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Constrained Deep Weak Supervision for
Histopathology Image Segmentation

Zhipeng Jia, Xingyi Huang, Eric I-Chao Chang, and Yan Xu

Abstract— In this paper, we develop a new weakly super-
vised learning algorithm to learn to segment cancerous
regions in histopathology images. This paper is under a
multiple instance learning (MIL) framework with a new for-
mulation, deep weak supervision (DWS); we also propose
an effective way to introduce constraints to our neural
networks to assist the learning process. The contributions
of our algorithm are threefold: 1) we build an end-to-end
learning system that segments cancerous regions with fully
convolutional networks (FCNs) in which image-to-image
weakly-supervised learning is performed; 2) we develop a
DWS formulation to exploit multi-scale learning under weak
supervision within FCNs; and 3) constraints about positive
instances are introduced in our approach to effectively
explore additional weakly supervised information that is
easy to obtain and enjoy a significant boost to the learning
process. The proposed algorithm, abbreviated as DWS-MIL,
is easy to implement and can be trained efficiently. Our sys-
tem demonstrates the state-of-the-art results on large-scale
histopathology image data sets and can be applied to vari-
ous applications in medical imaging beyond histopathology
images, such as MRI, CT, and ultrasound images.

Index Terms— Convolutional neural networks,
histopathology image segmentation, weakly supervised
learning, fully convolutional networks, multiple instance
learning.

I. INTRODUCTION

H IGH resolution histopathology images play a critical
role in cancer diagnosis, providing essential informa-

tion to separate non-cancerous tissues from cancerous ones.
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A variety of classification and segmentation algorithms have
been developed in the past [1]–[8], focusing primarily on the
design of local pathological patterns, such as morphologi-
cal [2], geometric [1], and texture [9] features based on various
clinical characteristics.

In medical imaging, supervised learning approa-
ches [10]–[15] have shown their particular effectiveness
in performing image classification and segmentation for
modalities such as MRI, CT, and Ultrasound. However,
the success of these supervised learning algorithms depends
on the availability of a large amount of high-quality manual
annotations/labeling that are often time-consuming and costly
to obtain. In addition, well-experienced medical experts
themselves may have a disagreement on ambiguous and
challenging cases. Unsupervised learning strategies where no
expert annotations are needed point to a promising but thus
far not clinically practical direction.

In-between supervised and unsupervised learning,
weakly-supervised learning in which only coarse-grained
(image-level) labeling is required makes a good balance of
having a moderate level of annotations by experts while
being able to automatically explore fine-grained (pixel-level)
classification [16]–[23]. In pathology, a pathologist annotates
whether a given histopathology image has cancer or not;
a weakly-supervised learning algorithm would hope to
automatically detect and segment cancerous tissues based on
a collection of histopathology (training) images annotated by
expert pathologists; this process that substantially reduces
the amount of work for annotating cancerous tissues/regions
falls into the category of weakly-supervised learning, or more
specifically multiple instance learning [16], which is the main
topic of this paper.

Multiple instance learning (MIL) was first introduced by
Dietterich et al. [16] to predict drug activities; a wealthy
body of MIL based algorithms was developed there-
after [17], [24], [25]. In multiple instance learning, instances
arrive together in groups during training, known as bags, each
of which is assigned either a positive or a negative label (can
be multi-class), but instance-level labels are absent (as shown
in Figure 1). In the original MIL setting [16], each bag consists
of a number of organic molecules as instances; their task was
to predict instance-level label for the training/test data, in addi-
tion to being able to perform bag-level classification. In our
case here, each histopathology image with cancer or non-
cancer label forms a bag and each pixel in the image is referred
to as an instance (note that the instance features are computed
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Fig. 1. Illustration of the learning procedure of a MIL algorithm. Our
training dataset is denoted by S = {(Xi,Yi), i = 1,2, 3, . . . , n}, where Xi
indicates the ith input image, and Yi ∈ {0, 1} represents its corresponding
manual label (Yi = 0 refers to a non-cancer image and Yi = 1 refers to a
cancer image). Given an input image, a classifier C generates pixel-level
predictions. Then, the image-level prediction ̂Yi is computed from pixel-
level predictions via a softmax function. Next, a loss between the ground
truth Yi and the image-level prediction ̂Yi is computed for the ith input
image, denoted by li(Yi,̂Yi). Finally, an objective loss function L takes the
sum of loss functions of all input images. The classifier C is learned by
minimizing the objective loss function.

based on each pixel’s surroundings beyond the single pixel
itself).

Despite the great success of MIL approaches [16]–[18] that
explicitly deal with the latent (instance-level) labels, one big
problem with many existing MIL algorithms is the use of
pre-specified features [17], [19], [24]. Although algorithms
like MILBoost [17] have embedded feature selection proce-
dures, their input feature types are nevertheless fixed and
pre-specified. To this point, it is natural to develop an
integrated framework by combining the MIL concept with
convolutional neural networks (CNN), which automatically
learns rich hierarchical features for pattern recognition with
state-of-the-art classification/recognition results. A previous
approach that adopts CNN in a MIL formulation was recently
proposed [20], but its greatest limitation is the use of image
patches instead of full images, making the learning process
slow and ineffective. For patch-based approaches: (1) image
patch size has to be specified in advance; (2) every pixel as the
center of a patch is potentially an instance, resulting in millions
of patches to be extracted even for a single image; (3) feature
extraction for image patches is not efficient. Beyond the patch-
centric CNN framework is the image-centric paradigm where
image-to-image prediction can be performed by fully convo-
lutional networks (FCN) [26] in which features for all pixels
are computed altogether. The efficiency and effectiveness of
both training and testing by FCN family models have shown
great success in various computer vision applications such as
image labeling [26], [27] and edge detection [28]. An early
version of FCN applied in MIL was proposed in [29] which
was extended into a more advanced model [21].

In this paper, we first build an FCN based multiple instance
learning framework to serve as our baseline algorithm for
weakly-supervised learning of histopathology image segmen-
tation. The main focus of this paper is the introduction
of deep weak supervision and constraints to our multiple
instance learning framework. We abbreviate our deep weak
supervision for multiple instance learning as DWS-MIL and
our constrained deep weak supervision for multiple instance

learning as CDWS-MIL. The concept of deep supervision
in the supervised learning was introduced in [30], which is
combined with FCN for edge detection [28]. We propose
a deep weak supervision strategy in which the intermediate
FCN layers are expected to be further guided through weakly-
supervised information within their own layers.

We also introduce area constraints that only require a small
amount of additional labeling effort but are shown to be
immensely effective. That is, in addition to the annotation of
being a cancerous or non-cancerous image, we ask pathologists
to give a rough estimation of the relative size (e.g 30%) of
cancerous regions within each image; this rough estimation
is then turned into an area constraint in our MIL formulation.
Our motivation to introduce area constrains is three-fold. First,
having informative but easy to obtain expert annotation can
always help the learning process and we are encouraged to
seek information beyond being just positive or negative. There
exists a study in cognitive science [31] indicating the natural
surfacing of the concept of relative size when making a dis-
crete yes-or-no decision. Second, our DWS-MIL formulation
under an image-to-image paradigm allows the additional term
of the area constraints to be conveniently carried out through
back-propagation, which is nearly impossible to do if a patch-
based approach is adopted [19], [20]. Third, having area
constraints conceptually and mathematically greatly enhances
learning capability; this is evident in our experiments where
a significant performance boost is observed using the area
constraints.

To summarize, in this paper we develop a new mul-
tiple instance learning algorithm for histopathology image
segmentation under a deep weak supervision formulation,
abbreviated as DWS-MIL. The contributions of our algorithm
include: (1) DWS-MIL is an end-to-end learning system
that performs image-to-image learning and prediction under
weak supervision. (2) Deep weak supervision is adopted in
each intermediate layer to exploit nested multi-scale feature
learning. (3) Area constraints are also introduced as weak
supervision, which is shown to be particularly effective in
the learning process, significantly enhancing segmentation
accuracy with very little extra work during the annotation
process. In addition, we experiment with the adoption of
super-pixels [32] as an alternative way to pixels and show
their effectiveness in maintaining intrinsic tissue boundaries
in histopathology images.

II. RELATED WORK

Related work can be divided into three broad categories:
(1) directly related work, (2) weakly supervised learning
in computer vision, and (3) weakly supervised learning in
medical images.

A. Directly Related Work
Three existing approaches that are closely related to our

work are discussed below.
Xu et al. [19] propose a histopathology image segmentation

algorithm in which the concept of multiple clustered instance
learning (MCIL) is introduced. The MCIL algorithm [19] can
simultaneously perform image-level classification, patch-level
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segmentation and patch-level clustering. However, as men-
tioned previously, their approach is a patch-based system that
is extremely space-demanding (requiring large disk space to
store the features) and time-consuming to train. In addition,
a boosting algorithm is adopted in [19] with all feature types
pre-specified, but features in our approaches are automatically
learned.

Pathak et al. present an early version of fully convolutional
networks applied in a multiple instance learning setting [29]
and they later generalize the algorithm by introducing a new
loss function to optimize for any set of linear constraints on
the output space [21]. Some typical linear constraints include
suppression, foreground, background, and size constraints.
Compared with the generalized constrained optimization in
their model, the area constraints proposed in this paper are
simpler to carry out through back-propagation within MIL.
Moreover, our formulation of deep weak supervision combined
with area constraints demonstrates its particular advantage
in histopathology image segmentation where only two-class
(positive and negative) classification is studied.

Holistically-nested edge detector (HED) is developed in [33]
by combining deep supervision with fully convolutional net-
works to effectively learn edges and object boundaries. Our
deep weak supervision formulation is inspired by HED but
we instead focus on a weakly-supervised learning setting as
opposed to being fully supervised in HED. Our deep weak
supervision demonstrates its power under an end-to-end MIL
framework.

B. Weakly Supervised Learning in Computer Vision

A rich body of weakly-supervised learning algorithms exists
in computer vision and we discuss them in two groupings:
segmentation based and detection based.

1) Segmentation: In computer vision, MIL has been applied
to segmentation in many previous systems [34]–[37]. A patch-
based approach would extract pre-specified image features
from selected image patches [34], [35] and try to learn
the hidden instance labeling under MIL. The limitations of
these approaches are apparent, as stated before, requiring
significant space and computation. More recently, convolu-
tional neural networks have become increasingly popular.
Pinheiro and Collobert [36] propose a convolutional neural
network-based model which weights important pixels dur-
ing training. Papandreou et al. [37] propose an expectation-
maximization (EM) method using image-level and bounding
box annotation in a weakly-supervised setting.

2) Object Detection: MIL has also been applied to objection
detection where the instances are now image patches of
varying sizes, which are also referred to as sliding windows.
The space for storing all instances are enormous and proposals
are often used to limit the number of possible instances [38].
A lot of algorithms exist in this domain and we name a couple
here. Cinbis et al. [39] propose a multi-fold multiple instance
learning procedure, which prevents training from prematurely
looking at all object locations; this method iteratively trains a
detector and infers object locations. Diba et al. [40] propose a
cascaded network structure which is composed of two or three
stages and is trained in an end-to-end pipeline.

C. Weakly Supervised Learning in Medical Imaging

Weakly-supervised learning has been applied to medical
images as well. Yan et al. [41] propose a multi-instance
deep learning method by automatically discovering discrim-
inative local anatomies for anatomical structure recognition;
positive instances are defined as contiguous bounding boxes
and negative instances (non-informative anatomy) are ran-
domly selected from the background. A weakly-supervised
learning approach is also adopted in Hou et al. [42] to train
convolutional neural networks to identify gigapixel resolution
histopathology images.

Though promising, existing methods in medical imaging
lack an end-to-end learning strategy for image-to-image learn-
ing and prediction under MIL.

III. METHOD

In this section, we present in detail the concept and formu-
lation of our algorithms. First, we introduce our baseline algo-
rithm, a method in spirit similar to the FCN-MIL method [29]
but our method focuses on two-class classification whereas
FCN-MIL is a multi-class approach with some preliminary
results shown for natural image segmentation. We then dis-
cuss the main part of this work, deep weak supervision for
MIL (DWS-MIL) and constrained deep weak supervision
for MIL (CDWS-MIL). The flowchart of our algorithm is
illustrated in Figure 3.

A. Our Baseline

Here, we build an end-to-end MIL method as our baseline
to perform image-to-image learning and prediction, in which
the MIL formulation enables automatic learning of pixel-level
segmentation from image-level labels.

We denote our training dataset by S = {(Xi , Yi ), i =
1, 2, 3, . . . , n}, where Xi denotes the i th input image and
Yi ∈ {0, 1} refers to the manual annotation (ground truth label)
assigned to the i th input image. Here Yi = 0 refers to a non-
cancer image and Yi = 1 refers to a cancerous image. Figure 1
demonstrates the basic concept. As mentioned previously, our
task is to be able to perform pixel-level prediction learned from
image-level labels and each pixel is referred to as an instance
in this case. We denote ̂Yik as the probability of the kth pixel
being positive in the i th image, where k = {1, 2, . . . , |Xi |}
and |Xi | represents the total number of pixels of image Xi . If
an image-level prediction ̂Yi can be computed from all ̂Yik s,
then it can be used against the true image-level labels Yi to
calculate a loss Lmil . The loss function we opt to use is the
cross-entropy cost function:

Lmil =−
∑

i

(

I(Yi =1) log ̂Yi+ I(Yi=0) log(1−̂Yi)
)

, (1)

where I(·) is an indicator function.
Since one image is identified as negative if and only if

there do not exist any positive instances, ̂Yi is typically
obtained by ̂Yi = maxk ̂Yik , resulting in a hard maximum
approach. However, there are two problems with this approach:
(1) It makes the derivative ∂̂Yi/∂̂Yik discontinuous, leading
to numerical instability; (2) ∂̂Yi/∂̂Yik would be 0 for all but
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Fig. 2. Probability map of an image for all instances. (a) Training
image. (b) Instance-level probabilities (segmentation) of being positive
(cancerous) by our baseline algorithm. The color coding bar indicates a
probability between 0 and 1.

the maximum ̂Yik , rendering the learner unable to consider
all instances simultaneously. Therefore, a softmax function is
often used to replace the hard maximum approach. We use
Generalized Mean (GM) as our softmax function [17], which
is defined as

̂Yi =
⎛

⎝

1

|Xi |
|Xi |
∑

k=1

̂Y r
ik

⎞

⎠

1/r

. (2)

The parameter r controls the sharpness and proximity to the
hard function: ̂Yi → maxk ̂Yik as r →∞.

We replace classifier C in Figure 1 with a fully convo-
lutional network (FCN) [26] using a trimmed VGGNet [43]
under the MIL setting. To minimize the loss function via back
propagation, we calculate ∂Lmil/∂̂Yik from ∂Lmil/∂̂Yi . By the
chain rule of differentiation,

∂Lmil

∂̂Yik
= ∂Lmil

∂̂Yi

∂̂Yi

∂̂Yik
. (3)

It suffices to know ∂̂Yi/∂̂Yik , whose analytical expression can
be derived from the softmax function itself. Once ∂Lmil/∂̂Yik

is known, back propagation can be performed.
In Figure 2, a training image and its learned instance-

level predictions are illustrated. Instance-level predictions are
shown as a heatmap, which shows the probability of each
pixel being cancerous. We use a color coding bar to illustrate
the probabilities ranging between 0 and 1. Note that in the
following figures, the instance-level predictions (segmentation)
are all displayed as heatmaps and we no longer show the color
coding bar for simplicity.

B. Constrained Deep Weak Supervision

After the introduction of our baseline algorithm that is an
FCN-like model under MIL, we are ready to introduce the
main part of our algorithm, constrained deep weak supervision
for histopathology image segmentation.

We denote our training set as S = {(Xi , Yi , ai ),
i = 1, 2, 3, . . . , n}, where Xi refers to the i th input image,
Yi ∈ {0, 1} indicates the corresponding ground truth label for
the i th input image, and ai specifies a rough estimation of the
relative area size of the cancerous region within image Xi .
The kth pixel in the i th image is given a prediction of
the probability being positive, denoted as ̂Yik , where k =
{1, 2, . . . , |Xi |} and there are |Xi | pixels in the i th image.

We denote parameters of the network as θ and the model is
trained to minimize a total loss.

1) Deep Weak Supervision: Aiming to control and guide
the learning process across multiple scales, we introduce
deep weak supervision by producing side-outputs, forming
the multiple instance learning framework with deep weak
supervision, called DWS-MIL. The concept of side-output is
similar to that which is defined in [33].

Supposing there are T side-output layers, each side-output
layer is connected with an accompanying classifier with
weights w = (w(1), . . . , w(T )), where t = {1, 2, . . . , T }.
The output probability map of the t-th side-output layer is
denoted as ̂Y (t)

i . Our goal is to train the model by minimizing
a loss between output predictions and ground truth, which is
described in the form of the cross-entropy loss function l(t)mil ,
indicating the loss produced by the t-th side-output layer
relative to image-level ground truth. The cross-entropy loss
function in each side-output layer is defined as

l(t)mil =−
∑

i

(

I(Yi =1) log ̂Y (t)
i + I(Yi =0) log(1−̂Y (t)

i )
)

. (4)

The loss function brought by the t-th side-output layer is
defined as :

l(t)side(θ,w) = l(t)mil (θ,w). (5)

The objective function is defined as:

Lside(θ,w) =
T

∑

t=1

l(t)side(θ,w). (6)

2) Deep Weak Supervision With Constraints: Our baseline
MIL formulation produces a decent result as shown in the
experiments but still with room for improvement. One problem
is that positive instances predicted by the algorithm tend to
progressively outgrow true cancerous regions. Here we pro-
pose using an area constraint term to constrain the expansion
of the positive instances during training and we name our new
algorithm as constrained deep weak supervision, abbreviated
as CDWS-MIL.

A rough estimation of the relative size of cancerous region,
ai , is given by the experts during the annotation process.
A measure of the overall “positiveness” of all the instances
in each image is calculated as

vi = 1

|Xi |
|Xi |
∑

k=1

̂Yik , (7)

which is a soft measure with the merit of being continuous
and differentiable. We then define an area constraint as an L2
loss:

lac =
∑

i

I (Yi = 1 and vi > ai )(vi − ai )
2. (8)

The loss on the area term will be activated only when Yi = 1
and vi > ai . Therefore, for cancerous images where vi < ai

or non-cancerous images, no penalty will be introduced.
Naturally the loss function for the t-th side-output layer can

be updated from Equation (5) to:

l(t)side(θ,w)← l(t)mil (θ,w)+ ηt · l(t)ac (θ,w), (9)
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Fig. 3. Overview of our framework. Under the MIL setting, we adopt first three stages of the VGGNet and connect side-output layers with deep weak
supervision under MIL. We also propose area constraints to regularize the size of predicted positive instances. To utilize the multi-scale predictions
of individual layers, we merge side-outputs via a weighted fusion layer. The overall model of equation (13) is trained via back-propagation using the
stochastic gradient descent algorithm.

where l(t)mil (θ,w) denotes the loss function generated
in Equation 4, l(t)ac (θ,w) is the area constraints loss, and ηt

is a hyper-parameter specified manually to balance the two
terms. Then, the objective loss function is still defined as
the accumulation of the loss generated from each side-output
layer, which is described in Equation (6).

3) Fusion Model: In order to adequately leverage the multi-
scale predictions across all layers, we merge the side-output
layers with each other to generate a fusion layer. The output
of the fusion layer is defined as

̂Yi, f use =
T

∑

t=1

αt ̂Y
(t)
i , (10)

where αt refers to the weight learned for the probability
map generated by the t-th side-output layer. The fusion layer
adopts the weighted average of side-output layers. In the train-
ing phase, considering the three-stage network architecture,
we initialize all fusion weights to the average value 1/3, and
let the model learn appropriate weights. When the network
converges, we observe that the outputs of the fusion layer
are very close to the 3rd side-output layer, making the fusion
results useless. The reason for this outcome is that for the
deeper side-output layer, it has a lower MIL loss as a result
of more discriminative features. Thus, in the test phase,
we adopt a strategy, using fixed weights, to preserve multi-
scale information. The appropriate weights for the test phase
are decided based on the cross-validation of training data. For
the three side-output layers, the chosen fusion weights are 0.2,
0.35 and 0.45.

The fusion loss function is then given as:

L f use(θ,w)= l( f use)
mil (θ,w)+η f use · l( f use)

ac (θ,w), (11)

where l( f use)
mil (θ,w) is the MIL loss of ̂Y f use computed as

Equation (4), l( f use)
ac (θ,w) is the area constraints loss of ̂Y f use

computed as Equation (8), and η f use is a hyper-parameter
specified manually to balance the two terms. The final objec-
tive loss function is defined as below:

L(θ,w) = Lside(θ,w)+ L f use(θ,w). (12)

In the end, we minimize the overall loss function by stochastic
gradient descent algorithm during network training:

(θ,w)∗ = argminθ,wL(θ,w). (13)

To summarize, Equation (13) gives the overall function to
learn, which is under the general multiple instance learn-
ing with an end-to-end learning process. Our algorithm is
built on top of fully convolutional networks with deep weak
supervision and additional area constraints. The pipeline of
our algorithm is illustrated in Figure 3. In our framework,
we adopt the first three stages of the VGGNet and then
the last convolutional layer of each stage is connected to
side-output. Pixel-level prediction maps can be produced by
each side-output layer and the fusion layer. The fusion layer
takes a weighted average of all side-outputs. The MIL for-
mulation guides the learning of the entire network to make
pixel-level prediction for a better prediction of the image-
level labels via softmax functions. In each side-output layer,
the loss function lmil is computed in the form of deep weak
supervision. Furthermore, area constraint loss lac makes it
possible to constrain the size of predicted cancerous tissues.
Finally, the parameters of our network are learned by minimiz-
ing the objective function defined in Equation (13) via back-
propagation using the stochastic gradient descent algorithm.

C. Super-Pixels

Treating each pixel as an instance may sometimes pro-
duce jagged tissue boundaries. We therefore alternatively
explore another option for defining instances, super-pixels.
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TABLE I
THE RECEPTIVE FIELD SIZE AND STRIDE IN THE VGGNET [43].

IN OUR FRAMEWORK, THE FIRST THREE STAGES ARE USED.
THE BOLD PARTS INDICATE CONVOLUTIONAL LAYERS

LINKED TO ADDITIONAL SIDE-OUTPUT LAYERS

Using super-pixels gives rise to a smaller number of instances
and consistent elements that can be readily pre-computed
using an over-segmentation algorithm [32]. A number of
super-pixel based approaches for medical image segmentation
have been previously proposed. Yu et al. [44] develop an
automatic tumor segmentation framework, in which a simple
linear iterative cluster (SLIC) algorithm is utilized to aggregate
nearby pixels into super-pixels. Soltaninejad et al. [45] present
a fully automated approach for brain tumor detection and
segmentation, where super-pixels using the SLIC algorithm
are obtained for tissue segmentation.

In this case, each super-pixel, instead of the pixel, is an
instance, which has shown advantages in computer vision
to reduce the computational complexity and retain sharp
segmentation boundaries. In our paper, we use SLIC method to
generate a number of super-pixels (atomic regions). At the last
sigmoid layer of the neural network, pixel-level probabilities
are produced. The probability for each super-pixel is the
average of all the pixels in the super-pixel. These super-
pixels act as our instances but our main formulation stays the
same as to minimize the overall objective function defined in
Equation (13).

IV. NETWORK ARCHITECTURE

We choose the 16-layer VGGNet [43] as the CNN architec-
ture of our framework, which is pre-trained on the ImageNet
1K class dataset and has achieved state-of-the-art performance
in the ImageNet challenge [46]. Although ImageNet consists
of natural images, which are different from histopathology
images, several previous works [47]–[49] have shown that
networks pre-trained on ImageNet are also very effective
in dealing with histopathology images. The VGGNet has
5 sequential stages before the fully-connected layer. Within
each stage, two or three convolutional layers are followed
by a 2-stride pooling layer. In our framework, we trim off
the 4th and 5th stages and only adopt the first three stages.
Side-output layers are connected to last convolutional layer
in each stage (see Table I). The side-output layer is a 1 × 1
convolutional layer of one-channel output with the sigmoid
activation. This style of network architecture makes different
side-output layers have different strides and receptive field
sizes, resulting in side-outputs of different scales. Having three
side-output layers, we add a fusion layer that takes a weighted
average of side-outputs to yield the final output. Due to the
different strides in different side-output layers, the sizes of
different side-outputs are not the same. Hence, before the
fusion, all side-outputs are upsampled to the size of the input
image by bilinear interpolation.

Fig. 4. Side-outputs from 5 stages of the VGGNet. As the network
goes deeper, the receptive field size increases and the side-output grows
larger and coarser. In the 4th and 5th stages, almost all pixels are
recognized as positive, and then positive areas almost cover the entire
images. Therefore, we trim off the 4th and 5th stages in our framework.

1) The Reason for Trimming the VGGNet: In histopathol-
ogy images, tissues appear as local texture patterns. In the
4th and 5th stages of the VGGNet, the receptive field sizes
(see Table I) become too large for local textures. Figure 4
shows side-outputs if all 5 stages of the VGGNet are adopted.
As is shown in the figure, as the network goes deeper,
the receptive field size increases and the side output grows to
be larger and coarser. In the 4th and 5th stages, the side-outputs
almost fill the entire images, which becomes meaningless.
Thus we ignore the 4th and 5th stages of the VGGNet in
our framework, due to their overlarge receptive field size.

V. EXPERIMENTS

In this section, we first describe the implementation details
of our framework. Two histopathology image datasets are used
to evaluate our proposed methods.

A. Implementation

We implement our framework on top of the publicly avail-
able Caffe toolbox [50]. Based on the official version of Caffe,
we add a layer to compute the softmax of the generalized mean
for pixel-level predictions and a layer to compute the area
constraints loss from pixel-level predictions. All experiments
are conducted on Tesla K40 with 12G Memory.

1) Model Parameters: The MIL loss is known to be hard to
train, and special care is required for choosing training hyper-
parameters. In order to reduce fluctuations in optimizing the
MIL loss, all training data are used in each iteration (the mini-
batch size is equal to the size of the training set). The network
is trained with Adam optimizer [51], using a momentum
of 0.9, a weight decay of 0.0005, and a fixed learning rate
of 0.001. The learning rates of side-output layers are set to
1/100 of the global learning rate. For the parameter of the
generalized mean, we set r = 4.

2) Weight of Area Constraints Loss: The weight of the area
constraints loss is crucial for CDWS-MIL, since it directly
decides the strength of constraints. Strong constraints may
make the network unable to converge, while weak constraints
have a little help with learning better segments. To decide the
appropriate loss weight, a five-fold cross-validation is con-
ducted in the experiments. The loss weights of area constraints
for the different side-output layers are decided separately.
Weights ηt of 2.5, 5, 10, 10 are therefore selected for the three
side-output layers and the fusion layer.
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B. Experiment A

1) Dataset: Dataset A is a histopathology image dataset
of colon cancer, which consists of 330 cancer (CA) and
580 non-cancer (NC) images. In this dataset, 250 cancer
and 500 non-cancer images are used for training; 80 cancer
and 80 non-cancer images are used for testing. These images
are obtained from the NanoZoomer 2.0HT digital slide scan-
ner produced by Hamamatsu Photonics with a magnification
factor of 40, i.e. 226 nm/pixel. Each image has a resolu-
tion of 3, 000 × 3, 000. Due to memory limits, the original
3, 000× 3, 000 pixels can not be loaded directly. Thus, in all
experiments, images are resized to 500 × 500 pixels. For
simplicity, we use CA to refer to cancer images and use NC
to refer to non-cancer images.

2) Annotations: During training, two image-level annota-
tions for each image are given by the human pathologists,
indicating each image as cancerous or not and a rough
estimation ({0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0})
about the cancerous region proportion to the entire image. For
the evaluation purpose, the general annotation procedure can
be summarized as follows: pixel-level annotations for each
pixel being a cancerous or non-cancerous are provided by two
pathologists. (1) if the overlap is larger than 80% for the two
cancerous regions labeled by the two pathologists, we take
the intersection of the two regions as the ground truth; (2) if
the overlap is smaller than 80%, or if a cancerous region is
annotated by one pathologist but neglected by another one,
a third senior pathologist will step in to help decide whether
to consider this region as a cancerous or not.

3) Evaluations: Both the best F-measure for boundaries
using a fixed scale (ODS) [52] and the F-measure for regions,
are used as evaluation metrics. We follow the definition in [52]
for the ODS evaluation. All of the NC images have no
boundaries. Thus, we just list the ODS results for all of the
CA images in the following tables. F-measure for regions is
defined as: given the ground truth map G and the prediction
map H , F-measure = (2·precision×recall)/(precision+recall)
in which precision = |H ∩G|/|H | and recall = |H ∩G|/|G|.
For images with label Y = 1, the prediction map consists
of pixels with 1 as the pixel-level prediction, and the ground
truth map is the annotated cancerous regions. For images with
label Y = 0, the prediction map consists of pixels with 0 as the
pixel-level prediction, and the ground truth map is the entire
image.

4) Comparisons With Weakly Supervised Algorithms: Exper-
iments have been conducted to compare the performance of
our methods with some other weakly supervised algorithms.
In MIL-Boosting, a patch size of 64 × 64 pixels and a
stride of 4 pixels are used for both training and testing, and
other settings follow [19]. To show the effectiveness of area
constraints, we also integrate area constraints into our baseline,
denoted as “our baseline w/ AC” in the table.

From Table II, both F-measure and ODS evaluation results
lead us to the conclusion that DWS-MIL and CDWS-MIL
surpass other weak supervised methods by margins.
Constrained deep weak supervision contributes an improve-
ment of 7.3% in F-measure than our baseline method

TABLE II
PERFORMANCE OF VARIOUS METHODS ON Dataset A. ALL

EXPERIMENTS ARE CONDUCTED ON GPU EXCEPT THAT

MIL-BOOSTING AND SILC FOR GENERATING SUPER-PIXELS

ARE PERFORMED ON CPU. SP IS THE ABBREVIATION FOR

SUPER-PIXELS GENERATED BY SILC. THE RUNNING TIME

OF THESE ALGORITHMS ARE OBTAINED BY AVERAGING

MULTIPLE RUNS TO REMOVE OTHER FACTORS THAT

AFFECT THE MEASURE OF RUNNING TIME SPEED.
VARIATIONS OF VARIOUS WEAKLY SUPERVISED

METHODS PROPOSED IN THE PAPER DIFFERENT

MOSTLY IN THE TRAINING BUT THEY MOSTLY

SHARE THE SAME ARCHITECTURE IN TESTING;
THEIR RUN TIME SPEEDS ARE THEREFORE

APPROXIMATELY THE SAME

(0.835 vs 0.778) and 21.4% in ODS (0.559 vs 0.345).
Figure 5 shows some examples of segmentation results by
these methods.

5) Comparisons With Fully Supervised Algorithms: Experi-
ments have been also conducted to compare the performance
of our methods against the best performers, the full supervised
algorithms. Here, we adopt FCN [26] including standard
FCN-32s, FCN-16s and FCN-8s, U-Net [14] and DCAN [13]
for comparison. FCN-8s learns to fuse coarse, high layer
information with fine, low information, combining predictions
from both the final layer and the last two pooling layers.
Similarly, FCN-16s fuses predictions from the last pooling
layer and the final layer. For FCN, we finetune the publicly
available VGG-16 model using SGD. The learning rate is set
to 0.0001. For the U-Net algorithm, we follow the publicly
available network and code. The learning rate is set to 0.0001.
For the DCAN algorithm, we merely leverage the multi-
level contextual features with auxiliary supervision for our
segmentation task. The learning rate is set to 0.001.

From table II, there is a lingering gap between the per-
formance achievable with full supervised algorithms and
that achieved by existing weakly supervised algorithms.
By proposing the constrained deep weak supervision for mul-
tiple instance learning, our approaches surpass other weakly
supervised methods by a significant margin, reaching near
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Fig. 5. Segmentation results on Dataset A: (a) Input images. (b) Ground truth labels. (c) Results by MIL-Boosting. (d) Results by our baseline.
(e) Results by our baseline w/ AC. (f) Results by DWS-MIL. (g) Results by CDWS-MIL. Compared with MIL-Boosting (patch-based), our proposed
DWS-MIL and CDWS-MIL produce significantly improved results due to the characteristics we introduced in this paper.

state-of-the-art performance. Figure 6 shows some examples
of segmentation results by these full supervised methods.

Notwithstanding the state-of-the-art performance of these
supervised learning algorithms, it depends on a large amount
of high-quality manual annotations/labeling that are often
time-consuming and costly to obtain. By contrast, weakly-
supervised learning substantially reduces the amount of work
for annotating cancerous tissues/regions. Take our dataset as an
example. It takes at least ten minutes for a 3000×3000 colon
histopathology image to be annotated in detail. Labeling our
160 test images would be a one-week workload for an expert.
In contrast to fully supervised algorithms, no more than a
minute is needed for a 3000 × 3000 image to be annotated
in the weakly supervised setting, including the cancerous
proportion. Moreover, a large quantities of researchers have

applied weakly supervised algorithms to segmentation, such
as [19], [34]–[37], [41], and [42]. Our system demonstrates
state-of-the-art results on histopathology image datasets and
can be applied to various applications in medical imaging
beyond histopathology images.

6) Less Training Data: To observe how different amounts
of training data influence our baseline method, we train our
baseline with less training data. Table III summarizes the
results, and Figure 7 shows some samples of segmentation
results that use different amounts of training data. Given more
training data, the performance of segmentation is better. In the
case of less training data, the segmentation results tend to be
larger than the ground truth. This observation can be explained
by analyzing the MIL formulation. From the expression of
the MIL loss, identifying more pixels as positive in a positive
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Fig. 6. Comparisons of segmentation results with fully supervised algorithms on Dataset A: (a) Input images. (b) Results by CDWS-MIL. (c) Results
by FCN-32s. (d) Results by FCN-16s. (e) Results by FCN-8s. (f) Results by U-Net. (g) Results by DCAN. Compared with various fully supervised
algorithms, our proposed CDWS-MIL produce near-state-of-the-art results due to the characteristics we introduced in this paper.

TABLE III
PERFORMANCE OF OUR BASELINE TRAINED

WITH LESS TRAINING DATA

image always results in a lower MIL loss. With a smaller
amount of negative training images, it is easier to achieve this
objective.

Fig. 7. Differences in results with different amounts of training
data: (a) The input images. (b) Ground truth labels. (c) Results that use
20% of training data. (d) Results that use 40% of training data. (e) Results
that use 60% of training data. (f) Results that use 80% of training data.
(g) Results that use all the training data.

7) Area Constraints: From Table III, the area constraints
enable our baseline method to achieve a competitive rate
of accuracy with a small training set. Equipped with area
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Fig. 8. Comparison of using and not using area constraints: (a) The input
images. (b) Ground truth labels. (c) Results of our baseline. (d) Results
of our baseline w/ AC. The area constraints loss constrains the model to
learn better segmentations.

TABLE IV
PERFORMANCE OF VARIOUS METHODS WITH 20% TRAINING DATA

constraints, our baseline method using 20% of training data
achieves better accuracy than using all training data without
area constraints.

Figure 8 shows some samples of segmentation results by
using and not using area constraints. It is clear that area
constraints achieve the goal of constraining the model to learn
smaller segmentations, which significantly improves segmen-
tation accuracy for both cancer images and non-cancer images.
When not using area constraints, the segmentation results
are much larger than the ground truth, and also have the
tendency to cover entire images. In contrast, when the area
constraints loss is integrated with the MIL loss, the fact that
too many pixels are identified as positive will yield a large
area constraint loss to compete with the MIL loss. To achieve
a balance between the MIL loss and the area constraints loss,
it only learns the most confident pixels as positive, as illus-
trated in Figure 8. Table IV summarizes results of different
methods using 20% of training data. Comparing CDWS-MIL
in Table IV with other methods in Table II, CDWS-MIL
outperforms other methods using only 20% of training data.
In addition, constrained deep weak supervision contributes an
improvement of 8.2% over our baseline method in F-measure
(0.820 vs 0.758) and 19.9% in ODS (0.536 vs 0.337).

TABLE V
PERFORMANCE OF DIFFERENT SIDE-OUTPUT LAYERS EVALUATED

BY F-MEASURE. THE FIRST LINE: DWS-MIL;
THE SECOND LINE: CDWS-MIL

TABLE VI
PERFORMANCE OF DIFFERENT SIDE-OUTPUT LAYERS EVALUATED

BY ODS (FOR BOUNDARIES) OF CA IMAGES. THE FIRST LINE:
DWS-MIL; THE SECOND LINE: CDWS-MIL

Fig. 9. Results of side-output layers: (a) The input images. (b) Ground
truth labels. (c) Results of side-output 1. (d) Results of side-output 2.
(e) Results of side-output 3. (f) Results by final fusion. The figure shows a
nesting characteristic of segmentation outputs from the lower side-output
layer to the higher side-output layer. The final fusion balances pros and
cons of different side outputs, and achieves better segmentation results
than all of them.

8) Deep Weak Supervision: To illustrate the effectiveness of
deep weak supervision, Tables V and VI summarize segmen-
tation accuracies of the different side-outputs and Figure 9
shows some examples of the different side-outputs. From
Tables V and VI, we observe that segmentation accuracy
improves from lower layers to higher ones. Figure 9 shows
pixel-level predictions (segmentation) of side-output layer 1,
side-output layer 2, and side-output layer 3. This is understand-
able since the receptive fields of CNN become increasingly
bigger from lower layers to higher ones. Histopathology
images typically observe local texture patterns. The final
fusion layer that combines all the intermediate layers achieves
the best result.

9) Super-Pixels: We conduct experiments to compare vari-
ous weakly supervised algorithms and that with super-pixels.
Performance of various methods with super-pixels are sum-
marized in Table II, IV, VII. For simplification, wtih super-
pixels is denoted as “w/ SP” in the table. We adopt the SLIC
method [32] to generate super-pixels and each image produces
roughly 900 super-pixels. Figure 10 shows some samples of
the segmentation results of the two methods. In histopathology
images, super-pixels adhere well to tissue edges, resulting in
more accurate segmentations. One of the main advantages of
super-pixels is its scalability to dierent histology stains and
dierent types of glandular tissues, as it is based mainly on
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Fig. 10. Comparisons of DWS-MIL and DWS-MIL w/ super-pixel:
(a) The input images. (b) Results generated by SLIC method [32].
(c) Ground truth labels. (d) Results of DWS-MIL. (e) Results of
DWS-MIL w/ super-pixel. Some detailed edges can be recognized with
the help of super-pixels.

TABLE VII
PERFORMANCE OF VARIOUS METHODS ON Dataset B. THE

EXPERIMENT SETTING IS IDENTICAL TO TABLE II

the spatial arrangements of cells rather than texture and color
information. The adoption of super-pixels help to predict more
detailed boundaries.

10) Advantages of CDWS-MIL: MIL-Boosting in comparison
is a patch-based MIL approach. The bags in their MIL
formulation are composed of patches sampled from input
images. Figure 5 shows some samples of segmentation results
of CDWS-MIL and MIL-Boosting, demonstrating that in
some cases (like the 2nd row in the figure), MIL-Boosting
completely fails to learn the correct segmentations, while
in other cases (like the 5th row in the figure), CDWS-MIL
and MIL-Boosting both learn roughly correct segmentations,
but CDWS-MIL learns much more elaborate ones. There
are three advantages of our CDWS-MIL framework over
MIL-Boosting: (1) CDWS-MIL is an end-to-end segmentation
framework, which can learn more detailed segmentations
than patch-based MIL-Boosting; (2) Deep weak supervision
enables CDWS-MIL to learn from multiple scales, and the
fusion output balances outputs of different scales to achieve
the best accuracy; (3) Area constraints in CDWS-MIL are
straightforward, while being difficult to be integrated into
patch-based methods like MIL-Boosting.

Fig. 11. Segmentation results for dataset B: (a) Input images.
(b) Ground truth labels. (c) Results by MIL-Boosting. (d) Results by
CDWS-MIL. Compared with MIL-Boosting (patch-based), CDWS-MIL
produces significantly improved results due to the characteristics we
outline in this paper.

C. Experiment B
Dataset B is a histopathology image dataset of 30 colon

cancer images and 30 non-cancer images which are referred
to as tissue microarrays (TMAs). The dataset is randomly
selected from the dataset in [19]. All images have a resolution
of 1024 × 1024 pixels. Considering that there is a great
deal of blank background for each image, we select an interval
of 0.05 for the proportion of cancerous regions. They are
annotated in the same way as Dataset A. All experiments
are conducted with 5-fold cross-validation, and the evaluation
metric is the same for Dataset A.

We conduct experiments to compare other algorithms
with our proposed method CDWS-MIL on Dataset B.
The comparison experiments all follow Experiment A.
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Table VII summarizes the results of our proposed algorithms
and other methods on Dataset B. Figure 11 shows some
samples of the segmentation results of these two methods.

D. Running Time

Comparisons of running time using different algorithms
have been summarized in Table II, IV, VII. All experiments
are conducted on one computer using Tesla K40 GPU with
12G memory except that MIL-Boosting and super-pixels are
performed on Intel(R) Xeon(R) CPU e5-2650 v2@2.60GHz.

VI. CONCLUSION

In this paper, we have developed an end-to-end frame-
work under deep weak supervision to perform image-to-image
segmentation for histopathology images. To preferably learn
multi-scale information, deep weak supervision is developed in
our formulation. Area constraints are also introduced in a nat-
ural way to seek for additional weakly-supervised information.
Experiments demonstrate that our methods achieve state-
of-the-art results on large-scale challenging histopathology
images. The scope of our proposed methods are quite broad
and they can be applied to a wide range of medical imaging
and computer vision applications.

Our method using weak supervision attains performance
close to state-of-the-art methods with supervision. However,
the results still can be further improved. Some typical failure
cases are shown in Figures 5 and 11. In some cancerous
images, narrow glandular cavities can not be correctly labeled
and segmented. In images of no cancers, sometimes small
areas are still being classified as cancerous regions. Our
experiments show that constraints are beneficial for improving
segmentation accuracy. In the future, we will extend con-
straints to include other semantic information such as shape
and contextual information.
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