Yi) with the assistance of
the DDH-oracle OA. If this is the case, S′ just defines the RO
answer, i.e., H (i, Â, Xi , Yi , C DH (A, Yi), C DH (Xi , Yi)), to
be the already fixed N M Z K (a, xi) (i.e., the random value in
{0, 1}k set previously).

For each session (B̂, i, Â) run by uncorrupted B̂, where
1 ≤ i �= j ≤ s and B̂ plays the session responder and
the attacker A plays the role of the session initiator in the
name of Â, we further distinguish two cases according to
whether B̂ = Â or not. For the case of B̂ �= Â, as the secret-
key of B̂ is set by S′, S′ can perfectly simulate this session
just as the honest player B̂ does. Below, we focus on the
case of B̂ = Â, where the simulator S′ does not know the
secret-key b = a of B̂ = Â. For this case, S′ works just
as the honest player B̂ does in the first three rounds of this

session, by using the DH-exponent yi generated by S′ itself
for this session. Denote by Xi the DH-component sent by A
in the first round of this session, and recall that Â = B̂ and
A = B for this case. But in the fourth round of this session,
S′ needs to send the authentication value N M Z K (b, yi) =
N M Z K (a, yi) = H (i, B̂, Yi , Xi , C DH (A, Xi), X yi

i) while
S′ actually does not know the secret-key a. S′ ensures the
consistency of the RO answers of H related to the authen-
tication value N M Z K (b, yi) with the assistance of the
DDH-oracle OA, which is similar to the simulation of the
session (Â, i, B̂) as specified above.

For the session (B̂, j, Â) (recall that if the j -th session
is not of this form or A made any exposure query against
the j -th session, S′ simply aborts), S′ works as follows.
After receiving (j, X j) from A in the first round of the j -th
session, in the second round of the j -th session S′ just sets the
DH-component Y j to be the value Y given as its input. Note
that the discrete logarithm y j of Y j = Y is unknown to S′.
Then, S′ sets the value P O K (B̂, y j) and ensures the con-
sistency of the RO-answers of H related to P O K (B̂, y j) =
H (j, B̂, Y, X j , C DH (Y, X j)), with the assistance of the
DDH-oracle OY similar to the simulation of the session
(Â, i, B̂) above. Specifically, with the assistance of OY , S′
first checks whether the random oracle H has been defined
on the point (j, B̂, Y, X j , C DH (Y, X j)) or not. If yes, S′
simply sets P O K (B̂, y j) to be the already defined value.
Otherwise, S′ sets P O K (B̂, y j) to be a value taken uni-
formly at random from {0, 1}k , and from then on for all
the RO queries made by A , S′ ensures the consistency
of RO-answers related to P O K (B̂, y j) with the assistance
of the DDH-oracle OY . Finally, if A successfully sends
(j, Â, C E RTÂ, ˜N M Z K (a, x j)) in the third round of the j -th
session, S′ checks whether A queried the RO, H , with
(j, Â, X j , Y, C DH (Y, A), C DH (Y, X j)). That is, for each
RO query by A to H of the form (j, Â, X j , Y, α, β), where
(α, β) ∈ G2, S′ checks whether α = C DH (Y, A) with the
assistance of the DDH-oracle OY . If so, S′ stops and outputs
C DH (A, Y). In all other cases, S′ aborts.

It is straightforward to calculate that, supposing the attacker
A made qH queries to the random oracle H , the number of
queries by S′ to its DDH-oracle OA or OY is at most qH .
Specifically, all the RO queries made by A to H can be
classified into disjoint subsets according to their leading items
that correspond to different session-identifiers. For each RO
query in each classified subset, S′ makes at most one DDH-
test according to the specification of S′. As we assume A
runs in polynomial time, we have that S′ works in polynomial
time. It is easy to see that, conditioning on S′ correctly
guessed the target unexposed session (B̂, j, Â), the simulation
by S′ is perfect from the view of A . In particular, the
attacker A is disallowed to issue a state-reveal query to
learn the discrete logarithm y of Y . Suppose Event-1 occurs,
i.e., A successfully sent the correct value ˜N M Z K (a, x j)
in the j -th session, which, however, was not sent by the
uncorrupted player Â in any session. Up to the third round
of the j -th session, the correct value of ˜N M Z K (a, x j) =
H (j, Â, X j , Y, C DH (Y, A), C DH (Y, X j)) was actually not

YAO AND ZHAO: PRIVACY-PRESERVING AUTHENTICATED KEY-EXCHANGE OVER INTERNET 131

sent by any uncorrupted player, and thus the simulator S′,
in any session (particularly due to the uniqueness of the
session-identifier of each session). In this case, to send a
correct ˜N M Z K (a, x) in the third round of the j -th session, in
the RO model except for probability 1

2k A must have queried

the RO H with (j, Â, X j , Y, C DH (Y, A), C DH (Y, X j)). We
conclude that, supposing Event-1 occurs with non-negligible
probability p, with also non-negligible probability at least
p
s − 1

2k S′ correctly computes C DH (A, Y), which violates
the GDH assumption.

Proof of Event-2. The proof for Event-2 is similar
to, but more involved than, that for Event-1. Specifically,
for Event-2, the correct value of ˜N M Z K (b, y) should be
H (sid, B̂, Y, X, C DH (B, X), C DH (Y, X)), which cannot be
sent by the uncorrupted player Â (even if Â = B̂) in any
other session (due to the uniqueness of the session-identifiers
of the left-sessions). However, supposing the attacker A sets
B̂ = Â and Y = X , it may be the case that ˜N M Z K (b, y) =
˜N M Z K (a, x) could just be sent by Â in the third round of the

unexposed target session (Â, sid, B̂). In the following analysis
for Event-2, we further distinguish two cases according to
whether Y = X or not in the target session.

Specifically, supposing Event-2 occurs with non-negligible
probability, we construct another efficient algorithm S′ that, on
inputs (B, X)← G2 (where each of (B, X) is taken uniformly
at random from G) and with access to the DDH-oracles OB

and OX , outputs C DH (B, X) or C DH (X, X) also with non-
negligible probability, which violates the GDH assumption.
Here, we note that the hardness of computing C DH (X, X)
from X ← G is equivalent to that of the CDH problem
[36], [38]. Again, OB (resp., OX) stands for a special DDH-
oracle, which on queries of the form (B, γ , δ) ∈ G3 (resp.,
(X, γ , δ) ∈ G3) outputs whether δ = C DH (B, γ) (resp.,
δ = C DH (X, γ)). The algorithm S′ runs the attacker A as a
subroutine, and works as follows.

S′ generates and sets the public-key and secret-key pairs
for all uncorrupted players other than the uncorrupted player
B̂. For the uncorrupted player B̂, S′ just sets its public-key
to be B (i.e., the value given to S′ as input). S′ chooses
j uniformly at random from {1, · · · , s}, and sets the DH-
component to be sent in the first round of the j -th session to be
X (i.e., the value given to S′ as input), while DH-components
(to be generated by uncorrupted players) in all other sessions
will be generated by S′ itself. In particular, it implies that S′
can also answer session-key queries against all the sessions
other than the j -th session (that is assumed to be unexposed),
no matter what the key derivation function HK is. In the
run, in case A makes a query (of the four types of session-
exposure attacks) against the j -th session, or the j -session is
not of the form (Â, j, B̂) between two uncorrupted players Â
and B̂, S′ just aborts. However, all the queries made by A
against any session other than the j -th session can be perfectly
answered by S′.

For each session (Â, i, B̂) run by uncorrupted Â, where
1 ≤ i �= j ≤ s and Â plays the session initiator and
the attacker A plays the role of the session responder in
the name of B̂ in this (say, the i -th) session, we further

distinguish two cases according to whether Â = B̂ or not.
For the case of Â �= B̂, as the secret-key of Â is just set
by S′ itself, S′ can perfectly simulate this session just as
the honest player Â does. Below, we focus on the case of
Â = B̂ , where the simulator S′ does not know the secret-
key a = b of Â = B̂. For this case, S′ works just as
the honest player Â does in the first, the second and the
fourth rounds, by using the DH-exponent xi generated by
S′ itself for this session. Denote by Yi the DH-component
sent by A in the second round of this session, and recall that
Â = B̂ and A = B . But in the third round of this session,
S′ needs to send the authentication value N M Z K (a, xi) =
N M Z K (b, xi) = H (i, Â, Xi , Yi , C DH (B, Yi), Y xi

i) while S′
actually does not know the secret-key b. S′ ensures the con-
sistency of the RO answers of H related to the authentication
value N M Z K (b, xi) with the assistance of the DDH-oracle
OB , similar to the simulation of the session (Â, i, B̂) in the
proof of Event-1.

For each session (B̂, i, Â) run by uncorrupted B̂, where
1 ≤ i �= j ≤ s and B̂ plays the session responder and the
attacker A plays the role of the session initiator in the name
of Â, S′ works just as the honest player B̂ does in the first
three rounds (by using the DH-exponent yi generated by itself
for this session). But in the fourth round of the this session
(that is dependent on the secret-key b of B̂ which S′, however,
does not know), S′ simulates as follows. Denote by Xi = gxi

the DH-component sent by the attacker A in the first round
(in the name of Â), and by Yi = gyi the DH-component
sent by S′ in the second round. Similarly, S′ can ensure
the consistency of RO-answers related to N M Z K (b, yi) =
H (i, B̂, Yi , Xi , C DH (B, Xi), X yi

i), with the assistance of the
DDH-oracle denoted OB .

For the session (Â, j, B̂) (recall that if the j -th session is not
of this form or A made any exposure query against the j -th
session, S′ simply aborts), S′ just sets the DH-component to be
sent in the first round to be X (i.e., the value given as its input).
Denote by Y j the DH-component sent by the attacker A in
the second round (in the name of B̂), we further distinguish
two cases according to whether Y j = X or not.

Case-1: Y j = X . For this case, if A successfully sends

(j, B̂, C E RTB̂ , ˜P O K (B̂, y j)) in the second round of the
j -th session, S′ checks whether A has queried the RO,
H , with (j, B̂, X, X, C DH (X, X)). In more detail, for all
RO-queries of the form (j, B̂, X, X, α), where α ∈ G, made
by A to H , S′ checks whether α = C DH (X, X) with
the assistance of the DDH-oracle OX . If so, S′ stops and
outputs C DH (X, X). In all other cases, S′ aborts. Note that
the correct value of ˜P O K (B̂, y j) in this case should just be
(j, B̂, X, X, C DH (X, X)).

Case-2: Y j �= X . For this case, the correct value of
˜P O K (B̂, y j) should be (j, B̂, Y j , X, C DH (X, Y j)). After

receiving ˜P O K (B̂, y j), similar to Case-1, S′ checks whether
A has queried the RO, H , with (j, B̂, Y j , X, C DH (X, Y j)),
with the assistance of the DDH oracle OX . If not, S′
simply aborts; otherwise, S′ gets the value C DH (X, Y j).
After getting C DH (X, Y j), and as S′ sets the secret-key a
of Â, S′ can perfectly simulate the third round message.

132 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Finally, if A successfully sends (j, B̂, ˜N M Z K (b, y j)) in the
fourth round of the j -th session, for all RO-queries of the form
(j, B̂, Y j , X, α, β), where (α, β) ∈ G2, made by A to H , S′
checks whether α = C DH (B, X) with the DDH-oracle OX .
If so, S′ stops and outputs C DH (B, X). In all other cases,
S′ aborts.

It’s easy to see that S′ works in polynomial time. In
particular, supposing the attacker A makes qH queries to
the random oracle H , the number of queries by S′ to its
DDH-oracle OB or OX is at most qH . Conditioning on S′
correctly guessed the target unexposed session (B̂, j, Â), the
simulation by S′ is perfect from the view of A . We have
that, supposing Event-2 occurs with non-negligible probability
p, then with also non-negligible probability at least p

s − 1
2k

S′ correctly computes C DH (X, X) or C DH (B, X), which
violates the GDH assumption, where 1

2k is the probability

that A correctly sends ˜P O K (B̂, y j) or ˜P O K (b, y j) without
making the corresponding RO query. �

Theorem 4.1: The DIKE protocol (depicted in Figure 1),
with pre-computed and exposed DH components and expo-
nents, is SK-secure in the CK-framework with post-specified
peers, under the GDH assumption in the random oracle model,
where H is assumed to be a programmable random oracle
while HK to be a non-programmable RO.

Proof (outline). We present the proof with respect to an
unexposed and successfully finished test-session run by Â
(with peer B̂), denoted (B̂, j, Â), where 1 ≤ j ≤ s and Â
and B̂ are both uncorrupted players and can be identical (but
Â may be impersonated by the attacker A). The proof for the
case of an unexposed test-session (Â, j, B̂) run by Â (with
peer B̂) is similar.

For the unexposed test-session (B̂, j, Â), denote by X = gx

(resp, Y = gy) the DH-component sent by Â (resp., B̂), and by
N M Z K (a, x) = H (j, Â, X, Y, C DH (A, Y), C DH (X, Y))
the authentication value sent by Â (maybe impersonated by
A) in the third round of the test-session. By Lemma 4.1 (for
Event-1), we have that, with overwhelming probability, the
uncorrupted player Â does indeed send N M Z K (a, x) in some
session that is matching to (B̂, j, Â). That is, the test-session
has the matching session (Â, j) in which Â sends X in the
first round and N M Z K (a, x) in the third round.

As the session-key is computed as HK (X, Y, gxy) where
HK is a (non-programmable) random oracle, there are only
two possible strategies for the adversary A to distinguish
HK (X, Y, gxy) from a random value:

• Key-replication attack: A succeeds in forcing the estab-
lishment of a session (other than the test-session or its
matching session) that has the same session-key output
as the test-session. In this case, A can learn the session-
key of test-session by simply querying that unmatching
session to get the same key (without having to expose the
test-session or its matching session).

• Forging attack: At some point in its run, A queries the
RO, HK , with the values (X, Y, gxy).

The possibility of the key-replication attack is trivially
ruled out with overwhelming probability in the RO model,
by observing that X is only sent by Â in the test-session

and that Y is only sent by B̂ in the matching session in
accordance with Lemma 4.1. Recall that the session-key of
the text-session, as well as that of its matching session, is
HK (X, Y, C DH (X, Y)).

The success of the forging attack says that A can
successfully output (X, Y, C DH (X, Y)). By Lemma 4.1, with
overwhelming probability, X and Y are only sent by the uncor-
rupted players in the test-session and its matching session. As
both the test-session and its matching session are assumed
to be unexposed, A does not know the DH-exponent x or y.
Similar to the proof of Lemma 4.1, we can exploit the assumed
ability of A in performing the successful forging attack to
construct another efficient algorithm S′ who breaks the CDH
assumption with the assistance of a DDH-oracle O (actually,
O is only used to deal with queries including X or Y).

Specifically, on inputs (X, Y) and with access to the
DDH-oracle O, S′ runs A as a subroutine and does the
following: (1) S′ sets up the public-keys and secret-keys for
all uncorrupted players, including the players Â and B̂. (2)
Then, S′ guesses (with non-negligible success probability 1

s)
the test-session (B̂, j, Â) and its matching session (Â, j),
for which the forging attack succeeds. (3) S′ perfectly
emulates the uncorrupted players, and answers any query
made by the adversary A , in all the sessions other than the
test-session and its matching session. (4) S′ sends X in the
first round of the matching session (Â, j) (in the name of
Â), and Y in the second round of the test-session (in the
name of B̂). For all the authentic messages (exchanged in
the test-session and its matching session) with C DH (X, Y)
as an input, similar to the proof of Lemma 4.1, S′ ensures
the consistency of RO answers with the assistance of the
DDH-oracle O. In particular, if before the completion of the
test-session or its matching session, Â has already queried the
random oracle H with input C DH (X, Y), S′ simply outputs
C DH (X, Y) and stops. Otherwise, after the completion of
the test-session, supposing the forging attack is successful,
S′ outputs C DH (X, Y) from the query made by A to the
non-programmable random oracle HK . �

A note on the key derivation function HK . For pre-
sentation simplicity, we have assumed H and HK can be
the same random oracle. But the actual uses of H and HK

are quite different in the security analysis. Specifically, we
actually do not make any assumption on the key derivation
function (KDF), HK , in the proof of Lemma 4.1 as well as
in the CNMSZK analysis (cf. Theorem 6.1 in Section VI-D).
We only assume HK to be a non-programmable RO in the
proof of Theorem 4.1. However, a closer investigation shows
that, the RO assumption on HK is not essential in the proof of
Theorem 4.1. What we actually need is the following property
of HK , which is relatively reasonable and is much weaker than
the RO assumption.
• Strong pseudorandomness. Specifically, given (X, Y)←

G2, the distribution of HK (gxy, X, Y) and the uniform
distribution Uk over {0, 1}k are computationally indis-
tinguishable, by any efficient distinguisher algorithm
equipped with a full DDH-oracle.

In practice, we can instantiate HK by using a pseudorandom
function (PRF), e.g., HMMC, with gxy as the randomness

YAO AND ZHAO: PRIVACY-PRESERVING AUTHENTICATED KEY-EXCHANGE OVER INTERNET 133

seed (i.e., the key of PRF). That is, HK (gxy, X, Y) =
P RFgxy (X, Y). Notice that, if the distinguisher algorithm
is not equipped with DDH oracles, the indistinguisha-
bility between P RFgxy (X, Y) and Uk can be established
as follows. By the DDH assumption, the distribution of
P RFgxy (X, Y) and that of P RFR(X, Y) are indistinguish-
able, where R is an element taken uniformly at random
from G. Then, according to the pseudorandomness of PRF,
the distribution of P RFR(X, Y) and that of Uk are compu-
tationally indistinguishable. However, if the distinguisher is
equipped with DDH oracles, assuming the indistinguishability
between P RFgxy (X, Y) and Uk is non-standard, though it still
seems reasonable. In particular, the strong pseudorandomness
assumption is stronger than the GDH assumption.

We briefly notice that the proof of Theorem 4.1 can be
directly reduced to the strong pseudorandomness assump-
tion of HK . The proof is similar to that of ruling out the
“forging attack” in Theorem 4.1. Specifically, we consider
an algorithm S′′ whose task, on input (X, Y, v) where v is
HK (gxy, X, Y) or a random value in {0, 1}k , is to distinguish
which case the given value v is. S′′ mimics the algorithm S′ in
Theorem 4.1 (and is thus equipped with DDH-oracles), with
the following modifications. If S′, and thus S′′, has already
gotten C DH (X, Y) from the RO-queries to H by the attacker
A before the completion of the test-session or its matching
session, S′′ just uses C DH (X, Y) to distinguish v. Otherwise,
S′′ presents v to the attacker A , and then uses the assumed
ability of A (in distinguishing HK (gxy, X, Y) from a random
value) to finish its task.

V. DISCUSSIONS ABOUT RESISTANCE AGAINST

SOME CONCRETE ATTACKS

In this section, we further discuss a list of concrete yet
essential security properties of the DIKE protocol (depicted
in Figure 1), most of which are beyond the CK-framework.

Resistance against “cutting-last-message” attack. Sup-
posing the responder player B̂ sends the last message in the
run of a DHKE protocol 〈Â, B̂〉, the “cutting-last-message”
attack, from which SIGMA and IKEv2 suffer, works as follows
[35]: A man-in-the-middle attacker A interacts with the uncor-
rupted B̂ in the name of Â in a session (referred to as the test-
session), while concurrently interacting with the uncorrupted
Â in the name of M̂ �= B̂ in another session (referred to as
the matching session). A relays messages between Â and B̂
in these two sessions, but aborts the matching session after
receiving the last message from B̂ in the test-session. Such
a simple attack results in authentication failure as follow: B̂
is perfectly fooled to believe that it has shared a session key
with Â in the test-session, while Â thinks it only ever took
part in an aborted session with M̂ in the matching session.4

Such an attack is simply ruled out for our DIKE proto-
col, particularly by the mechanism of P O K (B̂, y). Specif-
ically, after receiving the second-round message (B̂, Y =
gy, P O K (B̂, y)) from B̂ in the test-session, the attacker A

4As suggested in [13], this “cutting-last-message-attack” can be prevented
by adding an additional fifth round of “acknowledgement” from Â to B̂, but
increasing the round and system complexity.

cannot correctly compute and send to Â the message of
(M̂, Y = gy, P O K (M̂ , y)) in the name of M̂ �= B̂ in the
matching session.

Resistance against unknown key share (UKS) attack.
Informally speaking, by a successful UKS attack, an attacker
A can successfully make two uncorrupted parties, say, Â and
B̂, compute the same session-key in two sessions but have
different views of who the peer to the exchange was, even
if the adversary actually does not know the corresponding
session-key.

Observe that the session-key of DIKE protocol is derived
from HK (X, Y, gxy). If the two sessions are of the same
session-key, with overwhelming probability in the RO model,
these two sessions must be of the same DH-components,
i.e., (X, Y) generated by the two uncorrupted players, and
furthermore, in the same (initiator and responder) order. As
uncorrupted players generate DH-components randomly and
independently, with overwhelming probability, in addition to
the two sessions suffering from the UKS attack there exist
no other sessions of the same (ordered) DH-components
(X, Y). Then, a successful UKS attack implies that A can
at least malleate an authentic message, e.g., N M Z K (a, x) =
H (sid, Â, X, Y, C DH (A, Y), C DH (X, Y)) into N M Z K
(a′, x) = H (sid, Â, X, Y, C DH (A′, Y), C DH (X, Y)) for a
different player Â′ �= Â of public key A′, which is impossible
in the RO model without knowing C DH (X, Y).

Perfect forward secrecy (PFS). Informally, a key-exchange
protocol is PFS secure, if the leakage of the static secret-key
of an uncorrupted player does not compromise the security
of the session-keys established by the player for unexposed
yet expired sessions, which have been erased from mem-
ory before the leakage occurred. In other words, once an
unexposed session is expired and the session-key is erased
from its holder’s memory, then the session-key cannot be
learned by the attacker even if the player is subsequently
corrupted.

The PFS property of our DIKE protocol is from the
following observations: (1) the computation of the session-key
HK (X, Y, gxy) does not involve players’ secret-keys. Thus,
if the attacker A does not know x or y, under the CDH
assumption it cannot derive the session-key even if both the
two players’ secret-keys are compromised. (2) If X is just
generated by the attacker, it nevertheless cannot successfully
finish the session with B̂ (in the name of Â) by providing a
correct authentic value N M Z K (a, x) (in particular, A cannot
correctly compute C DH (A, Y) w.r.t. the DH-component chal-
lenge Y from B̂). Note that, for PFS security, we assume the
secret-key of Â is not compromised during the session run. The
similar argument holds if Y is generated by the attacker itself.

Resistance against key-compromise impersonation
(KCI) attack. Informally, security against KCI attacks says
that: the knowledge of the secret-key of an uncorrupted player
(e.g., a of Â) does not help an attacker A to impersonate
another uncorrupted player (e.g., B̂) to this uncorrupted yet
secret-key compromised player (i.e., Â).

Our DIKE protocol is KCI secure, by the following
observations: the authentic message N M Z K (a, x) (resp.,
N M Z K (b, y)), which can be viewed as non-malleable

134 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

zero-knowledge proof of the joint knowledge (a, x) (resp.,
(b, y)), is bounded to sender identity and is only w.r.t.
the DH-component challenge sent by its peer. Under the
CDH assumption in the RO model, the knowledge of a is
useless to generate correct N M Z K (b, y) for B �= A w.r.t. the
DH-component X = gx (for which the attacker doesn’t
know x).

On a complementary analysis of DIKE in [44]. Recently,
we are referred to [44]. The privacy advantage of DIKE, i.e.,
the session-key transcript can be generated merely from DH-
exponents x and y (and some public values), is, however,
re-stated in [44] as a security vulnerability, by saying that
the leakage of x can allow an attacker to finish the exposed
session without knowing the static secret-key b and that this
“violates” the principle of security against the leakage of
DH-exponents. However, such a claim made in [44] is some-
what misleading. On the one hand, this is inherent to any
deniable DHKE where the session transcript can be gener-
ated merely from DH-components (which we view a much
preferable privacy advantage, as the session transcript cannot
be traced to the pair of protocol participants). On the other
hand, this does not breach the security in accordance with
the CK-framework. Actually, if this is viewed as an “attack,”
most DHKE protocols just like IKEv2 and SIGMA, where
the session-key is derived from gxy (and some public values),
are “insecure,” as the leakage of x will cause the exposure
of session-key and thus no security of the exposed session
can be guaranteed. By “security resilient to the leakage of
DH exponents” we mean the principle that such a leakage
should have no bearing on the security of other (non-matching)
sessions. Also, this is related to how to balance security
and privacy in general, and our DIKE protocol is aimed to
maximizing privacy protection while still providing robust
security guarantees as analyzed above.

VI. OVERVIEW OF CNMSZK FORMULATION

AND ANALYSIS

A. Formulating (Privacy-Preserving) CNMSZK for DHKE

We consider an adversarial setting, where polynomially
many instances (i.e., sessions) of a DHKE protocol 〈Â, B̂〉
are run concurrently over an asynchronous network like the
Internet. To distinguish concurrent sessions, each session run
at the side of an uncorrupted player is labeled by a tag,
which is the concatenation, in the order of session initiator
and then session responder, of players’ identities, public-keys,
and DH-components available from the session transcript.
A session-tag is complete if it consists of a complete set
of all these components, e.g., (Â, A, X, B̂, B, Y). WLOG, we
assume player’s identity bears its public-key certificate.

We assume all communication channels, among all the con-
current sessions of 〈Â, B̂〉, are unauthenticated and controlled
by a PPT concurrent man-in-the-middle (CMIM) adversary
A . This means that the honest player instances cannot directly
communicate with each other, since all communication mes-
sages are done through the adversary. The CMIM adversary
A (controlling all communication channels) can do whatever
it wishes. In particular, A can concurrently interact with

polynomial number of instances of the initiator player Â in
the name of any player playing the role of the responder; such
sessions are called the left-sessions. At the same time, A can
concurrently interact with polynomial number of instances of
the responder player B̂ in the name of any player playing
the role of the initiator; such sessions are called the right-
sessions. For presentation simplicity, we assume the number
of left-sessions is equal to that of right-sessions, which is s(k)
for some positive polynomial s(·) where k is the security
parameter. The CMIM adversary A also takes some arbi-
trary auxiliary input z ∈ {0, 1}∗, which captures arbitrary
information collected/eavesdropped by A over the network
from the executions of arbitrary (possibly different) protocols
prior to its actual session interactions with the instances of
Â or B̂.

We denote by viewA (1k, Â, A, B̂, B, z) the random
variable describing the view of A in its concurrent inter-
actions with the instances of Â and B̂, which includes the
input (1k, Â, A, B̂, B, z), A ’s random tape, all the messages
received in the s(k) left sessions and the s(k) right sessions,
and the resultant session-keys for all successfully finished
sessions (for an aborted or incomplete session, the session-
key is defined to be “⊥”). For protocols in the RO model,
A ’s view also includes the RO (see [2] for more details).

Definition 6.1: A DHKE protocol, 〈Â, B̂〉, is called con-
current non-malleable statistical zero-knowledge (CNMSZK)
for both protocol participants simultaneously, if for any PPT
CMIM adversary A there exists a PPT simulator/extractor S
such that for any sufficiently large k, any pair of uncorrupted
players Â and B̂ (of public-key A and B respectively), and any
auxiliary string z ∈ {0, 1}∗, the output of S(1k, Â, A, B̂, B, z)
consists of two parts (str, sta), where the distribution of the
first output of S, i.e., str , is denoted by S1(1k, Â, A, B̂, B, z),
such that the following hold:

Statistical simulatability. The following ensembles are
statistically indistinguishable:{

{viewA (1k, Â, A, B̂, B, z)}n, Â,A,B̂,B,z

{S1(1k, Â, A, B̂, B, z)}n, Â,A,B̂,B,z .

Simultaneous knowledge extraction. The second out-
put of S, i.e., sta, consists of a set of 2s(k) strings,
{w̃l

1, w̃
l
2, · · · , w̃l

s(k), w̃
r
1, w̃

r
2, · · · , w̃r

s(k)}, satisfying:

• For any i , 1 ≤ i ≤ s(k), if the i -th left-session (resp.,
right-session) in str is aborted or with a tag identical to
that of one of the right-sessions (resp., left-sessions), then
w̃l

i = ⊥ (resp., w̃r
i = ⊥).

• Otherwise, i.e., the i -th left-session (resp., right-session)
in str is successfully completed and it has a session-
tag different from those of all right-sessions (resp., left-
sessions), then w̃l

i = (b̃l
i , ỹl

i) (resp., w̃r
i = (ãr

i , x̃ r
i)),

where b̃l
i (resp., ãr

i) is the discrete-logarithm of the
public-key B̃l

i (resp., Ãr
i) set and alleged by the CMIM

adversary A for the i -th left-session (resp., right-session)

in the name of ˆ̃Bl
i (resp., ˆ̃Ar

i), and ỹl
i (resp., x̃ r

i) is
the discrete-logarithm of the DH-component Ỹ l

i (resp.,
X̃r

i) set and sent by the CMIM adversary A in the i -th
left-session (resp., right-session).

YAO AND ZHAO: PRIVACY-PRESERVING AUTHENTICATED KEY-EXCHANGE OVER INTERNET 135

Furthermore, we say the protocol 〈Â, B̂〉 is privacy-preserving
CNMSZK, if it additionally satisfies: (1) the transcript of
each session can be generated merely from the DH-exponents
(together with some public system parameters, e.g., players’
public-keys and identities); (2) messages from one party
do not bear the identity and public-key information of its
peer. �

SK-security vs. CNMSZK for DHKE. We make some
brief comparisons between the SK-security in accordance
with the CK-framework and our formulation of CNMSZK for
DHKE.
• At a high level, the SK-security essentially says that a

party that completes a session has the following guaran-
tees [12]: (1) if the peer to the session is uncorrupted then
the session-key is unknown to anyone except this peer;
(2) if the unexposed peer completes a matching session
then the two parties have the same shared key.
Roughly speaking, besides others, CNMSZK for DHKE
ensures the enhanced guarantee of the above (2): if the
possibly malicious peer completes a matching session,
then not only the two parties have the same shared
key, but also and more importantly, the (possibly mali-
cious) peer does “know” both the DH-exponent (and
thus the shared session-key) and the secret-key corre-
sponding to the DH-component and public-key sent and
alleged by it in the test-session. We suggest this kind
of security guarantee is very essential to DHKE proto-
cols, particularly when they are run concurrently over
the Internet, which is, however, beyond the traditional
SK-security.

• The CNMSZK formulation for DHKE follows the sim-
ulation approach [43] of tag-based CNMZK, which can
actually be viewed as an extended and much strengthened
version of the latter (more clarifications are given in
Section VI-E). In particular, CNMSZK implies concur-
rent forward deniability for both the protocol initiator and
the responder simultaneously. The SK-security definition
follows the indistinguishability approach, which does not
take deniability into account.

• Notice that the CNMSZK formulation is w.r.t. any effi-
cient CMIM adversary of arbitrary auxiliary input z ∈
{0, 1}∗. In particular, the adversary’s auxiliary input can
be dependent on players’ public keys; for instance, z
consists of a CDH triple (X, B, gxb) or just the secret-
key b. That is, the CNMSZK formulation implicitly
captures the adversarial leakage of static secret-keys of
uncorrupted players. However, static secret-key exposure
against uncorrupted players was not captured by the SK-
security in accordance with the basic CK-framework [12],
where security against static secret-key exposure was
separately considered beyond the CK-framework. On the
other hand, the CNMSZK formulation does not take into
account the following abilities of the CMIM adversary in
the CK-framework: exposing ephemeral private state for
incomplete sessions, exposing session-keys for completed
sessions, and party corruption.

From the above clarifications, the CNMSZK security and the
SK-security can be viewed complementary, and thus it is

much desirable to have DHKE protocols that enjoy both the
SK-security and the CNMSZK security simultaneously.

B. The Concurrent Knowledge-of-Exponent Assumption

For the formal analysis of CNMSZK of the DIKE protocol,
we extend the knowledge-of-exponent assumption (KEA) into
the concurrent interactive setting, which is referred to as
concurrent knowledge-of-exponents assumption (CKEA).

The KEA assumption was introduced in [17] and then used
in a large number of subsequent works. The KEA assumption
was originally introduced to argue the non-malleability of
public-key encryption that is a non-interactive cryptographic
primitive [17] by nature. However, when arguing the security
of interactive protocols running concurrently against CMIM
adversaries, we notice that, in many scenarios (particularly for
DH-based authentication and key-exchange, as is the focus of
this work), the KEA assumption is insufficient. The reason
is that, in such concurrent interactive settings, the CMIM
adversary can potentially get access to a list of (polynomi-
ally many) DDH-oracles, with each being w.r.t. an element
taken randomly and independently in G by an honest player
instance.

For example, consider a two party protocol 〈Â, B̂〉, where
Â generates and sends X = gx ∈ G and B̂ generates and
sends Y = gy ∈ G. After or during the exchange of X and Y ,
each party uses the shared DH-secret gxy to authenticate some
public values (e.g., by MAC or simply hashing as in DIKE),
and aborts in case the authentication from its peer is deemed
to be invalid. Now, consider a CMIM adversary who, on
the security parameter 1k , concurrently interacts with s(k)
instances of Â (by playing the role of B̂) and s(k) instances
of B̂ (by playing the role of Â) simultaneously, where s(·)
is a positive polynomial. On an arbitrary value Z ∈ G, a
random element Xi generated by an instance of the honest
party Â or B̂ , 1 ≤ i ≤ s(k), and another arbitrary element
Y ∈ G where Y may also be one of the random elements
generated by Â or B̂, the CMIM adversary A can simply
use Z (as the supposed DH-secret) to authenticate a value
to the honest party who sends Xi in that session. Then, if
that party aborts (that indicates the authentication using Z
is invalid), A concludes Z �= C DH (Xi , Y), otherwise it
concludes Z = C DH (Xi , Y). This simple protocol example
demonstrates that, in the concurrent interactive settings, the
CMIM adversary can actually get access to polynomially many
DDH-oracles.

These observations motivate us to introduce the following
concurrent knowledge-of-exponents assumption (CKEA), for
arguing the security of interactive cryptographic schemes
against concurrent man-in-the-middle adversaries.

Definition 6.2: Suppose G is a cyclic group of prime order
q generated by an element g, 1k is the system parame-
ter, p(·) and q(·) are positive polynomials. Define a deci-
sion predicate algorithm OC to be a DDH-Oracle for the
group G and generator g w.r.t. the random challenge set
C = {C1 = gc1, · · · , Cp(k) = gcp(k)}, where ci , 1 ≤
i ≤ p(k), is taken uniformly at random from Z∗q . On a
query of the form (X, Y, Z), for arbitrary (X, Y) ∈ G2,
the oracle OC outputs 1 if and only if X ∈ C and

136 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Z = C DH (X, Y). Consider an algorithm A with oracle access
to OC , denoted AOC , which, on input a triple (g, C, z), outputs
a set of triples {(X1, Y1, Z1), · · · , (Xq(k), Yq(k), Zq(k))} ⊆
(G3)q(k), where z ∈ {0, 1}∗ is an arbitrary string that is
generated independently of C. (Specifically, we can con-
sider an experiment where the DH-components in the set
C are generated only after the auxiliary string z is fixed.)
Such an algorithm AOC is said to be a CKEA algo-
rithm if, with non-negligible probability (over the choice of
g, c1, · · · , cp(k) and A’s random coins), AOC (g, C, z) outputs
{(X1, Y1, Z1), · · · , (Xq(k), Yq(k), Zq(k))} ⊆ (G3)q(k) satisfying
Xi ∈ C and Zi = C DH (Xi , Yi) for all i , 1 ≤ i ≤ q(k).

We say that the CKEA assumption holds over G, if for
every PPT CKEA-algorithm AOC there exists another effi-
cient PPT algorithm K, referred to as the CKEA-extractor,
such that for any polynomials p(·), q(·) and sufficiently
large k the following property holds except for a neg-
ligible probability: Let (g, C, z) be the input to AOC ,
ρ a vector of random coins for AOC and 	 a vector
of answers given by OC on queries made by AOC , on
which A outputs {(X1, Y1, Z1), · · · , (Xq(k), Yq(k), Zq(k))} ⊆
(G3)q(k) satisfying Xi ∈ C and Zi = C DH (Xi , Yi)
for all i , 1 ≤ i ≤ q(k). Then, on the same inputs
and random coins and oracle answers, K(g, C, z, ρ,) out-
puts {(X1, Y1, Z1, y1), · · · , (Xq(k), Yq(k), Zq(k), yq(k))} where
Yi = gyi for all i , 1 ≤ i ≤ q(k). �

We note that the CKEA assumption can be viewed as
the non-black-box counterpart of the gap Diffie-Hellman
assumption, while the original KEA assumption is that of
the computational Diffie-Hellman assumption. As we shall
show in this work, the CKEA-based approach is a useful
paradigm, and is powerful, for achieving highly practical
DH-based cryptographic protocols provably secure against
CMIM adversaries in concurrent settings like the Internet.

C. Zero-Knowledge Simulation With Restricted RO

When employing the simulation paradigm for proving the
security of cryptographic protocols in the RO model, the RO
is usually programmed by the simulator (i.e., the simulator
provides random answers to RO queries). But a subtlety here
is: ZK simulation with programmable RO loses deniability in
general [40], [42], [45]. That is, a zero-knowledge simulation
with programmable RO is meaningless for ensuring deniability
in general. More specifically, the problem lies in the ability
of the simulator in defining (i.e., programming) the RO on
queries first made by the simulator itself (on behalf of the
simulated honest parties) in order to simulate the actions of
honest parties of private inputs. Specifically, the simulator runs
the underlying adversary as a subroutine and mimics honest
parties in its simulation. Typically, honest parties possess some
private inputs (say, static secret-keys for DHKE), and get
access to a non-programmable RO in reality. The simulator
(in its simulation) has to take the advantage of its ability
in programming the RO (to be more precise, programming
the RO on queries first made by the simulated honest par-
ties) in order to successfully simulate messages generated
by the honest parties. However, such simulated honest-party

messages (by using programmable RO) may not necessarily be
able to be generated by a polynomial-time machine with the
non-programmable RO in reality. For example, a Schnorr’s
signature can be a non-interactive zero-knowledge in the
(programmable) RO model, but it is definitely undeniable. This
is precisely the reason for the problems, particularly the loss
of deniability, observed in [40], [42], [45] for zero-knowledge
simulation with programmable RO.

To overcome the deniability loss problem of ZK simulation
with (programmable) RO, Yung et al. [45] proposed the
restricted RO model. In the restricted RO model, all the parties
(particularly, all honest parties and the simulator) except the
adversary get access to a non-programmable RO, but the
adversary (who runs in polynomial time and possesses no
private inputs) is still allowed to have access to a program-
mable RO. We can simply view that the restricted RO model
is identical to the original RO model, except that the simulator
is confined to programming the RO only on queries first made
by the adversary (run by the simulator as its subroutine).
The restricted RO model allows efficient interactive protocol
implementations, while still reasonably avoiding the loss of
deniability caused by simulation with fully programmable RO.

D. Analysis Overview of CNMSZK

Theorem 6.1: The DIKE protocol depicted in Figure 1 is
privacy-preserving CNMSZK in the restricted RO model,
assuming H is a (restricted) random oracle (but HK can be any
secure key derivation function), under the GDH assumption
and the CKEA assumption over the group G.

Though the CNMSZK property of the DIKE protocol seems
to be quite intuitive and straightforward, its formal analysis is
quite lengthy and tedious. Below, we present the overview
of the CNMSZK analysis, with focus on the tricks of using
CKEA assumption and restricted RO in the CNMSZK analy-
sis. The reader is referred to [46] for the complete proof.

High-level discussion. Consider a left-session between
an instance of the honest initiator player Â and a mali-
cious responder player B̂ (actually impersonated by the
CMIM adversary A). The simulator S generates X =
gx by itself in the first-round message. After receiving
P O K (B̂, y) = H (sid, B̂, Y, X, X y) in the second round
from A , with overwhelming probability A has queried the
RO with (sid, B̂, Y, X, X y). Then, by the CKEA assump-
tion, the value y can be extracted, based on which
the authentic message N M Z K (a, x) (to be sent in the
third round) can be generated by the simulator using a
non-programmable RO (without knowing the static secret-
key a). Furthermore, after receiving N M Z K (b, y) in the
fourth round (i.e., in case A successfully finishes the session),
with overwhelming probability A has queried the RO with
(sid, B̂, Y, X, Xb, X y), from which the secret-key b will also
be extracted by the CKEA assumption.

Now, consider a right-session between an instance of the
honest responder player B̂ and a malicious initiator player
Â (actually impersonated by the CMIM adversary A). After
receiving X in the first round from A , the simulator generates
Y = gy and P O K (B̂, y) by itself in the second round.

YAO AND ZHAO: PRIVACY-PRESERVING AUTHENTICATED KEY-EXCHANGE OVER INTERNET 137

After receiving N M Z K (a, x) in the third round from A
(i.e., in case A successfully finishes the session), with
overwhelming probability A has queried the RO with
(sid, X, Y, Y a, Y x), from which both the secret-key a and the
DH-exponent x can be extracted by the CKEA assumption.
Then, using the extracted DH-exponent x , the simulator can
generate N M Z K (b, y) to be sent in the fourth round using a
non-programmable RO (without knowing the secret-key b of
the honest responder player B̂).

Overview of the actual CNMSZK analysis. In the formal
CNMSZK analysis, the polynomial-time simulator S generates
DH-components and DH-exponents by itself by emulating
the honest player instances. However, being different from
honest player instances, S uses the DH-exponents (generated
by S itself) merely for DDH-tests in its simulation. To this
end, S maintains a DDH-test list, denoted LD D H , and stores
all DDH-test records into LD D H . The key observation is:
what can be done by the simulator S can also be done by
another efficient oracle machine SOC on the same common
input and the random coins of S except the coins used to
generate the DH-components, where OC is a DDH-oracle
and C = {Xl

1, · · · , Xl
s(k), Y r

1 , · · · , Y r
s(k)} is the set of all the

DH-components generated by S. Specifically, SOC works just
as S does, with the following modifications: (1) SOC just
sets the DH-component for the i -th left-session (resp., the
j -th right-session) to be the value Xl

i ∈ C (resp., Y r
j ∈ C),

1 ≤ i, j ≤ s(k), rather than generating them by itself as
S does. (2) Whenever SOC needs to perform a DDH-test
w.r.t. a DH-component in C, it queries the DDH-test to its
oracle OC and stores the record of the DDH-test into LD D H .
Whenever SOC /S needs to extract the DH-exponent and/or
secret-key corresponding to the DH-component and/or public-
key sent and alleged by the CMIM adversary A , SOC /S
runs the CKEA-extractor K on the same common input, the
random coins of SOC that just correspond to the coins of
S except the coins used to generates the DH-components
Xl

i ’s and Y r
j ’s, and LD D H that corresponds to the vector

of records of DDH-tests performed by OC . By the CKEA
assumption, K will successfully extract the corresponding
DH-exponents and/or secret-keys with overwhelming proba-
bility. Notice that, for each successfully finished session (of
different session-tag), from the extracted secret-key and DH-
exponent the corresponding session-key can be computed,
no matter what the key derivation function HK is. That
is, we do not assume HK to be an RO in the CNMSZK
analysis.

For the use of restricted RO, whenever S needs to
send one of the values N M Z K (B̂ , y), N M Z K (a, x) and
N M Z K (b, y), it first checks whether the value, denoted τ ,
has been defined by checking all the RO queries made by A
and performing corresponding DDH-tests. If the value to be
sent (i.e., τ) has already been defined (by A ’s RO query), it
is set to be the already defined one; otherwise, S sets τ to
be a random value r ← {0, 1}k . If τ is set to be a random
value r , from this point on whenever A makes an RO query,
S checks whether the previously sent random value r is the
answer to the RO query (again, by performing DDH-tests).
Notice that, in the later case (i.e., τ is set to be a random

value r that is however undefined by the RO), S does not try
to use its knowledge of DH-exponents (generated by itself)
to honestly compute the value τ , to ensure that those DH-
exponents are used merely for DDH-tests in order to comply
with the CKEA assumption. If A never makes an RO query
with the previously sent random value r as the RO answer,
the RO on this point remains undefined. In particular, S never
defines it on its own, which ensures S works in the restricted
RO model. By the above tricks, the simulator S works in
strict polynomial time and its simulation is straight-line (i.e.,
without rewinding A).

E. Comparisons With Related Works

Comparisons with deniable DHKE from [5]. Though
deniable authentication was theoretically introduced by Dolev
et al. in [22], to the best of our knowledge, the first practical
deniable DHKE protocol, referred to as BMP-protocol, was
proposed by Boyd et al. in the pioneer work [5] that opens
the door for achieving fully-deniable practical DHKE. In a
sense, the development of our DIKE protocol was inspired
by, and based on, the BMP-protocol. Below, we briefly
present differences between the BMP-protocol and our DIKE
protocol.

• Our protocol is deniable (actually, CNMSZK) for both
protocol participants simultaneously in the restricted RO
model (without requiring POK/POP of secret-key during
key generation). For the BMP-protocol [5], the interaction
between an honest responder B̂ and a malicious initiator
Â can be undeniable. Specifically, consider a malicious
initiator Â whose public-key A and DH-component X
are externally given by (or generated interactively with)
a third party (e.g., police) such that Â (or anyone)
actually does not necessarily know the secret-key a or
the DH-exponent x , and the malicious Â just aborts
after receiving the authentic message from B̂ in the
second round. As the second-round authentic message
involves the value Ab, which thus leaves an undeniable
witness (to the malicious initiator or the third party) of
the fact that B̂ has gotten involved in the interaction.
However, we notice that the deniability loss of the BMP-
protocol in this case can be mitigated by additionally
requiring POK/POP of secret-key during key genera-
tion. But we do not know how to formally prove (in
the restricted RO model) the deniability of the honest
responder against such a malicious aborting initiator, even
if POK/POP of secret-key is also required during key
generation.
By comparison, for our DIKE protocol against such an
aborting initiator, the authentic message included in the
aborted transcript is only P O K (B̂, y) that can be gener-
ated by a PPT machine using y and a non-programmable
RO (without using any static secret-key), and is thus
deniable. Moreover, the honest responder B̂ proves the
knowledge of its secret-key b in the fourth round, only
if the malicious initiator has successfully proved the
knowledge, via the authentic value N M Z K (a, x), of both
secret-key a and DH-exponent x in the third round.

138 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

• The transcript of a session run of the BMP-protocol can
be traced to the pair of protocol participants, as the value
gab is involved in the generation of session transcript.

• The exchanged messages in the protocol proposed in [44]
explicitly bear player role and peer’s identity information.

• As already noticed by Boyd et al. in [6], the deni-
able DHKE protocol proposed in [5] does not pro-
vide KCI resistance, which is inherent to any KE
protocol using statically keyed authenticators. How-
ever, this does not violate the security within the
CK-framework.

CNMSZK for DHKE vs. traditional CNMSZK based
approaches. Our CNMSZK formulation for DHKE is based
on the traditional CNMSZK formulation (see, e.g., [22],
[43]), but with some essential differences. On the one hand,
traditional CNMSZK formulation considers a pair of players
of fixed roles, specifically, one prover and one verifier. By
comparison, our CNMSZK simulation for DHKE considers
a pair of players of interchanged roles, i.e., each player
plays both the role of ZK prover and that of ZK verifier.
On the other hand, privacy-preserving CNMSZK proposes
additional privacy requirements for the session messages of
DHKE being exchanged concurrently over Internet. This, in
particular, means that to achieve (privacy-preserving) CNM-
SZK is much more complicated, or harder, than to achieve
traditional CNMSZK.

On identity hiding and unlinkability. A deniable KE
protocol essentially ensures: given a session transcript between
a pair of players (Â, B̂), as well as the result session-key,
each player Â or B̂ can deny the fact that it was ever
involved in the generation of the session transcript and the
session-key. That is, the session transcript and the session-
key can be efficiently simulated from public values (e.g.,
players’ certificates) without knowing the knowledge of any
static secret-key. In other words, the session transcript and the
session-key cannot serve as a valid witness to the fact either Â
or B̂ was involved in the generation of the presented session
transcript and session-key, as they can be simulated by some
efficient algorithm.

But a deniable KE protocol does not aim to hide the infor-
mation related to players’ identities, affiliations or certificates,
which is, however, the case in affiliation-hiding KE (see, e.g.,
[28], credential based KE [9] and unlinkable secure channel
establishment [8]. Also, as the player uses the same certifi-
cate/identity in all sessions, it cannot preserve the anonymity
property (as typically considered in group signature) or the
unlinkability property.

Roughly speaking, a protocol is identity-hiding and unlink-
able, if the multiple sessions run by the same party cannot
be linked. Unlinkability particularly implies that protocol
transcript does not bear players’ identities in plain. We notice
that, like IKEv2 and SIGMA, our DIKE protocols, and their
implications as presented in the full version, can be extended
to offer unlinkable secure channel establishment. The idea is
to use the derived session-key to encrypt, via an authenticated
encryption scheme, all the exchanged messages (except the
session identifier sid) starting from the second round. Formal

treatment of unlinkable DIKE protocols is left to a subsequent
separate paper.

VII. IDENTITY-BASED DENIABLE

INTERNET KEY-EXCHANGE

Identity-based key-exchange (IBKE) simplifies public-key
certificate management in traditional PKI-based key-exchange,
where users’ identities themselves can serve as the public-keys
(but at the price of introducing a trusted authority called private
key generator that generates the secret-keys for all the users).
A list of identity-based key-exchange protocols have been
developed in the literature, and the reader is referred to [15] for
a good survey. However, to the best of our knowledge, deniable
IBKE (for both the initiator and the responder simultaneously)
with post-specified peers is still unknown. In this section,
we present an identity-based variant of the DIKE protocol
depicted in Figure 1, which is referred to as ID-DIKE for
presentation simplicity.

Admissible pairing: Let ê : G×G → GT be an admissible
pairing [1], [4], where G is a cyclic multiplicative group of
order q generated by an element g. Here, an admissible pairing
ê satisfies the following three properties:

• Bilinear: If x, y ∈ Zq , then ê(gx , gy) = ê(g, g)xy .
• Non-degenerate: ê(g, g) �= 1GT , where 1GT is the identity

element in GT . In particular, ê(g, g) is the generator
of GT in case GT is also a cyclic group of the same
order q .

• Computable: If g1, g2 ∈ G, ê(g1, g2) ∈ GT can be
computed in polynomial time.

Definition 7.1 (Bilinear DH (BDH) assumption [4]): Let
ê : G × G → GT be an admissible pairing as defined
above. For any three elements X = gx , Y = gy and
Z = gz in G, where x, y, z ∈ Zq , we denote by
B DH (X, Y, Z) = ê(g, g)xyz. An algorithm is called a
BDH solver for ê if it takes as input of any three elements
(X, Y, Z) ∈ G3 and its goal is to output the value of
B DH (X, Y, Z). We say the BDH assumption holds for ê
if for any PPT BDH solver, the probability that on input
(X, Y, Z) ← G3 (i.e., each of x , y and z is taken uniformly
at random from Zq), the solver computes the correct value
B DH (X, Y, Z) is negligible (in k = |q|). The probability
is taken over the random coins of the solver, the choice of
X, Y, Z uniformly at random in G (and also the random
choice of the system parameters for (g, q, G, GT)). �

The gap BDH (GGDH) assumption [33] essentially says
that, for the pairing ê defined over (g, q, G, GT), computing
B DH (X, Y, Z), for X, Y, Z ← G, is strictly harder than
deciding whether U = B DH (X ′, Y ′, Z ′) for an arbitrary tuple
(X ′, Y ′, Z ′, U) ∈ G3 × GT .

Definition 7.2 (Gap BDH (GBDH) Assumption [33]): Let
ê : G × G → GT be an admissible pairing defined over
(g, q, G, GT). Let a decision predicate algorithm OB be a
(full) Decisional Bilinear Diffie-Hellman (DBDH) Oracle
for ê such that on any input (X ′, Y ′, Z ′, U) ∈ G3 × GT ,
oracle OB outputs 1 if and only if U = B DH (X ′, Y ′, Z ′).
We say the GBDH assumption holds over (G, GT), if for
any PPT BDH solver the probability that on input of random

YAO AND ZHAO: PRIVACY-PRESERVING AUTHENTICATED KEY-EXCHANGE OVER INTERNET 139

Fig. 2. Identity-based deniable IKE.

elements (X, Y, Z) ← G3 the solver computes the correct
value B DH (X, Y, Z) is negligible (in k), even when the
algorithm is provided with the (full) DBDH-oracle OB . �

The ID-DIKE works as follows:
Setup: The trusted authority, Private Key Generator (PKG),

chooses a master secret-key s ∈ Z∗q , and computes the
public-key S = gs . Besides the functions H and HK

(that are the same in the description of the DIKE proto-
col in Section III), PKG also specifies a map-to-point hash
function H1 : {0, 1}∗ → G. The public parameters are:
(G, GT , ê, g, S, H1, h, HK). We assume the master secret-key
s cannot be compromised.

User secret-key extract: For a user with identity Â the
public-key is given by A = H1(Â), and the PKG generates
the associated secret-key of the user as SA = As . Similarly, a
user of identity B̂ has public-key B = H1(B̂) and secret-key
SB = Bs .

ID-based DIKE between two users Â and B̂. The four-
round ID-based DIKE protocol, in accordance with the main
mode DIKE protocol depicted in Figure 1, is depicted in
Figure 2.

Most advantageous features of the DIKE protocols
described in Section III are inherited by the above ID-DIKE
protocols. Below, we explicitly highlight some features of the
ID-DIKE protocols.

• Deniability. The major difference between DIKE and
ID-DIKE is that the value C DH (A, Y) (resp.,
C DH (B, X)) in DIKE is now replaced by ê(SA, Y)
(resp., ê(SB , X)) in ID-DIKE. Observe that all the
authentic values P O K (B̂, y), and N M Z K (b, y) (resp.,
N M Z K (a, x)) in ID-DIKE can still be computed merely
from peer’s DH-exponent x (resp., y). In particular,
ê(SA, Y) = ê(A, S)y (resp., ê(SB , X) = ê(B, S)x).

• Online efficiency. In case of pre-specified peer identity, Â
(resp., B̂) can offline pre-compute ê(B, S) and ê(B, S)x

(resp., ê(A, S) and ê(A, S)y). That is, the online compu-
tation involved at each user side is essentially 1 pairing
and 1 modular exponentiation.

Security analysis of ID-DIKE in the CK-framework, based
on the GBDH assumption in the RO model, is similar to
(and actually simpler than) that of Theorem 4.1, by the
following observations: Though GBDH assumption implies

that the CDH problem is still hard in the group G (even with
a full DBDH oracle), the DDH problem becomes easy in G
due to the underlying pairing operations. Below, we briefly
discuss the differences between the analysis of ID-DIKE and
that of DIKE. Denote A = H1(Â) = ga and B = H1
(B̂) = gb.

In the proof of Lemma 4.1, the simulator does not need
now to resort to a DDH oracle to ensure the consistency of
RO answers related to C DH (X, Y), as the DDH problem
is easy in G now. By running the assumed attacker A
as a subroutine, the simulator’s goal now is to compute
ê(SA, Y) = ê(g, g)yas = B DH (Y, A, S) for Event-1 or
ê(SB , X) = ê(g, g)xbs = B DH (X, B, S) for Event-2. Toward
this goal, the simulator resorts to a DBDH oracle to ensure the
consistency of RO answers related to ê(SA, Y) and ê(SB , X).
Note that we assume the master secret-key s of PKG cannot
be compromised in the system, which is particularly unknown
to both A and the simulator.

In the proof of Theorem 4.1, in order to rule out the forging
attack, the weaker CDH assumption (implied by the GBDH
assumption) is sufficient. Specifically, in order to compute
C DH (X, Y) from X, Y ← G, the simulator sets X and Y just
to be the DH-components to be exchanged in the test-session.
In the simulation, the simulator performs pairing operations
(rather than resorting to a DDH oracle as in the proof of
Theorem 4.1) to ensure the consistency of RO queries related
to C DH (X, Y).

Corollary 7.1: The ID-DIKE protocol (depicted in Fig-
ure 2), with pre-computed and exposed DH components and
exponents, is SK-secure in the CK-framework with post-
specified peers, under the GBDH assumption in the RO
model.

Notice that the CKEA assumption over the group G is
degenerated to a simplified version, where the DDH-oracle
OC can be dispensed with as DDH is easy in the bilinear
groups (G, GT). Informally speaking, the KEA assumption
over the bilinear groups (G, GT) (originally introduced in
[26]) says that: given a DH-challenge X ← G, the ability
of coming up with (B, S, Z) ∈ G2 × GT , where Z =
B DH (X, B, S) = e(g, g)bsx = ê(SB, X), implies the knowl-
edge of C DH (B, S) = SB . The CKEA assumption can be
defined analogously over the bilinear groups (G, GT). Here,
the key differences are: (1) the DDH oracle in Definition 6.2
is replaced by a DBDH oracle OC , which on a query of
the form (X, Y, S, Z) ∈ G3 × GT outputs 1 iff X ∈ C and
Z = B DH (X, Y, S). (2) The algorithm AOC will output a
list of values {(X1, P1, S, Z1), · · · , (Xq(k), Pq(k), S, Zq(k))} ∈
(G3×GT)q(k), and the knowledge extracted by the extractor K
will be {C DH (P1, S), · · · , C DH (Pq(k), S)}. The CNMSZK
analysis of the DIKE depicted in Figure 1 can be straight-
forwardly adapted to the ID-DIKE protocol, and we have the
following corollary:

Corollary 7.2: The ID-DIKE protocol depicted in
Figure 2 is privacy-preserving CNMSZK in the restricted
random oracle model, under the GBDH assumption over the
bilinear groups (G, GT) and the CKEA assumption over
both the group G and the bilinear groups (G, GT). Here,
the CKEA assumption over (G, GT) (resp., G) is used to

140 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

extract the corresponding secret-key SA or SB (resp., the
DH-exponent x or y).

ACKNOWLEDGMENT

We are grateful to Prof. Colin Boyd for many very helpful
and insightful comments, clarifications and suggestions, as
well as related work references, which have much improved
the presentation of this work. We thank the anonymous ref-
erees for their very helpful comments, Boru Gong for many
helpful discussions and editing assistance.

REFERENCES

[1] S. Al-Riyami and K. Paterson, “Certificateless public-key cryptography,”
in Proc. Asiacrypt 2003, pp. 452–473.

[2] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in Proc. CRYPTO 1993, pp. 273–289.

[3] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. ACM CCS 1993, pp. 62–73.

[4] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Proc. CRYPTO 2001, pp. 213–229.

[5] C. Boyd, W. Mao, and K. G. Paterson, “Deniable authenticated key
establishment for Internet protocols,” in Proc. SPW 2003, pp. 255–271.

[6] C. Boyd, W. Mao, and K. G. Paterson, “Key agreement using statically
keyed authenticators,” in Proc. ACNS 2004, pp. 248–262.

[7] C. Boyd and A. Mathuria, Protocols for Authentication and Key Estab-
lishment. New York, NY, USA: Springer-Verlag, 2003.

[8] C. Brzuska, N. P. Smart, B. Warinschi, and G. J. Watson, “An analysis
of the EMV channel establishment protocol,” in Proc. ACM CCS, 2013,
pp. 373–386.

[9] J. Camenisch, N. Casati, T. Gross, and V. Shoup, “Credential authen-
ticated identification and key exchange,” in Proc. CRYPTO 2010,
pp. 255–276.

[10] R. Canetti, “Security and composition of cryptographic protocols:
A tutorial,” SIGACT News, vol. 37, no. 3, pp. 67–92, 2006.

[11] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure
multi-party computation,” in Proc. STOC 1996, pp. 639–648.

[12] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols
and their use for building secure channels,” in Proc. Eurocrypt 2001,
pp. 289–307.

[13] R. Canetti and H. Krawczyk, “Security analysis of IKE’s signature-based
key-exchange protocol,” in Proc. CRYPTO 2002, pp. 143–161.

[14] K. K. Choo, C. Boyd, Y. Hitchcock, and G. Maitland, “On ses-
sion identifiers in provably secure protocols,” in Proc. SCN 2004,
pp. 351–366.

[15] M. C. Gorantla, R. Gangishetti, and A. Saxena, “A survey on ID-
based cryptographic primitives,” IACR (The International Association
for Cryptologic Research), San Diego, CA, USA, Tech. Rep. 2005/094,
2005.

[16] C. J. F. Cremers, “Formally and practically relating the CK, CK-HMQV,
and eCK security models for authenticated key exchange,” IACR (The
International Association for Cryptologic Research), San Diego, CA,
USA, Tech. Rep. 2009/253, 2009.

[17] I. Damgård, “Towards practical public-key systems secure against cho-
sen ciphertext attacks,” in Proc. CRYPTO 1991, pp. 445–456.

[18] M. Di Raimondo and R. Gennaro, “New approaches for deniable
authentication,” in Proc. ACM CCS 2005, pp. 112–121.

[19] M. Di Raimondo, R. Gennaro, and H. Krawczyk, “Deniable authentica-
tion and key exchange,” in Proc. ACM CCS 2006, pp. 466–475.

[20] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[21] Y. Dodis, J. Katz, A. Smith, and S. Walfish, “Composability and on-line
deniability of authentication,” in Proc. TCC 2009, pp. 146–162.

[22] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” SIAM
J. Comput., vol. 30, no. 2, pp. 391–437, 2000.

[23] C. Dwork, M. Naor, and A. Sahai, “Concurrent zero-knowledge,” in
Proc. STOC 1998, pp. 409–418.

[24] Digital Signature Standard (DSS), FIPS Standard 186-2, Jan. 2000.
[25] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity

of interactive proof-systems,” in Proc. STOC 1985, pp. 291–304.
[26] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-

ments,” in Proc. Asiacrypt 2010, pp. 321–340.
[27] D. Harkins and D. Carreal, “The Internet key-exchange (IKE),” IETF

(The Internet Engineering Task Force), New York, NY, USA, Tech. Rep.
2409, Nov. 1998.

[28] S. Jarecki, J. Kim, and G. Tsudik, “Beyond secret handshakes:
Affiliation-hiding authenticated key agreement,” in Proc. CT-RSA 2008,
pp. 352–369.

[29] C. Kaufman, “Internet key exchange (IKEv2) protocol,” The Internet
Engineering Task Force, London, U.K., Tech. Rep. 4306, Dec. 2005.

[30] S. Kent and R. Atkinson, “Security architecture for the Internet proto-
col,” IACR (The International Association for Cryptologic Research),
San Diego, CA, USA, Tech. Rep. 2401, 1998.

[31] H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE-protocols,” in Proc. CRYPTO
2003, pp. 400–425.

[32] H. Krawczyk, “HMQV: A high-performance secure Diffie-Hellman
protocol,” in Proc. CRYPTO 2005, pp. 546–566.

[33] C. Kudla and K. Paterson, “Modular security proofs for key agreement
protocols,” in Proc. Asiacrypt 2005, pp. 549–565.

[34] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An effi-
cient protocol for authenticated key agreement,” Des., Codes Cryptogr.,
vol. 28, no. 2, pp. 119–134, 2003.

[35] W. Mao, Modern Cryptography: Theory and Practice. Englewood Cliffs,
NJ, USA: Prentice-Hall, 2004.

[36] U. Maurer and S. Wolf, “Diffie-Hellman oracles,” in Proc. CRYPTO
1996, pp. 268–282.

[37] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. Boca Raton, FL, USA: CRC Press, 1996.

[38] M. Naor and O. Reingold, “Number-theoretic constructions of efficient
pseudo-random functions,” J. ACM, vol. 1, no. 2, pp. 231–262, 2004.

[39] K. Neupane, R. Steinwandt, and A. S. Corona, “Scalable deniable group
key establishment,” in Proc. FPS 2012, pp. 365–373.

[40] J. B. Nielsen, “Separating random oracle proofs from complexity the-
oretic proofs: The non-committing encryption case,” in Proc. CRYPTO
2002, pp. 111–126.

[41] T. Okamoto and D. Pointcheval, “The gap-problems: A new class of
problems for the security of cryptographic schemes,” in Proc. PKC 2001,
pp. 104–118.

[42] R. Pass, “On deniabililty in the common reference string and random
oracle models,” in Proc. CRYPTO 2003, pp. 316–337.

[43] R. Pass and A. Rosen, “New and improved constructions of non-
malleable cryptographic protocols,” in Proc. STOC 2005, pp. 533–542.

[44] A. P. Sarr and P. E. Vincent, “A complementary analysis of the (s)YZ
and DIKE Protocols,” in Proc. Africacrypt 2012, pp. 203–220.

[45] M. Yung and Y. Zhao, “Interactive zero-knowledge with restricted
random oracles,” in Proc. TCC 2006, pp. 21–40.

[46] A. C. Yao and Y. Zhao, “Deniable Internet key-exchange,” IACR (The
International Association for Cryptologic Research), San Diego, CA,
USA, Tech. Rep. 2011/035, Jan. 2011.

Andrew Chi-Chih Yao is the Dean of the Institute
for Interdisciplinary Information Sciences, Tsinghua
University, Beijing. He received the B.S. degree in
physics from National Taiwan University in 1967,
the Ph.D. degree in physics from Harvard Univer-
sity in 1972, and the Ph.D. degree in computer
science from the University of Illinois in 1975.
After serving on the faculty at MIT, Stanford, UC
Berkeley and Princeton University, he left Princeton
in 2004 to join Tsinghua Univeristy, Beijing. He is
a Distinguished Professor-at-Large with the Chinese

University of Hong Kong. He is a recipient of the Prestigious A. M. Turing
Award in Year 2000 for his contributions to the theory of computation,
including pseudorandom number generation, cryptography, and communica-
tion complexity. He is a member of the U.S. National Academy of Sciences
and the Chinese Academy of Sciences.

Yunlei Zhao received the Ph.D. degree in com-
puter science from Fudan University, Shanghai,
China, in 2004. He joined Hewlett-Packard Euro-
pean Research Center, Bristol, U.K., as a Post-
Doctoral Researcher, in 2004. Since 2005, he has
been with Fudan University, and is currently an
Associate Professor with the Software School, Fudan
University. His research interests include the the-
ory and applications of cryptography, information
security, and the interplay between cryptography and
complexity theory.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

