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ABSTRACT
We present size-space trade-offs for the polynomial calculus
(PC) and polynomial calculus resolution (PCR) proof sys-
tems. These are the first true size-space trade-offs in any
algebraic proof system, showing that size and space cannot
be simultaneously optimized in these models. We achieve
this by extending essentially all known size-space trade-offs
for resolution to PC and PCR. As such, our results cover
space complexity from constant all the way up to exponen-
tial and yield mostly superpolynomial or even exponential
size blow-ups. Since the upper bounds in our trade-offs hold
for resolution, our work shows that there are formulas for
which adding algebraic reasoning on top of resolution does
not improve the trade-off properties in any significant way.

As byproducts of our analysis, we also obtain trade-offs
between space and degree in PC and PCR exactly matching
analogous results for space versus width in resolution, and
strengthen the resolution trade-offs in [Beame, Beck, and
Impagliazzo ’12] to apply also to k-CNF formulas.

Categories and Subject Descriptors: F.2.3[Analysis of
Algorithms and Problem Complexity]: Tradeoffs among Com-
plexity Measures; F.1.3[Computation by Abstract Devices]:
Complexity Measures and Classes —Relations among com-
plexity measures; I.2.3[Artificial Intelligence]: Deduction and
Theorem Proving; F.4.1[Mathematical Logic and Formal Lan-
guages]: Mathematical Logic —computational logic

General Terms: Theory

Keywords: Proof complexity, polynomial calculus, PCR,
resolution, trade-offs, size, space, degree, pebble games, peb-
bling formulas, Tseitin formulas

1. INTRODUCTION
The satisfiability problem is of paramount importance to

theoretical computer science. Despite a strong belief in
the theory community that the problem is intractable in
the worst case, in practice there are many important and
successful approaches to solving it. Applied SAT solving
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has matured significantly in the last 10–15 years, and SAT
solvers are now routinely used to solve real-world instances
with hundreds of thousands, or even millions, of variables.
Today, practitioners often think of SAT as an easy problem
to reduce to, rather than a hard problem to reduce from.

Because the SAT algorithms used in practice depend cru-
cially on complex heuristics, essentially the only known way
to analyze their worst-case performance is by means of proof
complexity. In this approach, the detailed heuristics are ab-
stracted away, and instead the focus is on the proofs which
these algorithms generate. Such proofs can be thought of
as summarizing the transcripts of the computations, con-
taining only the reasoning which took place. Despite this
apparently significant loss of information, proof complexity
nevertheless has managed to give tight exponential lower
bounds on the worst-case running time on approaches for
SAT used in practice by lower-bounding proof size. Note
that there are many other results in other areas of a simi-
lar flavour—rather than directly trying to give lower bounds
against, e.g., Turing machines and circuit families, one con-
siders models which contain a canonical algorithm as well
as all “nearby” algorithms in some sense. Instead of find-
ing a concrete “bad example” against one algorithm, which
might potentially be fixed or avoided, lower bounds in this
style show that the whole approach has inherent limitations.
For comparison, see, e.g., other work on linear programming
hierarchies [20], semidefinite programming hierarchies [39],
and algorithmic paradigms [2].

One important recent direction in proof complexity con-
cerns size-space trade-offs. This research is partly driven by
concerns about time and memory usage of SAT solvers—
in practice, space consumption can be almost as much of a
bottleneck as running time—but is also motivated by the
fundamental importance of time and space complexity in
computation. Time-space trade-offs have historically been
one of the most productive directions in computational com-
plexity, and there have been many results in both Boolean
and algebraic settings. Typically, the strongest such re-
sults show that in a variety of models, the product of time
and space in any computation of some function is at least
nearly quadratic in the input length, giving lower bounds
against sublinear space. However, in many applications one
has much more than just linear space available, and it is
natural to ask whether one can show that there are prob-
lems that are solvable in polynomial time but for which any
polynomial-time computation must require a large polyno-
mial amount of space. The trade-off results presented in
the current paper are the first in an algebraic setting whichSTOC’13, June 1-4, 2013, Palo Alto, California, USA.
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obtain superpolynomial time blow-up even in the superlin-
ear space regime and also exponential blow-up for sublinear
(but polynomial) space, and which still take place in a model
which captures practical algorithms.

Our focus in this paper is on the proof systems polyno-
mial calculus and resolution. Resolution is arguably the
most well-studied proof system in proof complexity, and is
directly connected with modern SAT solvers based on DPLL
[25, 24] with clause learning, also known as conflict-driven
clause-learning (CDCL) solvers [6, 31]. These algorithms
use heuristic-driven backtracking search combined with a
dynamic programming technique, and so far have clearly
been the most successful approach to solving SAT in prac-
tice. Polynomial calculus instead takes an algebraic view of
SAT. In this proof system, the disjunctive clauses of a CNF
formula are translated into polynomials, and computations
in the ideal generated by these polynomials show whether
they have a common root or not, corresponding to a sat-
isfying assignment for the formula. It was shown in [22]
that such an algebraic approach might be significantly bet-
ter than resolution-based approaches on some instances, and
would never be much worse, so it might ultimately lead to
a more “well-rounded” SAT solver. Phrased in the language
of proof complexity, the extra expressive power of polynomi-
als can lead to significantly more efficient proofs in terms of
size, and perhaps also space. It was suggested in [22] that if
our understanding of suitable heuristics could be improved,
these algebraic techniques could become competitive with
resolution and provide a way around some of the bottlenecks
encountered for CDCL solvers.

Intriguingly, however, despite significant progress on al-
gebraic SAT solvers such as PolyBori[18], the gains of the
polynomial approach anticipated by [22] have largely failed
to materialize. Our research sheds light on one aspect of
this, in that it investigates deeper the question of how much
the expressive power of polynomials could reasonably be ex-
pected to translate into computational efficiency. We show
that essentially all time-space trade-offs known for resolu-
tion also extend to polynomial calculus, and even to the
stronger proof system polynomial calculus resolution (PCR)
that unifies polynomial calculus and resolution, thus casting
doubt on hopes of a generic improvement obtained by using
polynomials. Based on what we know now, there seems not
to exist any generic transformation of PCR proofs which im-
proves time, improves space, or trades time and space in a
way which outperforms what is possible in resolution.

We remark that the issue of time-space trade-offs for SAT
is also connected to recent work of the third author on width-
parameterized SAT [4], and our improved lower bounds help
to strengthen the support contributed by [8] to their thesis.

For more information about proof complexity in general
two good references are [7, 40], while the upcoming sur-
vey [33] by the second author focuses specifically on time-
space trade-offs. A recent, comprehensive reference on SAT
solving is [15].

1.1 Previous Work
The resolution proof system appeared in [16] and began

to be investigated in connection with automated theorem
proving in the 1960s [24, 25, 38]. Despite the apparent sim-
plicity of this proof system, the first superpolynomial lower
bounds on proof size were obtained only in 1985 [28] af-
ter decades of study. Truly exponential size lower bounds

were later proven in [21, 42]. The repertoire of size lower
bound techniques remains fairly limited, however, including
random restrictions [9, 28], the size-width method [14], and
the pseudowidth technique first employed in [35] and further
developed in [37].

Polynomial calculus was defined in [22]. In a technical
break-through, [36] obtained degree lower bounds. This re-
sult was simplified by [30], who also showed that degree
lower bounds imply proof size lower bounds in polynomial
calculus.

The study of space in resolution was initiated in [26] and
was later extended to a more general setting including other
proof systems in [1]. Intuitively, the (clause) space of a res-
olution proof is the maximal number of clauses one needs to
keep in memory while verifying the proof. Perhaps some-
what surprisingly, it turns out that linear space is enough
to refute any unsatisfiable CNF formula, and a sequence of
papers [1, 11, 26] have proven matching lower bounds.

Regarding trade-offs between size and space, some results
in restricted settings were obtained in [10, 32] and strong
trade-offs for full, unrestricted resolution were reported in
the paper [13] involving the second author. These trade-offs
only apply for space smaller than the linear worst-case upper
bound, however. The recent work [8] by the first author
with co-authors presented trade-off results that extend even
to superlinear space.

Turning to polynomial calculus and PCR, the space mea-
sure (measuring the number of monomials, which is the nat-
ural generalization of clause space in resolution) has been
quite poorly understood until very recently. While nontriv-
ial space lower bounds were established already in [1], these
bounds crucially work only for formulas of unbounded width,
and it was only in [27] that space lower bounds for k-CNF
formulas were shown. In a very recent paper [17] building
on and developing the techniques in [1, 27], optimal linear
lower bounds on PCR space were finally obtained, but many
intriguing questions about this measure remain open.

As to trade-offs between size and space, we are not aware
of any such results for PC or PCR except the recent paper
[29] involving the second author. An important distinction
here, however, is that in order to speak about a“true” trade-
off we want to find formulas which have proofs in small size
and also in small space, but for which any proof optimizing
one of the measures provably has to pay a stiff penalty with
respect to the other measure. While [29] exhibits formulas
for which any proofs in small space must have very large size,
no such small-space proofs are known to exist. (In fact, it
would seem more likely that there are no small-space proofs
for these formulas and that the small-size proofs are also
optimal with respect to space—this is known to be the case
in resolution for very similar formulas.)

As noted above, degree is an important auxiliary measure
in PC and PCR, playing a role similar to that of width in res-
olution. However, whereas the relationship between size and
degree in PC/PCR is known to be analogous to that between
length and width in resolution, it is open whether monomial
space and degree behave with respect to each other as clause
space and width do in resolution.

1.2 Our Results
In this paper, we extend the trade-offs in [8, 10, 13], i.e.,

essentially all known trade-offs for resolution, to polynomial
calculus and PCR. Our first result is that there is a strong
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trade-off between degree and monomial space in polynomial
calculus and PCR, completely analogous to the trade-off be-
tween width and clause space in resolution. (We refer to
Sections 2 and 3 for definitions of terminology and notation
used below.)

Theorem 1. There is a family of explicitly constructible
3-CNF formulas Fn of size Θ(n) that can be refuted in poly-
nomial calculus in degree DegPC(Fn `⊥) = O(1) and also in
monomial space SpPC(Fn `⊥) = O(1), but such that for any
PCR refutation πn : Fn `⊥ it holds that Sp(πn) ·Deg(πn) =
Ω(n/ log n).

What this theorem says is that although the formulas Fn

can be refuted in essentially minimal degree and essentially
minimal space even in PC, when we optimize one of these
measures the other has to blow up to almost worst possible in
PCR (the worst-case upper bound for both measures is lin-
ear in n). This result follows by studying the same so-called
pebbling formulas as in [10] and doing a careful analysis of
the proofs in [13], which yields a very useful generalization
of the techniques there.

Our first set of time-space trade-off results follow by ap-
plying the same generalization of [13] to other pebbling for-
mulas. Combining this with random restrictions, we obtain
trade-offs where the upper bounds hold for PC (and reso-
lution) while the lower bounds apply for the stronger PCR
proof system. There is a slight loss in the parameters as com-
pared to the results for resolution in [13], however, which is
due to the random restriction argument, and in particular
we do not get tightly matching upper and lower bounds. The
trade-offs obtained are still fairly dramatic, though, and a
nice extra feature is that they also hold even if we allow
the PCR refutations to use exponentially stronger semantic
rules where anything that follows semantically from what is
currently in memory can be derived in one single step.

As in [13], we get a whole collection of trade-offs, and we
only give two concrete examples here. The first example
is that for arbitrarily small but growing space complexity,
there can be superpolynomial size-space trade-offs for PC
and PCR.

Theorem 2. Let g(n) = ω(1) be any arbitrarily slowly
growing function1 and fix any ε > 0. Then there are ex-
plicitly constructible 6-CNF formulas {Fn}∞n=1 of size Θ(n)
such that the following holds:

• The formulas Fn are refutable in polynomial calculus
in total space O(g(n)).

• There are PC refutations πn of Fn in simultaneous size

O(n) and total space O
“`

n/g(n)2
´ 1

3
”
.

• Any PCR refutation of Fn in O
“`

n/(g(n)3log n)
´ 1

3−ε
”

monomial space must have superpolynomial size.

Note that this trade-off is quite robust in the sense that
for the whole range of space from ω(1) up to almost n1/3

the proof size required is superpolynomial. Note also that

1Technically speaking, we also need g(n) = O
`
n1/7

´
here,

but this restriction is inconsequential since for faster-growing
functions we obtain even stronger trade-offs by other means.

the trade-off result is nearly tight in the sense that the su-
perpolynomial lower bound on size in terms of space reaches
up to very close to where the linear upper bound kicks in.

As a second example, we state a trade-off where the proof
size blows up exponentially when space is optimized.

Theorem 3. There is a family of explicitly constructible
6-CNF formulas {Fn}∞n=1 of size Θ(n) such that the follow-
ing holds:

1. Fn is refutable in PC in total space O
`
n1/11

´
.

2. There are PC refutations πn of Fn in simultaneous size
O(n) and total space O

`
n3/11

´
.

3. Any PCR refutation of Fn in monomial space at most
n2/11/(10 log n) must have size at least

`
n1/11

´
! .

As in [13], the fact that we are working with pebbling
formulas means that we can only get time-space trade-offs
in the sublinear space regime using these techniques, how-
ever. For our second set of time-space trade-off results, we
instead study so-called Tseitin formulas and lift the trade-
offs in [8] from resolution to PCR. In resolution, these are
the only known trade-off lower bounds which hold for su-
perlinear space. Quantitatively, what they show is that if
the space is reduced below a polynomial factor of the size of
the smallest known proofs, the size must grow as a super-
constant power of the optimal size. Besides strengthening
this result to PCR, we modify the construction and sim-
plify the technical analysis significantly, which allows us to
obtain our trade-offs for 8-CNF formulas, and not just for
CNF formulas of unbounded width as in [8].

Theorem 4. Let F be a field of odd characteristic. There
is an explicitly constructible family of 8-CNF formulas {Fn,w},
with 1 ≤ w ≤ n1/4, which are of size Θ(n) and have the fol-
lowing properties:

1. The formulas Fn have resolution refutations in (short)

length L(πn) ≤ nO(1)2w and clause space Sp(πn) ≤
2w + nO(1).

2. They also have refutations π′n in (small) clause space

Sp(π′n) = O
`
w log n

´
and length L(π′n) ≤ 2O(w log n).

3. For any PCR refutation πn of Fn over F, the proof size

is bounded by S(πn) =
“

2Ω(w)

Sp(πn)

”Ω
“

log log n
log log log n

”
.

In fact, the parameter w in Fn,w is the tree-width of the
formula, and this is the reason for the connection with [4]
discussed above. In this paper, it was shown that the reso-
lution upper bounds in Theorem 4 can in fact be obtained
by a tree-width based algorithm with little overhead, and
furthermore that a smooth trade-off upper bound exists be-
tween the two ranges. It was conjectured in [4] that this
algorithm cannot be improved, which if true would have sig-
nificant computational complexity consequences.

The lower bounds in Theorem 4 can be interpreted as ev-
idence supporting at least a weak form of the conjecture—it
places hard limits on how much a restricted class of algo-
rithms could concievably improve over the algorithm in [4].
While an important open question in this regard is improv-
ing the exponent obtained in the lower bound argument, it
is also interesting from the standpoint of the conjecture to
generalize the lower bound to stronger proof systems, since
this will cover a broader class of algorithms.
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1.3 Organization of This Paper
We briefly review preliminaries in Section 2. In Section 3,

we give a more detailed overview of our results and describe
the main technical ingredients in the proofs. Section 4 con-
tains concluding remarks. Due to space constraints, most of
the low-level technical details have had to be omitted, but
the formal proofs can be found in the upcoming full-length
version.

2. PRELIMINARIES
We consider Boolean formulas over a set of variables X =

{x1, . . . , xn}. A literal is a variable x or its negation x.
Sometimes the notation x1 and x0 will be handy for un-
negated and negated literals, respectively, where xb is true
if x = b. A clause is a disjunction of literals (without loss of
generality over distinct variables), and a CNF formula is a
conjunction of clauses. We think of clauses as being specified
by their sets of literals, and CNFs as specified by their sets
of clauses. We write Vars(C) to denote the set of variables
appearing in a clause C. The width W(C) of a clause C is
|Vars(C)| and the width of a formula (or sequence of clauses)
F is maxC∈F {W(C)}. The size of a CNF formula F is the
total number of literal occurrences, i.e.,

P
C∈F W(C).

The resolution proof system operates with clauses and has
one rule of inference, the resolution rule

A ∨ x B ∨ x
A ∨B

. (1)

A resolution refutation of a CNF formula is a sequence of
clauses ending in the unsatisfiable empty clause ⊥, where
each clause is either from the formula (an axiom) or follows
from two previous clauses by an application of the resolution
rule. The term resolution derivation is used more generally
to refer to any such sequence of clauses that does not nec-
essarily end with ⊥. Every resolution derivation naturally
corresponds to a directed acyclic graph (DAG), in which ev-
ery clause derived via the resolution rule has a directed edge
to a derived clause from each of its antecedents. Note that
the same proof DAG can represent many different resolution
proofs (depending on the topological sort of the DAG).

In polynomial calculus (PC), clauses are interpreted as
multilinear polynomials over some field F. This is done by
identifying truth values with the field elements {0, 1}, adding
for every variable the Boolean axiom x2−x, and translating
clauses into polynomials in the natural way. The resulting
set of polynomials have a common root—i.e., a satisfying
assignment—if and only if the ideal they generate contains 1.
A PC refutation is a derivation of 1 using the derivation rules

p
x · p and

p q

αp + βq
(2)

for α, β ∈ F.
We will mostly focus on a common extension of polyno-

mial calculus and resolution called polynomial calculus res-
olution (PCR) [1]. In PCR, we have two distinct formal
variables for positive and negative literals over a variable,
together with the complementarity axiom x+x−1 enforcing
that these two variables take complementary truth values.
This permits the direct simulation of resolution with one
monomial per clause.

The size of a PC or PCR refutation is measured as the
total number of monomials in the refutation (counted with
repetitions), whereas length is the total number of derived

polynomials. Every unsatisfiable k-CNF formula trivially
has a refutation of length O(n), but in general the size of
this refutation is exponential.

To measure proof space, we can think of proofs as be-
ing presented on a blackboard, where at each step we can
write down an axiom, apply an inference rule (to some lines
currently written on the blackboard), or erase a line from
the blackboard. The space of a proof is then for resolution
the maximal number of clauses on the board simultaneously
at any time during the proof, and for PC/PCR the maxi-
mal number of monomials (counted with repetitions). When
studying size-space trade-offs, the size is measured for the
same presentation of the proof, where clauses/polynomials
appearing multiple times are counted with repetitions.

For any standard definitions, terminology or notation omit-
ted above, we refer to the full-length version of this paper
or to [33], which we follow except possibly in minor details.

3. OUTLINE OF RESULTS AND PROOFS
Generally speaking, time-space trade-off results are usu-

ally established by some variation of the following plan:

1. Formalize a notion of work or progress specific to the
model and the problem.

2. Divide the time period of a hypothetical computation
into a large number of equal-sized epochs.

3. Prove the following claims:

(a) If the epochs are small, then no single epoch makes
very much progress.

(b) If the space is small, then not much progress can
be carried over from one epoch to the next.

(c) To solve the problem, the computation needs to
make substantial progress summed over all epochs.

4. Conclude that if the computation is too short and uses
too little space, then this leads to a contradiction.

This approach has been implemented in a wide variety of
models, including graph pebbling, straight line programs,
branching programs, et cetera. To obtain quantitatively
strong trade-offs, i.e., trade-offs exhibiting superpolynomial
blow-up, in addition it can be necessary to subdivide into
epochs recursively. Frequently, this kind of refined strategy
can only be carried out directly in more limited models. One
contribution of our work is that we manage to realize such a
strategy in a model which is significantly more general than
what has previously been possible. To achieve this, we make
careful use of restriction and reduction arguments.

In our first set of trade-offs, which extends the results
of [13], we combine random restrictions with a space-faithful
projection technique, showing that if there existed PCR
refutations which were very efficient with respect to time
and space on a certain kind of pebbling formulas, then there
would be pebbling strategies for the underlying graphs which
would be very efficient as well. Thus we are able to lift graph
pebbling lower bounds to PCR.

In fact, our result is more general in that we obtain a kind
of generic “hardness amplification” result for CNF formulas.
We show that if a formula has a mild form of trade-off in res-
olution, then by making appropriate syntactic substitutions
we obtain another formula which has strong trade-off proper-
ties in the stronger proof system PCR. Pebbling then comes
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into the picture simply because pebbling formulas have ex-
actly the form of weak trade-offs in resolution that we need.

The main technical problem which we overcome is how
to reduce PCR refutations of the substituted formulas to
resolution refutations of the original formulas in a way that
preserves space. In resolution, it is possible to construct
space-preserving reductions without using restrictions. Un-
fortunately, these reductions provably fail for stronger proof
systems such as cutting planes and PCR (and even PC), but
it turns out that by using random restrictions we can salvage
enough of this approach to get strong trade-offs for PCR.

In our second set of trade-offs, which extends the results
of [8], we make two contributions. Firstly, we simplify and
strengthen the main result in [8] by studying a slightly dif-
ferent formula family with appropriately chosen random re-
strictions. As a result of this, we can prove trade-offs for
k-CNF formulas rather than formulas of asymptotically grow-
ing width. Secondly, and more substantially, we manage to
implement the overall strategy of [8] in the context of PCR.

This part of our work is different from the generalization
of [13] in that it does not obtain a trade-off by reducing to
another model of computation—instead, we carry out the
plan outlined above directly in the proof system. In [8], this
is achieved by using a semantic measure of complexity of
clauses as a progress measure. One of the crucial technical
steps is to prove an inequality showing that not only are
clauses representing different progress levels within a certain
range all wide, but that they are also “pairwise wide” in
that for any pair of such clauses each clause contains many
variables not occurring in the other clause. In the context of
polynomial calculus, we would need to prove an analogous
result using degree instead of width, but sadly such a claim
simply is not true.

We circumvent this obstacle by examining the binomial
technique of [19] for degree lower bounds in polynomial cal-
culus. This technique is based on the observation that PC
refutations of binomial systems—i.e., where each initial poly-
nomial is a sum of two monomials—have a special form. Bi-
nomial systems are never hard with respect to size or space,
but can be hard with respect to degree. The paper [19] ob-
tains degree lower bounds by constructing an explicit pseu-
doideal, and also gives low-degree reductions from other non-
binomial systems to binomial systems. In this way, it is pos-
sible to get degree lower bounds for non-binomial systems,
which can in turn be used to obtain size lower bounds.

For our purposes, however, we need much more than just
degree lower bounds. We therefore refine the technique
of [19] by combining the ideas behind the low-degree reduc-
tion and the pseudoideal construction. For any PCR refuta-
tion of a Tseitin contradiction, we construct a simulation of
it by a restricted form of PC which refutes a “Fourier trans-
formed” version of the formula. This simulation does not
preserve size or space, but it allows us to obtain a suitable
measure of progress for size-space trade-off results. This is
because in this restricted setting, the semantic measure is
much better behaved, and thanks to this we can prove an
analogue of the lemma in [8] discussed above. However, due
to the change of variables which occurs it is not true that
the simulation commutes with restriction; it is not possible
to, e.g., kill the monomials of the “shadow proof” obtained
from the simulation with restrictions and argue that the re-
sulting proof simulates the restriction of the original proof.
Instead, we use restrictions to eliminate monomials in the

original proof, and use key properties of the simulation to
show that they cannot reappear in the shadow proof, thus
limiting the progress which can be made during its epochs.
We can then carry out the progress measurement argument
in the shadow proof to obtain a contradiction, given that
the original proof was too short and used too little space.

Thus, by carrying out different parts of the argument of [8]
in different contexts and mediating between them with this
simulation, we are able to establish quantitatively equivalent
lower bounds in full PCR. The only other techniques known
for degree lower bounds are from [3, 36]; as far as we are
aware none of these techniques yield simulations, nor can
they be used to obtain time-space trade-offs in the manner
described here.

In the rest of this section, we define the formulas under
study and elaborate on the proof techniques used.

3.1 Substitution Formulas
Let F be a CNF formula over variables x, y, z, . . . and let

f : {0, 1}d → {0, 1} be a Boolean function. Then we can
obtain a new CNF formula by substituting f(x1, . . . , xd) for
every variable x (where we assume that x1, . . . , xd are new
variables) and then expand to conjunctive normal form. We
will write F [f] to denote the resulting substitution formula.
For example, for the disjunctive clause C = x ∨ y we have

C[⊕2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
(3)

(where ⊕2 denotes binary exclusive or).
One important observation is that if we hit F [⊕2] with a

random restriction ρ that sets one of x1 and x2 to a random
value for every x and leaves the other variable unset, then
F [⊕2]�ρ will be the formula F except possibly for sign flips
of the literals. It is well known that restrictions preserve
resolution and PCR refutations, and so for any refutation
π : F [⊕2]`⊥ we have that π�ρ is a refutation of F (modulo
sign flips). It is not hard to show that if in addition π has
small length/size, then it is likely that π�ρ does not have
any wide clauses (in resolution) or high-degree monomials
(in PCR). This will be useful in what follows.

3.2 Pebbling Contradictions
Pebbling is a tool for studying time-space relationships

by means of a game played on DAGs. Pebble games were
originally devised for studying programming languages and
compiler construction, but found a broad range of applica-
tions in computational complexity during the 70s and 80s,
which has expanded further during the last decade to cover
also proof complexity. The way pebbling results have been
used in proof complexity has mainly been by studying so-
called pebbling contradictions as defined next.

Definition 5 ([14]). Let G be a DAG with source ver-
tices S and a unique sink vertex z. Identify every vertex
v ∈ V (G) with a variable v. The pebbling contradiction
PebG over G is the conjunction of the following clauses:

• for all s ∈ S, a unit clause s ( source axioms),

• For all non-sources v with predecessors pred(v), the
clause

W
u∈pred(v) u ∨ v (pebbling axioms),

• for the sink z, the unit clause z ( sink axiom).

If G has n vertices and indegree `, then PebG is an unsatis-
fiable (1+`)-CNF formula with n+1 clauses over n variables.

817



3.3 Trade-offs Based on Pebbling
A paradigm that has turned out to be fruitful in many

contexts in proof complexity is to take a CNF formula fam-
ily {Fn}∞n=1 with interesting properties, tweak it by sub-
stituting some function f(x1, . . . , xd) for each variable x as
described in Section 3.1, and then use this new formula fam-
ily to prove the desired result. In particular, the time-space
trade-offs in [13] are obtained in this way. The techniques
in [13] were developed specifically for resolution and the
more general k-DNF resolution proof system, but a care-
ful analysis of the proofs reveals that most of the approach
can be carried over to other proof systems in a more general
setting. We present this general setting below in the hope
that it can be useful as an approach for proving space lower
bounds and time-space trade-offs for proof systems such as
PCR and cutting planes analogous to those for resolution
and k-DNF resolution in [13]. And indeed, as we shall see
soon, a simple special case of this approach combined with
random restrictions already yields nontrivial trade-offs for
PCR, albeit with some loss in the parameters as compared
to the resolution trade-offs in [13].

The idea is as follows: Start with a CNF formula F which
has a (weak) trade-off in resolution between length and vari-
able space (i.e., the number of variables that any refutation
must mention simultaneously at some point). Consider some
proof system P and study the substitution formula F [f],
where f is chosen to have the right properties with respect
to P. Let πf be any P-refutation of F [f]. Intuitively, we
want to argue that whatever πf looks like, we can extract
from this πf a resolution refutation π of F with related prop-
erties. Our way of doing this is to look at the P-configu-
rations (i.e., snapshots of the blackboard in P-refutations),
define projections of these P-configurations to clauses over
Vars(F ), and then to show that such projections translate
P-refutations to resolution refutations. Roughly, our intu-
ition is that if, for instance, a P-configuration D implies
f(x1, . . . , xd) ∨ ¬f(y1, . . . , yd), then this should project the
clause x ∨ y. It will be convenient for us, however, to relax
this requirement a bit and allow other definitions of pro-
jections as well, as long as they are “in the same spirit.”
Generalizing [13], we show that any function satisfying the
following properties will make this approach work.

Definition 6. Let f be a d-ary Boolean function. Let P
be a sequential implicational2 proof system with space mea-
sure Sp(·), and let D be any P-configuration over Vars

`
F [f]

´
.

Then a function projf mapping P-configurations D to sets
of clauses C over Vars(F ) is an f-projection if it is:

Complete: If D � C[f] then the clause C either is in or is
derivable from projf(D) by weakening.

Nontrivial: If D = ∅, then projf(D) = ∅.

Monotone: If D′ � D and C ∈ projf(D), then C is in or is

derivable from projf(D′) by weakening.

2Briefly, we say that P is sequential implicational if a P-ref-
utation π is a sequence of lines π = {L1, . . . , Lτ} where each
line is semantically implied by previous lines. Note that,
e.g., extended Frege does not satisfy this property, since
introducing a new extension variable as a shorthand for a
formula declares an equivalence that is not the consequence
of this formula, but cutting planes, PC and PCR do.

Incrementally sound: Let A be a clause over Vars(F )
and let LA be the encoding of some clause in A[f] as
a Boolean function of the type prescribed by P. Then
if C ∈ projf(D ∪ {LA}), it holds for all literals a ∈
Lit(A)\Lit(C) that the clause a∨C either is in projf(D)
or can be derived from projf(D) by weakening.

In order for a projection to be of use, it should also some-
how preserve space when going from the proof system P to
resolution. This is captured by the next definition.

Definition 7. We say that projf is space-faithful of de-
gree K with respect to P if there is a degree-K polynomial Q
such that Q(Sp(D)) ≥

˛̨
Vars(projf(D))

˛̨
holds for any P-con-

figuration D. If Q(n) = n, projf is exactly space-faithful.

We show that if we can define a space-faithful projection
for a proof system P with respect to some space measure
in P, then resolution trade-offs between length and variable
space in resolution for F are amplified to time-space trade-
offs for F [f] in P. This means that in order to prove time-
space trade-offs for, say, PCR or cutting planes, it would
be sufficient to design space-faithful projections as defined
above. The trade-offs would then follow by applying the pro-
jection machinery in an entirely black-box fashion. Although
we do not use the full generality of this machinery in the cur-
rent paper, we nevertheless believe that the development of
this black box is an important technical contribution.

Unfortunately, for both PCR and cutting planes it seems
very challenging to come up with space-faithful projections
with respect to the most interesting space measures in these
systems. However, there is a particular measure for which
we are able to obtain space-faithful projections for a wide
range of proof systems P (once our refined analysis of [13]
reveals that this is what we should be aiming for), namely if
we consider variable space not only as the “target measure”
in resolution but also in P. Furthermore, for this measure
we can pick the “substitution function” f to be the identity.

Lemma 8. Let P be any sequential implicational proof
system and fix f to be the identity function. Then there are
exactly space-faithful projections from P to resolution with
respect to variable space for any CNF formula F .

This simple but powerful lemma turns out to be sufficient
to lift the resolution trade-offs between width and clause
space in [10] to the PCR trade-offs between degree and
monomial space in Theorem 1.

The next step is to combine Lemma 8 with substitution
using exclusive or. If π is a PCR refutation of F [⊕2], then
after hitting π with a restriction ρ as described above we get
a PCR refutation of the original formula F that is very likely
not to contain high-degree monomials. But if all monomials
are of small degree, then small monomial space implies small
variable space, and this means that we can prove a slightly
weaker analogue for PCR of the substitution space theorem
in [13] for resolution, as stated next.

Theorem 9. Suppose that F is a CNF formula for which
any syntactic resolution refutation in variable space at most s
must make more than T axiom downloads.3 Then any se-
mantic PCR refutation of F [⊕2] in monomial space at most
s/ log4/3 T must have size larger than T .
3It would have been nice to be able to use bounds on refuta-
tion length here rather than bounds on the number of axiom
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Proof. Let π : F `⊥ be a PCR refutation of F [⊕] in
size T and monomial space s′. If we apply a random restric-
tion ρ to F [⊕] as described above, then π�ρ is a PCR refuta-
tion of F . Consider some fixed monomial m in π. It is easy
to show that m�ρ has degree at most K except with proba-

bility (3/4)K . Thus, by a union bound we can pick ρ so that
π�ρ is a PCR refutation of F in size at most T , monomial

space at most s′, and degree at most log4/3 T . This means
that the variable space of this refutation is upper-bounded
by s′ log4/3 T . Applying the projection in Lemma 8, this
results in a resolution refutation doing at most T downloads
and never exceeding variable space s′ log4/3 T . This is im-

possible if s′ ≤ s/ log4/3 T , and the theorem follows.

The time-space trade-offs for PCR in sublinear space re-
ported in Theorems 2 and 3, as well as several other trade-
off results, now follow by applying Theorem 9 to pebbling
formulas substituted with exclusive or. These formulas are
all refutable in linear length and constant width simultane-
ously in resolution, which means that polynomial calculus
can simulate these refutations in linear size. In this way, we
get trade-off results where the upper bounds hold for syn-
tactic versions of the weaker proof systems resolution and
polynomial calculus, whereas the lower bounds hold for the
stronger proof system PCR, even when this system is made
stronger still by allowing semantic derivation steps.

3.4 Tseitin Contradictions
Tseitin contradictions [41] encode the principle that every

undirected graph has even total degree.

Definition 10. Let G = (V, E) be an undirected graph
and χ : V → {0, 1} a function such that

L
v∈V χ(v) is odd.

Identify each edge e ∈ E with a variable xe, and for a vertex
v ∈ V and value b ∈ {0, 1} let

PARITY v,b =
^ nW

e3vxa(e)
e

˛̨̨ L
e(a(e)⊕ 1) 6= b

o
be the CNF representation of the constraint

L
e3v xe = b.

Then the Tseitin contradiction on (G, χ) is

Ts(G, χ) =
V

v∈V PARITY v,χ(v) .

Since each edge is counted twice in Ts(G, χ), the parity
constraints cannot all be satisfied if the overall parity of χ is
odd. We will frequently suppress the reference to χ above,
since when G is connected any two odd-parity functions yield
equivalent formulas for all practical purposes.

When the degree of the graph is bounded by d, each local
parity constraint for a vertex can be written as a CNF for-
mula with at most 2d−1 clauses of width d, and hence Ts(G)
has at most 2d−1|V | clauses in total.

3.5 Trade-offs for Tseitin Contradictions
A useful tool when proving lower bounds in resolution are

semantic measures of clause complexity as introduced by
Ben-Sasson and Wigderson [14], i.e., measures of the form

µA(C) = min{|S| : S ⊆ A, S |= C} , (4)

downloads. This is clearly not possible, however. The rea-
son for this is that the proof refuting F [⊕2] is allowed to use
any arbitrarily strong semantic inference rules, and this can
lead to exponential savings compared to syntactic resolu-
tion. But, happily, the bound in terms of axiom downloads
turns out to be exactly what we need for our applications.

where C is a clause and A is a collection of axioms (or sets
of axioms). In the context of Tseitin contradictions Ts(G),
the semantic measure of a clause is defined to be the size of
a smallest subset of the vertices of G such that the parity
constraints over these vertices semantically imply the clause.
Tseitin contradictions cannot be refuted without using par-
ity constraint clauses for all vertices, so in the course of the
proof information from all vertices must be aggregated. If
the graph G has a large isoperimetric number—i.e., if every
medium-sized set of vertices have many edges leaving the
set—then the formula Ts(G) will be hard to refute.

In [8] it was shown how to use the semantic measure as
a progress measure to get not only size lower bounds but
also size-space trade-offs for Tseitin contradictions in reso-
lution. This strategy considers multiple ranges of intermedi-
ate complexity values for clauses, and requires quite specific
and strong isoperimetric properties. The argument works
for graphs that not only have a certain extended isoperime-
try property, but also maintain this property after having a
constant fraction of randomly chosen edges removed (corre-
sponding to the formula being hit by a random restriction).
This creates significant complications at a fairly low level
of the argument, and necessitates the use of rather dense
graphs, so that the trade-off can only be shown to hold for
CNF formulas of unbounded width. We get a cleaner and
simpler proof by instead considering multigraphs and using
appropriate restrictions operating on them. This makes the
argument more transparent and enables us to prove trade-
offs for CNF formulas of constant width (which, as noted
in, e.g., [1], is the preferred setting when studying space in
proof complexity).

As in [8], our construction requires graphs with an ex-
tended isoperimetry property, which is formalized as follows.

Definition 11. Let G = (V, E) be an undirected graph
and (W, t0, r) be associated parameters. Call a vertex set
S ⊆ V of size t0 ≤ |S| ≤ |V |/2 medium-sized. The bound-
ary of S is δ(S) = {(u, v) ∈ E | u ∈ S, v ∈ V \ S}, i.e., the
set of edges with exactly one endpoint in S.

We say that G has the extended isoperimetry property
with parameters (W, t0, r) if any sequence of medium-sized
sets of vertices S1, . . . , Sk ⊆ V such that |Si+1| ≥ r · |Si| for
all i satisfies the inequality

˛̨S
i δ(Si)

˛̨
≥ k ·W .

So-called grid graphs (with vertices indexed by integer co-
ordinates (i, j) and edges to adjacent coordinates (i, j ± 1),
(i± 1, j)) can be shown to have this property.

Lemma 12. A w × ` grid graph, where 4w2 ≤ ` ≤ 2w,
satisfies the extended isoperimetry property with parameters
(w, 4w3, 2 + ε) for any ε > 0 and any large enough w.

For Tseitin contradictions, vertex set boundaries are re-
lated to the semantic complexity measure µ as follows.

Lemma 13 ([14]). Let S be a minimal vertex set wit-
nessing the complexity µ(C) of a clause C derived from Ts(G)
in resolution. Then δ(S) ⊆ Vars(C).

We now formalize the idea that the semantic measure µ
can be used as a tool to obtain time-space trade-offs. The
following lemma is straightforward to prove by induction.

Lemma 14. Fix any unsatisfiable CNF formula F with
associated semantic measure µF and any sequential implica-
tional proof system. Let µ∗(·) = blog2 µF (·)c and let Klo, Khi
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be fixed integers. If a refutation of F is divided into consec-
utive subderivations, or epochs, and further subdivided re-
cursively into subepochs to a recursive depth of h, then for
any integer k at least one of the following cases apply:

1. There exists an epoch at a leaf in the recursive tree
which contains formulas with at least (Khi −Klo + 1) ·
k−h distinct values in [Klo, Khi] under µ∗.

2. There exists an epoch such that the formulas in mem-
ory during the breakpoints between the epochs in its im-
mediate children contain formulas with at least k dis-
tinct values in [Klo, Khi] under µ∗.

To apply this lemma, consider Tseitin formulas over grid
graphs G, do ⊕2-substitution in Ts(G) (which yields the
formula Ts(G′′) over the multigraph G′′ with two copies
of each edge in G), and hit any resolution refutation of
Ts(G)[⊕2] = Ts(G′′) with a random restriction as described
in Section 3.1. Since G satisifies extended isoperimetry, the
clauses in Lemma 14 are collectively wide. For this very
reason, however, a random restriction would have been very
likely to kill at least one of these clauses. Trading off param-
eters appropriately, we obtain strong time-space trade-offs.

Unfortunately, this strategy breaks down in polynomial
calculus. Naively, one would hope to use the analogy be-
tween resolution width and PC degree and just carry out the
plan above. However, we cannot obtain degree bounds from
the semantic measure because it is not true that medium
complexity polynomials are necessarily of high degree, and
existing degree lower bound techniques do not seem to yield
progress measures of the kind needed for Lemma 14.

One such lower bound technique is to do a linear transfor-
mation of the variables. In the context of PCR over a field of
odd characteristic, consider rewriting the Tseitin parity con-
straints so that the variables take values in {+1,−1} rather
than {0, 1}. It is not hard to see that the degree needed
to refute this “Fourier-transformed” {±1}-Tseitin formula is
the same as for the original {0, 1}-Tseitin formula, and [19]
gave tight upper and lower degree bounds for the former ex-
ploiting the fact that its polynomials have a simple binomial
form. While using this machinery in our setting can easily
establish that any refutation must contain many monomials
corresponding to boundaries for vertex sets of many different
sizes, by itself this does not suffice for time-space trade-offs.
We must also be able to show how these monomials are re-
lated, so that we can track progress made by a refutation.

We resolve this issue by translating PCR refutations of
Tseitin formulas to refutations of the Fourier-transformed
formulas in the binomial polynomial calculus subsystem used
in [19]. It turns out that in binomial PC a suitable progress
measure can be found, so the plan above can be carried out
there. Thanks to the following key property of the bino-
mial PC simulation of the original refutation we can then
translate back again to PCR.

Lemma 15. The simulation of PCR on Ts(G) (in vari-
ables {xe}) by binomial PC on the {±1}-Tseitin formula (in
variables {ye}) is conservative with respect to monomials:

• If for some configuration of the simulated refutation no
monomial appears which contains the set of variables
{xe | e ∈ E′} for some E′ ⊆ E, then the correspond-
ing configuration of the simulating refutation does not
contain any monomials containing all of {ye : e ∈ E′}.

• If for some time period in the simulated refutation no
monomial contains the set of variables {xe | e ∈ E′}
for some E′ ⊆ E, then the corresponding time period of
the simulating refutation does not contain any mono-
mials containing all of {ye : e ∈ E′}.

Since the simulation is not efficient with respect to size
and space, the images of epochs under the simulation have
wildly differing sizes in general. However, for the binomials
we can recover a degree-analogue of the width lower bound
in resolution without losing much, as stated next.

Lemma 16. Suppose that G = (V, E) has the extended
isoperimetry property with parameters (w, t0, r), and as be-
fore let µ∗(·) = blog2 µ(·)c. Then for any binomials b1, . . . , bk

with distinct complexities between t0 and µ∗(⊥) it holds that˛̨̨[
Vars(bi)

˛̨̨
≥ Ω(k · w) . (5)

Using the semantic measure in binomial PC together with
the division of the refutation into epochs in Lemma 14, we
can obtain many monomials of collectively high complexity
either within a single epoch or at a collection of breakpoints
in the simulating refutation. Then we can apply Lemma 15
to lift these monomials back to the simulated refutation
where they are unlikely to survive a restriction.

Proof sketch for Theorem 4. Let G be a grid graph
satisfying Lemma 16 and let π be any PCR refutation of
Ts(G)[⊕2] in size S(π) = T and space Sp(π) = S. Divide
π into epochs with each epoch split into m equal subepochs
to a recursive depth of h, with m and h to be determined
later. Say that the critical set of monomials associated to
an internal epoch consists of any monomial appearing at the
breakpoints between its children, and that for a leaf epoch
the critical set contains all monomials in the epoch.

Applying the random restriction ρ in Section 3.1, we get
that π�ρ is a refutation of Ts(G)[⊕]�ρ = Ts(G) (up to

sign flips). Let π∗ be the induced refutation of the {±1}-
Tseitin formula on G with corresponding induced recursive
subdivision into epochs. Apply Lemma 14 using thresholds
blog t0c, blog|V (G)|/2c, matching the definition of extended
isoperimetry. Let I denote the number of intermediate µ∗

values. Choose k such that I · k−h = k. Combining the
properties of µ∗ with Lemma 14 implies that the critical set
of some induced epoch of π∗ contains at least k binomials of
distinct complexity values. Thus, by Lemma 16 this critical
set contains 2k monomials which collectively contain at least
Ω(k · w) variables. By Lemma 15, this holds for π∗ also.

However, the restriction M�ρ of any small set of mono-
mials M is unlikely to have 2k monomials which collec-
tively contain many variables. The probability that any
fixed 2k-tuple of monomials in the x-variables all survive
and have collective width W is at most exp(−Ω(W )). By
a union bound over all 2k-tuples of M , the probability that
any 2k of the monomials in M have collectively Ω(k ·w) vari-
ables after the restriction is at most |M |2k exp(−Ω(k · w)).

Choose the parameter m so that mh = (T/S) and let
K = mS = Tm−h+1. For this choice of m the sizes of all
critical sets of monomials are bounded by K. The prob-
ability for any critical set of any induced epoch to con-
tain k distinct complexities with respect to µ∗ after the
restriction is at most K2k exp(−k · w), and there are at
most mh epochs. Set h = k. By a union bound, the
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probability that any epoch contains k complexities is at
most (mK2 exp(−Ω(w)))k. On the other hand, by Lem-
mas 14 and 15, this probability is 1. We conclude that

T ≥ (exp(Ω(w))/S)Ω(h). Since h and k may be set as large as
log I/ log log I, and I may be set as large as Ω(log |V [G]|), ul-

timately gives T ≥ (exp(Ω(w))/S)Ω(log log n/ log log log n).

We conclude this section by commenting on a novel aspect
of this result. While we avoided explicitly constructing a
complexity measure for PCR, we obtain an implicit measure
lifted from the binomial PC simulation. A little reflection
reveals that this progress measure is in fact non-local—the
complexity of a polynomial depends on the derivation used
to obtain it—in contrast to most measures we have seen in
the literature. Perhaps this new technique for constructing
progress measures could be useful in other contexts as well.

4. CONCLUDING REMARKS
In this paper, we report the first trade-off results for poly-

nomial calculus and PCR which rule out simultaneous opti-
mization of different proof complexity measures, in particu-
lar proof size and proof space. Loosely speaking, we show
that in the worst case it is impossible to do any meaning-
ful simultaneous optimization of size and space. Polynomial
calculus and PCR are still not very well understood, how-
ever, and there remain several interesting open problems.

One such problem, which has seen exciting developments
lately, is to prove lower bounds on space in PCR. It is only
very recently that [17, 27] managed to obtain lower bounds
for k-CNF formulas, but these bounds all require k ≥ 4. In-
triguingly, there are still no superconstant lower bounds for
any 3-CNF formula. Also, for several well-known formula
families the space complexity remains open.

Another question is how far the analogies go between size,
(monomial) space, and degree in PC/PCR on the one hand
and length, (clause) space, and width in resolution on the
other. In resolution, we know that clause space is an up-
per bound on width [5], that small width does not say any-
thing about space complexity [12], and that there can be
very strong trade-offs between these two measures [10]. In
this paper, we have shown that exactly the same kind of
trade-off holds between degree and monomial space in PC
and PCR. However, we still do not know whether monomial
space is an upper bound on degree or whether small degree
says anything about the space complexity.

For our time-space trade-off results based on pebbling for-
mulas, it would be very satisfying to remove the loss in the
parameters resulting from having to take the logarithm of
the proof size. This loss is inherent in the restriction argu-
ment, but for resolution it is known how to avoid restrictions
completely and instead use the projection machinery in Sec-
tion 3.3 together with the right kind of substitutions in the
formulas to get tight trade-offs. It would be very interesting
if something similar could be made to work for PC and PCR,
since this would give tight trade-offs (for sublinear space) for
these two proof systems and also yield new lower bounds on
space similar to what is currently known for resolution.

Looking beyond polynomial calculus, another proof sys-
tem that would be very interesting to understand is cutting
planes. Here open problems abound. Perhaps most obvi-
ously, it would be desirable to prove size lower bounds by
some other technique than the interpolation used in [34] for,
say, Tseitin contradictions or random k-CNF formulas.

As far as we are aware, there are no space lower bounds or
“true” time-space trade-offs known for cutting planes. How-
ever, the recent results in [29] could be interpreted to suggest
that pebbling formulas of the right flavour should inherit
time-space trade-offs properties from the graphs in terms of
which they are defined not only for the resolution proof sys-
tem but also for cutting planes. If true, this would mean that
the so-called black-white pebble game in [23] could be used
to obtain strong trade-offs not only for resolution, k-DNF
resolution and PC/PCR, but also for cutting planes.

Finally, it is known that PCR and cutting planes are both
strictly stronger than resolution with respect to proof size,
and it would seem natural to expect that they should both
be stronger than resolution with respect to space as well. As
far as we are aware, though, this is open. It would be nice to
separate PCR from resolution with respect to space by find-
ing a k-CNF formula that has low monomial space complex-
ity in PCR but large clause space complexity in resolution,
and similarly for cutting planes with respect to resolution.
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resolution. J. ACM, 35(4):759–768, 1988.

[22] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the
Groebner basis algorithm to find proofs of
unsatisfiability. In Proc. 28th ACM Symposium on
Theory of Computing, pp. 174–183, 1996.

[23] S. A. Cook and R. Sethi. Storage requirements for
deterministic polynomial time recognizable languages.
J. Comput. System Sci., 13(1):25–37, 1976.

[24] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem proving. Comm. ACM,
5(7):394–397, 1962.

[25] M. Davis and H. Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201–215, 1960.

[26] J. L. Esteban and J. Torán. Space bounds for
resolution. Info. Comp., 171(1):84–97, 2001.

[27] Y. Filmus, M. Lauria, J. Nordström, N. Thapen, and
N. Ron-Zewi. Space complexity in polynomial
calculus. In Proc. 27th IEEE Conference on
Computational Complexity, pp. 334–344, 2012.

[28] A. Haken. The intractability of resolution. Theor.
Comput. Sci., 39(2-3):297–308, 1985.

[29] T. Huynh and J. Nordström. On the virtue of succinct
proofs: Amplifying communication complexity
hardness to time-space trade-offs in proof complexity.
In Proc. 44th ACM Symposium on Theory of
Computing, pp. 233–248, 2012.

[30] R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds
for the polynomial calculus and the Gröbner basis
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