
Dynamical Weyl Points and 4D Nodal Rings in Cold Atomic Gases

Yan-Bin Yang1, L.-M. Duan1,2, and Yong Xu1∗
1 Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China and

2 Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

Controllability of ultracold atomic gases has reached an unprecedented level, allowing for experi-
mental realization of the long-sought-after Thouless pump, which can be interpreted as a dynamical
quantum Hall effect. On the other hand, Weyl semimetals and Weyl nodal line semimetals with
touching points and rings in band structures have sparked tremendous interest in various fields in
the past few years. Here, we show that dynamical Weyl points and dynamical 4D Weyl nodal rings,
which are protected by the first Chern number on a parameter surface formed by quasi-momentum
and time, emerge in a two-dimensional and three-dimensional system, respectively. We find that
the topological pump occurs in these systems but the amount of pumped particles is not quantized
and can be continuously tuned by controlling experimental parameters over a wide range. We also
propose an experimental scheme to realize the dynamical Weyl points and 4D Weyl nodal rings and
to observe their corresponding topological pump in cold atomic gases.

Recently, topological gapless phenomena have seen a
rapid advance in three-dimensional (3D) condensed mat-
ter systems ranging from solid-state materials [1–8], cold
atoms [9–15] to optical and acoustic systems [16, 17].
This is mainly attributed to their powerful ability to sim-
ulate fundamental physics [18–20]. For instance, Weyl
fermions, which have been long-sought-after in particle
physics, have recently been experimentally observed in
condensed matter systems [21–25]. These fermions pro-
tected by the first Chern number can be viewed as the
quantum Hall phase transition points in the momentum
space, leading to an anomalous Hall effect [20]. Another
celebrated example of 3D gapless phenomena is the Weyl
nodal ring [26–29], which has also been experimentally
observed recently [27]. Even though they are topologi-
cally protected by the quantized Berry phase, the anoma-
lous Hall effect cannot occur in this system in the absence
of external magnetic fields.

On the other hand, Thouless predicted the quantized
transport of particles arising from a cyclic deformation of
an underlying Hamiltonian without an applied bias volt-
age [30], which has recently been observed in cold atom
experiments [31, 32], thanks to rapid progress of cold
atom technology. Such a quantized transport can be in-
terpreted as the dynamical quantum Hall effect [31, 33]
on a surface formed by quasi-momentum and time. Given
that the anomalous Hall effect occurs in Weyl semimet-
als, a natural question to ask is whether a dynamical
Weyl point featuring a topological transport that can be
interpreted as a dynamical anomalous Hall effect exists.
Since Weyl nodal semimetals in 3D do not support the
anomalous Hall effect, we do not expect the existence of
a dynamical Weyl nodal ring. However, in a 3D system,
viewing time as a parameter, one may wonder whether a
new dynamical gapless phenomenon featuring the topo-
logical transport appears.

In this paper, we demonstrate that the dynamical Weyl
points can be engineered in a 2D slowly periodically-
driven system. Here, besides two quasi-momenta, e.g., kx

and ky, time t may be regarded as an artificial parameter,
taking the place of another quasi-momentum parameter
kz. When the adiabatic condition is fulfilled, the Weyl
point can be characterized by the Chern number defined
on a closed surface in the space (kx, ky, t) enclosing the
point. Alternatively, because of the periodicity of the sys-
tem, it ends up with the same state over a cycle, implying
that the system at time t is equivalent to that at time
t + T with T being the period, reminiscent of the prop-
erty of a Brillouin zone. Hence, the Chern number can be
defined on a torus (kx, t) like in the momentum space. In
a 3D system, adding the time as a parameter gives us a
4D system and a dynamical 4D Weyl nodal ring emerges.
Different from a Weyl nodal ring [26, 28, 29] in the 3D
space that is protected by a quantized Berry phase, the
4D Weyl nodal ring is characterized by the first Chern
number.

Furthermore, we show that the dynamical Weyl points
and the 4D Weyl nodal rings give rise to a non-
quantized topological pump [as schematically illustrated
in Fig. 1(a)] and the amount of pumped particles can be
continuously tuned by controlling the experimental pa-
rameters, similar to the classical Archimedes screw that
can be tuned by tilting the screw, even though the physics
underlying our system is quantum mechanics and topol-
ogy. Finally, we propose an experimental scheme to real-
ize the dynamical Weyl points and 4D Weyl nodal rings
and to observe their corresponding tunable topological
pump in cold atomic gases.

Results
Model Hamiltonian. Consider a toy model that is

described by the following time-dependent Hamiltonian
in the momentum space

H(t) =− sin(kx)σx + λ cos(ωt)σy + [M + cos(kx) +

λ sin(ωt)]σz, (1)

where kx is the quasi-momentum in the x direction, σν
with ν = x, y, z are the Pauli matrices, and λ is a real
parameter (we take λ > 0 for simplicity). Here, M =
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FIG. 1. Schematic of 2D pumping and locations of dy-
namical Weyl points and 4D Weyl nodal rings. (a)
Sketch of pumping particles in 2D by slowly varying param-
eters of a system without a bias, where the average displace-
ment of a cloud of atoms over an entire cycle is denoted by x0.
(b) and (c) Distribution of the Chern number defined in the
(kx, ωt) plane as a function of ky in 2D and cos(ky)+cos(kz) in
3D, respectively. The Chern number is −1 in the light orange
regions and 0 in other regions. The green points in (b) and
(c) represent the dynamical Weyl points and 4D Weyl nodal
rings [shown in the inset in (c)], respectively; they separate
the topological trivial and nontrivial phases. In (b), λ = 1
and M0 = 2; In (c), λ = 1 and M0 = 3.

M0 + cos(ky) with M0 being a real parameter in 2D and
M = M0 + cos(ky) + cos(kz) in 3D, where ky and kz are
the quasi-momenta in the y and z directions, respectively.
The unit of energy and length is taken to be 1. The
Hamiltonian is time-dependent and periodic with H(t+
T ) = H(t) and T = 2π/ω.

Provided M = M0, this Hamiltonian is a typical model
of a Chern band [34] in the (kx, ky) space if ωt is replaced
with ky. Instead, we define the Chern number in the
(kx, t) space for the nth instantaneous band as

Cn(M) =
1

2π

∫ π

−π
dkx

∫ T

0

dtΩn(kx, t), (2)

where t takes the place of a quasi-momentum,
and the Berry curvature [35] is Ωn(kx, t) =
−2Imag(〈∂kxun(kx, t)|∂tun(kx, t)〉) with |un(kx, t)〉
being the nth instantaneous eigenstate of H(t), i.e.,
H(t)|un(kx, t)〉 = En(kx, t)|un(kx, t)〉.

By straightforward calculation, we find C1 = 1 if
−(1+λ) < M < −|1−λ|, C1 = −1 if |1−λ| < M < 1+λ,
and zero, otherwise. In 2D, the Chern number changes
abruptly with respect to ky, implying a transition be-
tween different dynamical quantum Hall phases in the
momentum space. The transition point may therefore
be called the dynamical Weyl point. These points are
located at [kWx = 0, kWy = αarccos(−1 −M0 ∓ λ), ωt =
±π/2] with α = ±1 when −2 ∓ λ < M0 < ∓λ, and

at [kWx = π, kWy = αarccos(1 − M0 ∓ λ), ωt = ±π/2]
when ∓λ < M0 < 2 ∓ λ. For instance, when λ = 1 and
M0 = 2, with the second condition being satisfied, there
appear two gapless points located at (kWx = π, kWy =
±π/2, ωt = 3π/2), as shown in Fig. 1(b). These points
correspond to the abrupt change of the Chern number
along ky, i.e., C1 = −1 when |ky| > π/2 and C1 = 0,
otherwise, as displayed in Fig. 1(b). Alternatively, one
may choose a closed surface enclosing the point and find
its Chern number equal to ±1.

In 3D, we have a 4D space characterized by
(kx, ky, kz, t), if viewing t as a parameter. We find gap-
less rings lying in the (kWx = 0, ωt = ±π/2) plane when
−3 ∓ λ < M0 < 1 ∓ λ or in the (kWx = π, ωt = ±π/2)
plane when −1 ∓ λ < M0 < 3 ∓ λ. For example, when
λ = 1 and M0 = 3, a single gapless ring appears in the
(ky, kz) plane corresponding to kx = π, ωt = 3π/2 and
cos(ky) + cos(kz) = −1, as illustrated in Fig. 1(c). In
contrast to a Weyl nodal ring that is protected by the
quantized Berry phase [26, 28, 29], this ring is charac-
terized by the first Chern number over a closed surface
enclosing the ring. We therefore dub it a dynamical 4D
Weyl nodal ring. In Fig. 1(c), we also show that the
ring corresponds to the topological phase transition of
dynamical quantum Hall effects. Inside a ring for a fixed
(ky, kz), the Chern number over the (kx, ωt) torus is −1;
outside the ring, it is 0.

Topological pump. With the dynamical Weyl points
and 4D Weyl nodal rings, we are now ready to study
the topological pump in these systems. The number of
pumped particles per unit length in 2D or per unit area
in 3D is given by [35]

Np =
∑
n

∫ T

0

dt

∫
BZ

dk

(2π)d
〈ψn(k, t)|v̂|ψn(k, t)〉, (3)

where v̂ = ∂kH(k) is the velocity operator, d is the di-
mension of a system, and |ψn(k, t)〉 is the evolution of a
state initialized to the nth eigenstate of H(0); the inte-
gral in the momentum space is over a Brillouin zone and∑
n is the summation over the filled bands.
With the assumption of the adiabatic condition (i.e., ω

is sufficiently small), by the time-dependent perturbation
theory, the formula above can be reduced to

Np = −
∑
n

∫
BZ′

dk′

(2π)d−1
Cn(k′), (4)

where the integration is performed over the momentum
space except kx. In 1D, it corresponds to the celebrated
result obtained by Thouless [30]. In higher dimensions,
the formula indicates that the amount of pumped par-
ticles is dictated by the length in 2D (area in 3D) with
corresponding Chern numbers. As a consequence, the
amount is not necessarily quantized and its value can be
tuned by changing the length in 2D and area in 3D. In
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FIG. 2. Amount of pumped particles. Amount of
pumped particles (a) per unit length in 2D and (b) per unit
area in 3D with respect to λ and M0. The results are obtained
under the adiabatic condition. Amount of pumped particles
(c) per unit length in 2D and (d) per unit area in 3D for λ =
1, which are numerically calculated for ω = 0.001, 0.01, 0.1.
The exact result corresponds to the case with ω → 0. The
inset in (c) plots the results for ω = 0.01 and the dephasing
rate γ = 0, 0.05, 0.1, 0.15 as the green, black, blue and red
lines, respectively.

our toy model, it is determined by M0 and λ. For exam-
ple, in 2D, the amount depends on the distance between
two dynamical Weyl points along ky.

To demonstrate how the pump can be tuned, we plot
the amount of pumped particles per unit length in 2D
and per unit area in 3D over a cycle with respect to M0

and λ in Fig. 2. In the ideal case with an infinitesimal
ω, the amount can be tuned from -1 to 1 in 2D and
from -0.63 to 0.63 in 3D. It is symmetric and antisym-
metric with respect to λ = 0 and M0 = 0, respectively;
the antisymmetry reflects the flip of the charge of the
dynamical Weyl points and 4D Weyl nodal rings. Be-
cause of the presence of these gapless points (or rings),
one may wonder whether the excitation near the gapless
regions would compromise our results. To check this,
we perform the numerical calculation of the amount of
pumped particles using distinct finite ω for λ = 1 and
plot the results in Fig. 2(c) and (d). They show that
the influence on the transport over a cycle is very small
in most parts except in the vicinity of M0 = ±1,±3,
where Np = ±1, 0 in 2D, and in almost the whole re-
gion in 3D, even when ω = 0.1. The nonadiabaticity
effects are directly related to the probability that parti-
cles are excited to the higher band near the gap closing
region. Around these regions, the Hamiltonian is approx-

imated by H = − sin(kx)σx+(M±1+cos(kx))σz∓ωδtσy,
where δt is measured with respect to t = ±π/(2ω). Ac-
cording to the Landau-Zener formula, the total number
of excited particles into a higher band is given by Ne ≈∫∞
0
dED(E)P (E), where D(E) is the density of states

and P (E) = e−πE
2/ω. In 2D, when M0 = 1 or M0 =

3, with E ≈
√
δk2x + (δk2x ± δk2y)2/4 near the gapless

points, we can qualitatively assume E ≈
√
δk2x + δk4y/4

(which is fulfilled when δky � δkx) and findD(E) ∝
√
E.

Yet, in other regions, E ≈
√
δk2x + sin(kWy )2δk2y and

D(E) ∝ E. Apparently, the number of excited particles
in the former case is larger than that in the latter near
zero energy because of higher density of states, leading
to the manifest nonadiabaticity effects. For a dynamical
4D Weyl nodal ring in a 3D system, the nonadiabaticity
effects are also small since D(E) ∝ E.

Dephasing effect. In a realistic cold atom exper-
iment, a dephasing may appear naturally due to laser
noise. To see whether the topological pump is stable
against the dephasing, which randomizes the coherent
superposition of excited and ground states, we solve a
minimal pure-dephasing model described by the follow-
ing master equation in the Lindblad form [36]

ρ̇k = −i[H(t), ρk] + γ(σ̄z(t)ρkσ̄z(t)− ρk), (5)

where ρk is the density matrix, γ is the dephasing rate,
σ̄z(t) = d(t) · σ/d(t) if the Hamiltonian is written as
H = d(t) · σ. Here, we have adopted a simplest pure-
dephasing model where the Lindblad operator σ̄z(t) is
assumed to always commute with the Hamiltonian H(t).
In the inset of Fig. 2(c), we plot the amount of pumped
particles per unit length over a cycle in the 2D case as a
function of M0 for λ = 1. The transport is only slightly
reduced for small dephasing rates in most parts and this
reduction increases with γ as dephasing decreases the
transported amount in each 1D insulator with a fixed
ky [37]. The reduction is especially manifest around
M0 = 1, where more particles near the gapless point
are excited to the higher band; these particles lose their
coherence by dephasing and lead to strong suppression
of the transport.

Experimental realization. To realize the dynami-
cal Weyl points and 4D Weyl nodal rings and their cor-
responding tunable topological pump, we consider the
following continuous model

HC =
p2

2m
−
∑
ν

Vν cos2(kLνrν) + hzσz + VNσy, (6)

where m is the mass of atoms, p = −i~∇ is
the momentum operator, hz is the Zeeman field,
Vν > 0 with ν = x, y in 2D (ν = x, y, z in
3D) denote the strength of optical lattices with the
lattice constants being aν = π/kLν , and VN =
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FIG. 3. Laser configurations. Sketch of laser configura-
tions to realize (a) and (b) dynamical Weyl points and (c)
and (d) dynamical 4D Weyl nodal rings. The laser beams de-
noted by the same color arrows possess the same frequency.
The laser beam denoted by the green arrow is generated by
applying an acoustic-optical modulator (AOM) to the other
laser beam. The double arrows describe the linear polariza-
tion direction of laser beams. B is the magnetic field and δ
is the double photon detuning. In (c), the laser beams with

the light colors correspond to those with Rabi frequencies Ω̃n

and Ω̃′n with n = 1, 2. In (d), the configuration of these lasers
is the same as those plotted and thus neglected for clarity.

VSO + VZy with VSO = ΩSO sin(kLxrx) cos(kLyry)
and VZy = −VZy0 cos(kLyry) cos(kLxrx) in 2D [
VSO = ΩSO sin(kLxrx) cos(kLyry) cos(kLzrz) and VZy =
−VZy0 cos(kLyry) cos(kLxrx) cos(kLzrz) in 3D]. This
model gives us the tight-binding Hamiltonian in the mo-
mentum space (see Methods for details)

H(k) = (hz + ht)σz − 2JSO sin(kxax)σx + hyσy, (7)

where ht = 2
∑
ν Jν cos(kνaν) with ν being summed over

x and y in 2D (x, y and z in 3D). By slowly driving
the Hamiltonian according to hy = λ cos(ωt) and hz =
M0 + λ sin(ωt), we achieve the toy model in Eq. (1).

To engineer the continuous model in Eq. (6) in exper-
iments, we can apply the current experimental technol-
ogy that implements the 2D spin-orbit coupling in cold
atomic gases [38–40], where the spin is represented by
two hyperfine states of alkali atoms such as 40K [41, 42]
and 87Rb [38, 39]. In Fig. 3(a) and (b), we plot a
schematic of a simple and feasible laser configuration
scheme for realization of the dynamical Weyl points ex-
hibiting the tunable topological pumping in a 2D sys-
tem. Here, two independent sets of linearly polarized
Raman laser beams that couple two states are applied
to create the off-diagonal spin-dependent optical lat-
tices. These lasers have the Rabi frequencies: [Ω1 =

Ω10 sin(kRrx),Ω2 = −iΩ20 cos(kRry)] with kR being the
wavevector of the lasers and [Ω′1 = Ω′10 cos(kRry),Ω′2 =
iΩ′20 cos(kRrx)], respectively, yielding ΩSO = Ω∗10Ω20/∆e

and VZy0 = Ω′∗10Ω′20/∆e through Raman processes. In ad-
dition, due to the stark effects, these laser beams gener-
ate the spin-independent optical lattices: −Vx cos2(kRrx)
and −Vy cos2(kRry) with Vx = (|Ω′20|2 − |Ω10|2)/|∆e|
and Vy = (|Ω20|2 + |Ω′10|2)/|∆e|. In an experiment,
one may choose 40K atoms and use a red-detuned laser
beam with wavelength 773nm [41], yielding the recoil en-
ergy ER = ~2k2R/2m = 2π × 8.3kHz. Taking |Ω20| =
|Ω′20| = 2π × 0.244GHz and |Ω10| = |Ω′20|/3, we have
Vx = 4.9ER, Jx = 0.08ER and hy = −0.72VZy0. To
implement the pump, we should vary hy and hz accord-
ing to hy = 2Jx cos(ωt) and hz = M0 + 2Jy sin(ωt) by
controlling the strength of the lasers and plugging a π
phase appropriately by a AOM, and by controlling the
frequency of the lasers represented by the green arrows
in Fig. 1 as hz = δ/2, respectively. Note that when
hy = 2Jx, we have Ω′10 = 0.045Ω20 and hence Vy = 4.9ER
(its slight change due to the variation of Ω′10 is negligi-
ble). For observation, one can measure the in-situ shift
of a cloud of atoms [31, 32, 43, 44] over a cycle, which
takes 75ms if ω = 0.01, much shorter than the life time
(several seconds) of the achieved topological gases in the
experiment [39].

In the 3D case, we can apply two independent
sets of the setup proposed in Ref. [28] for realization
of a Weyl nodal ring. Here, the scheme is opti-
mized by using the linearly polarized laser beams
as shown in Fig. 3(c) and (d). In the first set, two
pairs of Raman processes are utilized to generate
the off-diagonal optical lattices. One pair has the
Rabi frequencies: [Ω̄1 = Ω̄10 cos(kLyry)e−ikLzrz/2,
Ω̄2 = −iΩ̄20 sin(kLxrx)eikLzrz/2], and the other
pair: [Ω̄′1 = Ω̄10 cos(kLyry)eikLzrz/2, Ω̄′2 =
−iΩ̄20 sin(kLxrx)e−ikLzrz/2]. In the second set, two
pairs of Raman laser beams are employed to engineer
the other off-diagonal optical lattices. The Rabi fre-
quencies for one pair are [Ω̃1 = Ω̃10 cos(kLyry)e−ikLzrz/2,

Ω̃2 = iΩ̄10 cos(kLxrx)eikLzrz/2], while for the
other pair [Ω̃′1 = Ω̃10 cos(kLyry)eikLzrz/2, Ω̃′2 =
iΩ̄10 cos(kLxrx)e−ikLzrz/2]. In an experiment, by taking
Ω̄10 = 2π × 0.14GHz and Ω̄20 = Ω̄10/4, we have
Vx ≈ Vy ≈ 3.2ER. Another laser beam is required to
create an optical lattice along z with Vz = 3.2ER. Using
the geometry of lasers with kLx = kLy = kLz =

√
4/5kR,

we have Jx = 0.07ER and hy = −0.57VZy0. Similar to
the 2D scenario, the dynamical 4D Weyl nodal ring with
the topological pumping can be implemented by tuning
hy and hz with a period being 86ms if ω = 0.01.

Discussion
Dynamical Weyl points and 4D Weyl nodal rings may

also be implemented in solid-state materials by apply-
ing circularly polarized lights to 2D Dirac materials or
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3D nodal line semimetals, respectively. It allows us
to engineer an effective time-independent Hamiltonian
obtained by removing the fast oscillating terms, when
the frequency of lights is much larger than other energy
scales; this method has been proposed to generate Weyl
points from Weyl nodal line semimetals [45]. Addition-
ally, slowly varying the light intensity allows us to con-
trol the Hamiltonian for observation of the topological
pump. Despite the possibility, we have to say that a very
exquisite protocol is required for realization of dynamical
Weyl points and dynamical Weyl nodal rings in solids.

Versatile controllability of cold atoms also manifest
in tuning the short-range interactions by Feshbach reso-
nances, which can be tuned to zero. For weak interac-
tions, a mean-field estimate suggests that the interaction
may induce a σz term [15], thereby shifting the locations
of dynamical Weyl points and 4D Weyl nodal lines and
changing the amount of pumped particles. For strong
interactions, previous study suggests that a Weyl point
may become Mott gapped while preserve a gapless col-
lective excitation [46]. Whether the value of pumped
particles will be strongly compromised depends on the
the density of state around zero energy, which deserves
future exploration.

In summary, we have demonstrated the existence of
a dynamical Weyl point and 4D Weyl nodal ring in 2D
and 3D systems, respectively. We find that these systems
give rise to the non-quantized topological pump and the
amount of transported particles can be tuned continu-
ously by controlling experimental parameters. We finally
propose an experimental scheme to realize the dynamical
Weyl point and 4D Weyl nodal ring and to observe their
corresponding tunable pump, which paves the way for
their future experimental observation. Our finding opens
a field for studying dynamical gapless phenomena; future
direction may include seeking other dynamical gapless
phenomena, such as dynamical Yang monopoles.

Methods
Tight-binding Hamiltonian in the momentum

space: We can write down the Hamiltonian in the second
quantization language

HII =

∫
drψ̂†(r)HC ψ̂(r), (8)

where ψ̂(r) = [ ψ̂↑(r) ψ̂↓(r) ]T with ψ̂σ(r) [ψ̂†σ(r)] being
an annihilation (creation) operator for spin σ (σ =↑, ↓),
which satisfies the anti-commutation or commutation
relation [ψ̂σ(r), ψ̂†σ′(r′)]± = δσσ′δ(r − r′) for fermionic
atoms (+) or bosonic atoms (−), respectively. The field
operator can be approximated by

ψ̂σ(r) ≈
∑
x,σ

Wxĉx,σ, (9)

where Wx is the Wannier function for hz = VN = 0
located at the site x =

∑
ν jνaνeν with ν = x, y in 2D

(ν = x, y, z in 3D) for the lowest band, and ĉx,σ is the
operator annihilating a particle with spin σ at a site x.

Substituting Eq. (9) into Eq. (8) and keeping only the
nearest neighbor hopping terms yields the tight-binding
Hamiltonian

HTB =
∑
x

[
−
∑
ν

(
Jν ĉ
†
xĉx+aνeν +H.c.

)
+ hz ĉ

†
xσz ĉx

]
(10)

+
∑
x

gx
(
−JSO ĉ†xσy ĉx+axex +H.c.+ hy ĉ

†
xσy ĉx

)
,

where ĉ†x = (ĉ†x,↑, ĉ
†
x,↓) and gx = (−1)jx+jy in 2D

[gx = (−1)jx+jy+jz in 3D]. For more details, we refer to
Ref. [15, 28] for derivation of the model and verification
for its validity. Using the transformation âx↑ = gxĉx↑
and âx↓ = ĉx↓, we recast the model to the form

HTB =
∑
x

[(
∑
ν

Jν â
†
xσzâx+aνeν + iJSOâ

†
xσxâx+axex

+H.c.) + hzâ
†
xσzâx + hyâ

†
xσyâx]. (11)

This Hamiltonian can be written in the momentum space
as HTB =

∑
k â
†
kH(k)âk, where H(k) is given in Eq. (7).
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