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Randomness is important for many information processing 
applications, including numerical modelling and cryptography1,2. 
Device-independent quantum random-number generation 
(DIQRNG)3,4 based on the loophole-free violation of a Bell 
inequality produces genuine, unpredictable randomness without 
requiring any assumptions about the inner workings of the devices, 
and is therefore an ultimate goal in the field of quantum information 
science5–7. Previously reported experimental demonstrations of 
DIQRNG8,9 were not provably secure against the most general 
adversaries or did not close the ‘locality’ loophole of the Bell test. 
Here we present DIQRNG that is secure against quantum and 
classical adversaries10–12. We use state-of-the-art quantum optical 
technology to create, modulate and detect entangled photon pairs, 
achieving an efficiency of more than 78 per cent from creation to 
detection at a distance of about 200 metres that greatly exceeds 
the threshold for closing the ‘detection’ loophole of the Bell test. 
By independently and randomly choosing the base settings for 
measuring the entangled photon pairs and by ensuring space-like 
separation between the measurement events, we also satisfy the 
no-signalling condition and close the ‘locality’ loophole of the Bell 
test, thus enabling the realization of the loophole-free violation of a 
Bell inequality. This, along with a high-voltage, high-repetition-rate  
Pockels cell modulation set-up, allows us to accumulate sufficient 
data in the experimental time to extract genuine quantum 
randomness that is secure against the most general adversaries. 
By applying a large (137.90 gigabits × 62.469 megabits) Toeplitz-
matrix hashing technique, we obtain 6.2469 × 107 quantum-
certified random bits in 96 hours with a total failure probability 
(of producing a random number that is not guaranteed to be 
perfectly secure) of less than 10−5. Our demonstration is a crucial 
step towards transforming DIQRNG from a concept to a key aspect 
of practical applications that require high levels of security and 
thus genuine randomness7. Our work may also help to improve our 
understanding of the origin of randomness from a fundamental 
perspective.

The security, or unpredictability, of randomness generated by a 
device-independent quantum random-number generator can be 
assessed via the observation of the loophole-free violation of a Bell 
inequality. A Bell test involves two entangled particles, with each party 
choosing the measurement settings according to a random input and 
outputting a classical bit. To create a device-independent quantum 
random-number generator based on the violation of a Bell inequality, 
two sets of conditions must be fulfilled rigorously and simultaneously.

First, it is necessary in the experimental implementations of 
DIQRNG to detect entangled particles with high efficiency in order to 
close the detection loophole and to ensure the no-signalling condition— 
which requires that there is no information exchange between the 

preparation of input randomness and the preparation of entangled 
particles, or between the measurement setting at one detector and 
measurement outcome at the other—by space-like separating relevant 
events. Alternatively, proper shielding could be applied to prohibit 
communications between relevant events7,8; however, in practice, it 
is impossible to shield all of the known and unknown types of com-
munication. Although recent progress in loophole-free tests of Bell 
inequalities13–16 provides a way of realizing DIQRNG based on the 
violation of Bell inequalities, the implementation demands unprece-
dented detection efficiency and system stability. Therefore, DIQRNG 
remains a formidable challenge.

Second, an independent and identical distribution (i.i.d.) must 
not be assumed for the behaviour of the adversary, the most general 
quantum adversary should be considered in the security analysis and 
the production of random bits must occur at a non-vanishing rate 
and be noise-tolerant. In the i.i.d. scenario, assuming that the adver-
sarial strategy follows a predetermined probability distribution, the 
security analysis is greatly simplified, even without considering any 
internal memory or time-dependent behaviour; however, the i.i.d. 
assumption in these theories fails in practice because, for example, 
the adversary may attack the system using the previous results in an 
adaptive, non-i.i.d. way. Although security against the most general 
quantum adversaries and without the i.i.d. assumption has been rigor-
ously proved12,17–21, a method for security analysis that is efficient for 
a non-infinite amount of data (and can therefore be tested experimen-
tally) was demonstrated only very recently. A method for DIQRNG that 
does not use the i.i.d. assumption and that considers a general quantum 
adversary was proposed recently12, based on the entropy accumula-
tion theorem21. With this method, the rate of randomness generation 
approaches the value for the i.i.d. case in the limit of a large amount 
of data. We have previously presented an experimental demonstration 
of DIQRNG22 that closed the detection loophole but did not consider 
space-like-separated events. Here we report fully functional DIQRNG, 
evidenced by rigorously satisfying the two sets of conditions discussed 
above in our experimental set-up and by accounting for general quan-
tum adversaries in the security analysis. The device-independent quan-
tum random-number generator that we demonstrate outputs genuinely, 
quantum-certified random bits at a rate of 181 bits s−1—an important 
step towards practical applications.

Our realization of DIQRNG is based on a sequence of Bell-test exper-
iments in the format of the Clauser–Horne–Shimony–Holt (CHSH) 
game23. We assume neither modelling of the physical apparatus nor 
any relation between different experimental trials. Time-dependent 
or memory-like effects may be present across experimental trials. We 
adopt the spot-checking protocol10,12,24 for our experimental imple-
mentation. In experimental trial i, Alice and Bob, who are spatially 
separated, each receives a photon from an entangled pair. A classical 
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bit ti = 0 or ti = 1 is generated with probability 1 − q or q, respectively. 
If ti = 0, then the trial is a ‘generation’ trial, with fixed inputs for Alice 
and Bob, xi = 0 and yi = 0, respectively. If ti = 1, then the trial is a ‘test’ 
trial to test against adversaries. In our experiment, we set all trials to 
be test trials by choosing q = 0. In each test trial, Alice and Bob each 
receives a bit from a quantum random-number generator, xi, yi ∈ {0, 1}, 
as an input that determines their measurement setting. Alice’s (Bob’s) 
measurement setting is not affected by Bob’s (Alice’s) measurement set-
ting or measurement outcome, and is independent of the entanglement 
creation at the source. Hence, the experiment satisfies the no-signalling 
condition. We assume that the two random inputs, xi and yi, are created 
independently of the rest of the experiment, and that their creation is 
i.i.d. for all of the n trials. The corresponding measurement outcomes 
are ai, bi ∈ {0, 1}. We assign a CHSH game value of Ji = 1 if ai ⊕ bi = xiyi 
and of Ji = 0 otherwise.

Considering uniform inputs for all n experimental trials (so that the 
probability of selecting any xi, yi ∈ {0, 1} is 1/4), the CHSH game value 
J  over all n experimental trials is

∑= − /
=

J
n

J1 3 4
i

n

i
1

The experiment is subject to various possible loss mechanisms. We 
require that the photon loss is low enough to close the detection loop-
hole. Any adversarial strategies based on local hidden-variable models 
yield ≤J 0. Therefore, >J 0 indicates that the measurement outcomes 
cannot be pre-determined and therefore represent genuine, unpredict-
able quantum randomness.

The amount of unpredictable randomness that can be extracted in 
the presence of the quantum adversary system E is quantified by the 
smooth min-entropy12:

ε ε ω| ≥εH E nRAB XY( ) ( , , )min opt s EA exp
s

with smoothing parameter εs, expected CHSH game value ωexp and 
failure probability for the entropy accumulation protocol εEA. X and Y 
denote the input sequences for Alice and Bob, respectively, and A  
and B the corresponding output sequences. The lower bound of the 
generation rate, Ropt(εs, εEA, ωexp), is used as the theoretical amount of 
randomness on average for each trial. See Supplementary Information 
section I.B for details. By using a Toeplitz-matrix hashing extractor 
with a size of × | −εn H E tAB XY[ ( ) ]min e

s , where te is the number of bits  
sacrificed to minimize the information that an adversary may acquire 
(a parameter that is relevant to the failure probability of the extractor), 

Fig. 1 | Schematics of the experiment. a, Top view of the experimental 
layout. Alice’s and Bob’s measurement stations are on the opposite  
sides of the source of entangled photon pairs, at distances of 93 ± 1 m  
and 90 ± 1 m, respectively, where the errors quoted are system errors.  
(We measure the distance by holding whiteboards and measuring the 
distance with a laser ranger; the error measured this way is estimated  
to be less than 1 m.) b, Middle, creation of pairs of entangled photons. 
Light pulses of 10-ns duration and 200-kHz frequency from a 1,560-nm  
laser diode (LD) are amplified by an erbium-doped fibre amplifier 
(EDFA) and frequency-doubled in an in-line periodically poled lithium 
niobate crystal (PPLN); the red arrow indicates the direction of the light. 
The resultant 780-nm light pulses are focused into a periodically poled 
potassium titanyl phosphate crystal (PPKTP) in a Sagnac loop to generate 

polarization-entangled photon pairs. A half-wave plate (HWP) and two 
quarter-wave plates (QWPs) are used to control the relative amplitude 
and phase in the polarization-entangled two-photon state that is created. 
Left and right, measuring the polarization of single photons. The single 
photons exit the fibre, experience the polarization-state measurement in 
free space and are collected into single-mode optical fibres to be detected 
by superconducting nanowire single-photon detectors (SNSPDs). The 
apparatus that is used to perform the measurement consists of a Pockels 
cell, a quarter-wave plate, a half-wave plate and a polarizing beam splitter 
(PBS). Quantum random-number generators (QRNGs) output random 
bits, triggering the Pockels cell to switch between two polarization 
orientations. DM, dichroic mirror; WDM, wavelength-division 
multiplexer. Underlying map in a from Google, DigitalGlobe.
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we extract | −εH E tAB XY( )min e
s  random bits with genuine unpredicta-

bility from the raw data obtained in the n experimental trials. The 
random bits are ε ε+ + −2 t

s EA
e close to a uniform distribution, where 

−2 te is the failure probability in extraction, with te = 100.
Although we do not assume the inner workings of the devices, we 

still require a few assumptions in our experimental implementation:  
(1) that the devices and adversaries behave according to the laws 
of either classical or quantum mechanics; (2) that Alice’s and Bob’s 
devices are located in one secure laboratory so that the adversaries 
cannot access their measurement outcomes; (3) that Alice and Bob 
each receives a sequence of uniform random bits to determine their  
measurement setting from an independent, trusted source; and (4) that  
Alice and Bob each has a trusted classical post-processing unit to 
extract the final random bits. In general, device-independent protocols  
(in particular for quantum key distribution) assume that Alice’s and 
Bob’s devices are located in two secure laboratories and in between them 
there is a classical authentication channel. In these cases, the publicly  
announced information may be leaked to the adversaries. The secu-
rity is then compromised by reusing the devices. Any attack based on 
this premise is known as a memory attack25. With the above assump-
tions and by ensuring no information leakage, our implementation is 
secure against memory attacks. In our experiment, quantum random 
numbers are required as inputs to switch the measurement basis in 
the Bell inequality. In this sense, our experiment can be seen as a type 
of randomness expansion, which generates more randomness from a 
random seed. An interesting future direction of research would be to 
create nearly perfect random numbers from weak randomness, which 
may require more than one set of Bell-test equipment.

Our experimental implementation is depicted in Fig. 1. We create 
entangled photon pairs at a wavelength of 1,560 nm using spontaneous 
parametric downconversion in a Sagnac interferometer (see Methods). 
We then distribute the two photons of a pair in opposite directions 
to Alice’s and Bob’s measurement stations, which are at distances of 
93 m and 90 m from the source, respectively. A detailed space–time 
analysis (Fig. 2) shows that the relevant events in the experiment are 
space-like-separated (Supplementary Information section II.E). We 
obtain an overall efficiency from the creation to the detection of the 
entangled photons of 78.8% ± 1.9% for Alice and 78.5% ± 1.5% for 
Bob26 (where the errors quoted are one standard deviation), surpass-
ing the threshold to close the detection loophole (Supplementary 
Information section II.C).

To achieve the maximum violation of the Bell inequality27, we create 
a non-maximally polarization-entangled two-photon state, 

⟩ ⟩. | + . |� �HV VHcos(22 05 ) sin(22 05 ) , and choose the measurement sett
ings to be −83.5° (for xi = 0) or −119.4° (for xi = 1) for Alice and 6.5° 
(for yi = 0) or −29.4° (for yi = 1) for Bob when measuring the polari-
zation state of the entangled photons. The measurement settings are 
selected randomly by the quantum random-number generators in each 
experimental trial. The two quantum random-number generators are 
based on vacuum noise fluctuation (Supplementary Information 
section II.A).

Our system is now robust against noise, which allows us to complete 
n = 6.895 × 1010 experimental trials in 95.77 experimental hours, oper-
ating continuously. To quantify the significance of our experimental 
results, we perform a hypothesis test of local realism. The null hypoth-
esis is that the experimental results are explainable by local realism 
under the assumption that the input distribution at each trial is uni-
form. The evidence against local realism, under the above assumption, 
is quantified by a statistical P value computed using a test statistic. 
The P value is the maximum probability according to local realism 
that the statistic takes a value as extreme as the observed one. Hence, 
small P values imply strong evidence against local realism. We apply 
the prediction-based ratio (PBR) method of analysis28 to design the 
test statistic and compute an upper bound for the P value. The PBR 
analysis provides valid upper bounds for P values without assuming 
the i.i.d. condition. The upper bound that is returned after the whole 
experiment is pLR = 10−204,792, indicating a strong rejection of local 

hidden-variable models (see Supplementary Information III.C). With 
the PBR method, we also test the null hypothesis that the experimental 
results satisfy the no-signalling condition under the assumption that 
the input distribution at each trial is uniform. In this case, we obtain an 
upper bound of pNS = 1, indicating no evidence of anomalous signal-
ling in the experiment (see Supplementary Information section III.B).

We compute the CHSH game value J over n experimental trials to be 
= . × −J 2 757 10 4 . By setting the expected CHSH game value to that 

measured in the experiment, ωexp = 2.757 × 10−4, and assuming that 
ε ε= = / = . × −n1 3 8 10s EA

6 and that the width of the statistical con-
fidence interval for the estimate of the Bell violation is 
δ = / = . × −n10 1 2042 10est

5 , we find a total failure probability of 
ε ε+ + < ×− −2 1 10t

s EA
5e . After developing a computing technique for 

fast Toeplitz-matrix multiplication (Supplementary Information sec-
tion II.H) that allows us to apply an 137.90 Gb × 62.469 Mb Toeplitz-
matrix hashing, we obtain 6.2469 × 107 genuinely, quantum-certified 
random bits, corresponding to a rate of 181.2 bits s−1, with a total failure 
probability of 10−5. The stream of random bits passes the National 
Institute of Standards and Technology (NIST) statistic test suite 
(Supplementary Information section III.A). As shown in Fig. 3, the 
amount of randomness generated with our experimental set-up is 
56.9% of the optimal value in the i.i.d. case for n = 6.895 × 1010, and 
asymptotically approaches the optimal value with an increasing number 
of experimental trials. In the inset of Fig. 3 we plot the randomness 
production as a function of time, demonstrating the robustness of the 
system.

In conclusion, we report here the realization of DIQRNG that is 
secure against the most general quantum adversaries and outputs 
181 quantum-certified random bits per second. A next step will be 
to improve the violation of the Bell inequality and the stability of the 
system to achieve higher production rates of quantum-certified random 
bits for practical applications that require high levels of security. We 
anticipate that our work will be helpful in topics such as randomness 
amplification29, the minimum assumption necessary for randomness 
generation, and fundamental problems relating to the understanding 
of non-locality, entanglement and randomness7.
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Fig. 2 | Space–time diagram for the experimental design. TE = 10 ns 
is the time taken to generate a pair of entangled photons. TQRNG1,2 are 
the times required to generate random bits to switch the Pockels cells. 
Tdelay1,2 are the lengths of time between the random bits being generated 
and delivered to the Pockels cells. TPC1,2 are the waiting times for the 
Pockels cells to be ready to perform state measurements after receiving 
the random bits. TM1,2 are the times taken by the superconducting 
nanowire single-photon detectors to output electronic signals. For 
TQRNG1 = TQRNG2 = 96 ns, Tdelay1 = 270 ns, Tdelay2 = 230 ns, TPC1 = 112 ns, 
TPC2 = 100 ns, TM1 = 50 ns and TM2 = 100 ns, we place Alice’s and Bob’s 
measurement stations on opposite sides of the source at distances of 93 m 
and 90 m, respectively. The effective optical length between Alice’s (Bob’s) 
station and the source is 132 m (119 m). This arrangement ensures no 
signalling between relevant events in the experiment. The shaded areas are 
the future light cones for the source, Alice and Bob.
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Fig. 3 | Randomness generation versus number of trials. The solid blue 
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s  versus the number of trials n for a finite amount of data 
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Methods
No statistical methods were used to predetermine sample size.
Entanglement creation, distribution, and detection at low loss. The experimen-
tal layout is depicted in Fig. 1. A 1,560-nm laser outputs 10-ns laser pulses periodi-
cally at a repetition rate of 200 kHz. The pulses are amplified by an erbium-doped 
fibre amplifier and frequency-doubled in an in-line periodically poled lithium 
niobate crystal. After removing the residual 1,560-nm light with a wavelength- 
division multiplexer and spectral filters, the 780-nm light pulses that are generated 
are focused into a periodically poled potassium titanyl phosphate (PPKTP) crystal 
with a poling period of 46.5 μm in a Sagnac loop to generate polarization-entangled  
photon pairs via a type-II spontaneous parametric downconversion process.

We optimize the efficiency to couple the entangled photons that are created 
into a single-mode optical fibre by setting their beam waists to the theoretical 
optimized size with respect to that of the pump beam26,30,31. For the pump light 
exiting a 780HP single-mode fibre, which has a mode field diameter of 5 μm, 
we focus it with a focal length of f = 8 mm aspherical lens to the centre of the 
crystal at a distance of 70 cm, with a measured beam waist of 180 μm and a beam 
quality factor of M2 = 1.05. The entangled photons are collected into a SMF28e 
single-mode optical fibre, which has a mode field diameter of 10.4 μm. With a 
f = 11 mm aspherical lens and a f = 175 mm spherical lens, we set the beam waist 
to be 85 μm at the centre of the PPKTP crystal. The spherical lens is at a distance 
of 19 cm from the aspherical lens and 45 cm from the PPKTP crystal.

A half-wave plate and two quarter-wave plates in the beam path of the pump 
light are used to control the relative amplitude and phase in the polarization- 
entangled two-photon state. The residual 780-nm pump light is removed by 
dichroic mirrors. The entanglement source is placed on a 1 m × 1 m breadboard, 
with the ambient temperature stabilized to be within ±1 °C to improve the stability 
of the system.

The entangled photons are sent in opposite directions to two remote meas-
urement stations that are 93 ± 1 m and 90 ± 1 m away, ensuring space-like sep-
aration between the event of entanglement creation in the source and the event 

of choosing the measurement settings at the measurement stations, and between 
the event of choosing the measurement setting at one station and the events of 
choosing the measurement setting and outputting the outcomes at the other station 
(Supplementary Information section II.E).

At the measurement station, the single photons exit the fibre, pass the Pockels 
cell, a quarter-wave plate and a half-wave plate, and a polarizing beam splitter, 
and are coupled into the single-mode optical fibre to be detected by the supercon-
ducting nanowire single-photon detectors32. The Pockels cell is switched to set the 
base for the measurement of the single-photon polarization upon receiving a bit 
from a quantum random-number generator. A time–digital converter is used to 
time-tag the events for random-number generation, single-photon detection and 
synchronization signal.

We measure the overall efficiency from the creation to the detection of single 
photons to be 78.8% ± 1.9% for Alice and 78.5% ± 1.5% for Bob, surpassing the 
threshold to close the detection loophole. The loss is mainly due to the limited 
efficiency: 94% in collecting the photon pairs that are created into single-mode 
optical fibre, and 92% for the superconducting nanowire single-photon detectors 
(Supplementary Information section II.C).

Data availability
The data that support the findings of this study are available from the correspond-
ing authors on reasonable request. Source Data for Fig. 3 is provided with the 
online version of the paper.
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