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Abstract. In the Stochastic Orienteering Problem (SOP), we are given
finite metric space (V, d) and a starting point ρ ∈ V . Each v ∈ V has
an associated reward rv ≥ 0 and random completion time Sv, where the
distribution of each Sv is know (once a reward has been earned, it cannot
be earned again); the time cost of traveling from u ∈ V to v ∈ V is d(u, v).
The goal is to sequentially visit vertices and complete tasks in order to
maximize the total rewards within 1 unit of time (after normalization).
In this paper, we present a nonadaptive O(ε−14)-approximation for (the
original, adaptive) SOP when we relax the unit time budget to (1 + ε),
0 < ε < 1.

1 Introduction

In the competitive practice of orienteering, participants are given a map with
marked locations. Starting from a given point, they must try to visit as many
locations as possible within a given time limit. Each point has a given reward,
and the goal for competitors is to maximize the total reward within the time
limit. This problem was first studied in [8] from an algorithmic perspective; see
[13] for a more recent survey.

A similar problem to Orienteering Problem (OP) is the Prize Collecting Trav-
eling Salesman Problem (PCTSP) [5]. In the latter, the salesman’s costs are the
time spent traveling between points, plus a point-dependent penalty that is
incurred for each point that he fails to visit. PCTSP’s goal is to minimize the
traveling time plus the penalties of the points. Comparing with OP, PCTSP is
not limited in time, whereas OP is strictly bounded with time limit.

1.1 The (Simple) Orienteering Problem

An instance of the Orienteering Problem (OP) consists of a metric space (V, d)
with |V | = n points and distances d(u, v) ∈ R

+ for each (u, v) ∈ V × V ; more-
over, the instance specifies a starting point ρ ∈ V , a total time budget B, and
a reward rv ∈ R

+ for each v ∈ V . The object is to chart a path that maximizes
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the sum of rewards rv while staying within the time budget B, where the dis-
tances d(u, v) are interpreted as time costs. In this setting, and as all quantities
are real numbers, we can assume without loss of generality that B = 1 after
normalization.

In 1998 Arkin et al. [1] obtained a 2-approximation for OP with planar Euclid-
ean distances. Furthermore, Chen and Har-Peled [7] obtained a polynomial-time
approximation scheme (PTAS) for OP in fixed-dimensional Euclidean space.

For general metric spaces (V, d), Blum et al. [2] obtained the first constant-
factor approximation (with factor 4) in 2007. The best result until now is a
(2 + ε)-approximation algorithm by Chekuri et al. [6].

The Orienteering Problem finds many natural applications. For example, a
traveling salesman with limited time [12] (who must maximize his total profit in
one day).

1.2 Stochastic Orienteering Problem

In the Stochastic Orienteering Problem (SOP) [9] a job is associated to each
vertex v ∈ V , which must be completed at v in order to obtain the reward rv.
The time necessary to complete the job, moreover, is randomly distributed. For
example, a salesman may need to wait for his customer to come downstairs, or
a tourist need time to enjoy the scenery, and so on.

Generally, one is not allowed to give up a job until it is finished. In certain
models one is allowed to give up a job and its reward after starting the job,
while being forbidden from re-trying to complete the job later, once it has been
given up.

The time required by job v is a random variable Sv, where Sv has a known
discrete distribution πv for each v ∈ V , where πv modeled as a function from R

+

into [0, 1]; the distributions {πv : v ∈ V } are thus part of an instance of SOP.
We note that SOP can be considered as a kind of combination of OP and of

the Stochastic Knapsack Problem (SKP) [11]. The Stochastic Knapsack Prob-
lem, indeed, corresponds to an instance of SOP in which d(u, v) = 0 for all
(u, v) ∈ V × V . For SKP, moreover, a (2 + ε)-approximation algorithm is
known [4].

For a non-adaptive variant of SOP in which the path is chosen in advance
and in which the distances d(u, v) are restricted to integers, Gupta et al. [9] have
shown a constant factor approximation algorithm. In that setting (and due to
the integer restriction on distances) the time budget B is not normalized to 1,
and remains a parameter of the problem. In fact, Gupta et al. show that their
algorithm is an O(log log B)-approximation algorithm for SOP with arbitrary
adaptive policies. In the same formal setting, moreover, Bansal and Nagarajan
[3] have shown that a Ω((log log B)1/2) gap between adaptive and non-adaptive
policies is unavoidable. This contrasts with the case of SKP, for which non-
adaptive policies can approximate adaptive policies to within a constant factor
[4] (In OP the distinction between adaptive and non-adaptive policies is moot.).

In this paper we present an O(ε−14)-approximation for the (original, adap-
tive) SOP with time budget (1+ ε)B = 1+ ε, 0 < ε < 1. More precisely, we show
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a non-adaptive policy of time budget 1 + ε such that the expected reward of the
optimal adaptive policy at time budget 1 is at most O(ε−14) times the expected
reward of our [non-adaptive, time 1+ ε] policy. Our algorithm therefore achieves
an O(1)-approximation for any constant 0 < ε < 1.

Theorem 1. There is a polynomial time, non-adaptive O(ε−14)-approximation
for SOP with respect to a relaxed time budget of (1 + ε)B, 0 < ε < 1.

2 Definitions and Notations

We write R
+ for the nonnegative real numbers [0,∞). In this paper all quantities

are real-valued.

2.1 Orienteering

As introduced in Sect. 1, an instance of the Orienteering Problem (OP) is defined
on an underlying metric space (V, d) with |V | = n points and distances d(u, v) ∈
R

+ for each (u, v) ∈ V × V . We are given a starting “root” point ρ ∈ V and
a total time budget B. An instance of OP thus corresponds to a tuple IO =
(V, d, {rv}v∈V , B, ρ).

2.2 Stochastic Orienteering

In the Stochastic Orienteering Problem (SOP) each point v ∈ V is related to a
unique stochastic job. The job associated to v has a fixed reward rv ≥ 0, and a
random variable of processing time size Sv with a known but arbitrary discrete
probability distribution πv : U → [0, 1], where U ⊆ R

+ is a countable set, such
that

∑
t∈U πv(t) = 1 for all v ∈ V . (Time size is the time that we have to wait at

the point before receiving the reward for job v. Note that we can take the same
underlying time set U for all v ∈ V , wlog.) An instance of SOP thus corresponds
to a tuple ISO = (π, V, d, {rv}v∈V , {Sv}v∈V , B, ρ).

At each step we travel to a point v from a current point u (at time cost
d(u, v)) and then process the job v, at time cost Sv, and once a job v is selected,
one must wait for v to complete. If we are still within the time budget B when
the job is completed we receive the reward rv, and choose a new point as the
next destination.

For generality, ∀t ∈ U we assume t ∈ [0, B]. If one time size t > B, we can just
truncated it to B, since we will always stop at time budget B before completing
the job and never get the reward. Also, we can assume wlog that d(u, ρ) ≤ B
for all u ∈ V , which also implies that d(u, v) ∈ [0, 2B] for all u, v ∈ V .

2.3 Task Orienteering Problem

Our analysis refers to a simplified version of the Stochastic Orienteering Problem
known as the “Task Orienteering Problem” (TOP); TOP corresponds to an
instance of SOP in which each time size Sv is deterministic. An instance of TOP
thus corresponds to a tuple ITO = (V, d, {rv}v∈V , {sv}v∈V , B, ρ) with sv ∈ R

+

for each v ∈ V .
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3 Algorithm

We begin with an analysis of the Task Orienteering Problem described in
Sect. 2.3, to be used as a component in our main analysis.

3.1 An Algorithm for TOP

We first provide a polynomial time algorithm AlgTO (Algorithm1) and then
prove that AlgTO gives an O(1)-approximation to TOP.

Definition 1 (Valid OP Instance). Given an instance ITO = (V, d, {rv}v∈V ,
{sv}v∈V , B, ρ) of TOP, we define the following valid OP instance IO(ITO) :=
(V ′, d′, {rv}v∈V ′ , B, ρ), where

1. V ′ := {v ∈ V : d(ρ, v) + sv ≤ B};
2. d′(u, v) := d(u, v) + sv/2 + su/2 for all u, v ∈ V ′, u 	= v;
3. d′(u, u) := 0 for all u ∈ V ;
4. r′

v := rv for all v ∈ V ′.

Lemma 1. The function d′ : V ′ × V ′ → R
+ constructed in Definition 1 is a

metric.

The proof is easy.

Algorithm 1. AlgTO for Task Orienteering on input ITO = (V, d, {rv}v∈V ,
{sv}v∈V , B, ρ)
1. let IO(ITO) := (V ′, d′, {r′

v}v∈V ′ , B, ρ);
2. run AlgOrient on the (Simple) Orienteering Problem IO,
3. get the path P , the reward OPT′

O =
∑

v∈P r′
v, and the ending point ρ′;

4. compare
∑

v∈P\{ρ′} r′
v and r′

ρ′ ;
5. output the path

P ′ :=

{
ρ −→ ρ′, if r′

ρ′ ≥∑v∈P\{ρ′} r′
v,

P\{ρ′}, otherwise;

6. and the reward OPT′
TO :=

∑
v∈P ′ r′

v.

Theorem 2. Algorithm AlgTO (Algorithm1) is a polynomial time O(1)-
approximation for the Task Orienteering Problem.

Proof. Assume the optimal result for Task Orienteering problem ITO is OPTTO.
Now we prove that OPT′

TO returning by the polynomial time algorithm AlgTO
(Algorithm 1) is an Ω(1)-approximation to OPTTO.

In Algorithm 1 line 1, as in Definition 1 item 1, we delete all points v ∈ V
which are obviously not in the optimal path of ITO, because even we only reach
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to one point v from the starting point ρ, we still do not have enough time to
reach the point v and complete the job with time d(ρ, v) + sv > B.

In Definition 1 item 2, for each point v ∈ V ′, we divide the fixed job time
sv by 2, and add sv/2 to the lengths of all edges adjacent to point v. (Note
that, although we add sv/2 to the lengths of all edges adjacent to point v, in
real algorithm path, we only count twice of sv/2 as doing the job in time sv:
the edge into point v, and the edge out of point v). Define the new distance as
d′(u, v).

In Lemma 1, we prove that (V ′, d′) is a metric, thus we create an Orienteering
Problem instance IO = (V ′, d′, {rv}v∈V , B, ρ) successfully in Algorithm 1 step 1.

In Algorithm 1 line 2, we use the polynomial time algorithm AlgOrient (by
Blum et al. [2] mentioned in Sect. 2.1) on OP instance IO. And in line 3, the
path P of reward OPT′

O is a constant approximation of the optimal solution for
IO by algorithm AlgOrient. Note that any path in ITO including the optimal
path of ITO is surely a feasible path in IO (since the only change is the distances
in ITO are longer), so OPT′

O = Ω(OPTTO).
Note that in path P , we always get in and out of a point v except for the

starting point ρ and ending point ρ′. So the sv/2 are always counted twice, and
in ITO we do complete all the jobs on the path except for ρ and ρ′. Thus the only
incidence we cannot complete path P in ITO is the jobs on ρ and ρ′ in path P .

At the starting point ρ in ITO, we can always create a fake “starting point”
ρ� which is the same d′(, ) as ρ but d′(ρ, ρ�) = d′(ρ�, ρ) = d′(ρ�, ρ�) = 0, sρ� = 0
and rρ� = 0, and we set ρ as a normal point. Run AlgTO (Algorithm1) on ITO

with ρ�. If ρ is still in path, we just start from ρ and use sρ time to get the
reward rρ then go through path P ; else, ρ is not in path, we also start from ρ,
but give up the job and reward on ρ, then go through path P . All these changes
do not change the OPT′

O, and do not effect on OPTTO. Thus, we now only need
to concern about ρ′.

In Algorithm 1 line 4, we compare the reward r′
ρ′ at the ending point ρ′ (note

that d(ρ, ρ′) + sρ′ ≤ B in Definition 1 indicates that path ρ −→ ρ′ is feasible
in ITO), and the rewards

∑
v∈P\{ρ′} r′

v of all the points in path P̂ except for
ρ′. Since OPT′

O =
∑

v∈P r′
v = r′

ρ′ +
∑

v∈P\{ρ′} r′
v, max{r′

ρ′ ,
∑

v∈P\{ρ′} r′
v} ≥

OPT′
O/2 = Ω(OPTTO).

In Algorithm 1 line 5 and 6, we thus choose the larger one between r′
ρ′ and∑

v∈P\{ρ′} r′
v as OPT′

TO. If rρ′ is larger, then we just go to a single point ρ′ and
complete the job; if the other is larger, we just ignore ρ′, go and do the jobs
through the path P except for ρ′.

Thus, we have a polynomial time O(1)-approximation algorithm AlgTO for
Task Orienteering problem.

3.2 The Algorithm for Stochastic Orienteering

Definition 2 (Valid TOP Instance). Given an instance ISO = (π, V, d, {rv}v∈V ,
{Sv}v∈V , B, ρ) of SOP, and a value ε > 0, we define the following valid TOP
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instance with parameter ε to be ITO(ε, ISO) := (V̂ , d̂, {r̂u}∀u∈̂V , {ŝu}∀u∈̂V , B̂, ρ̂),
where we

1. define V̂ : let V̂ := V ,
for all u ∈ V , if d(ρ, u) > B, V̂ := V̂ \{u},
create a virtual point ρ̂, V̂ := V ∪ {ρ̂};

2. for all u, v ∈ V̂ , define distances d̂(u, v): if u, v ∈ V , d̂(u, v) := d(u, v),
for all u ∈ V , set d̂(u, ρ̂) = d̂(ρ̂, u) = B,
set d(ρ̂, ρ̂) = 0;

3. for all u ∈ V̂ , define rewards r̂u: if u ∈ V , r̂u = ru, set r̂ρ̂ = 0;
4. for all u ∈ V̂ , define deterministic job times ŝu: if u ∈ V , ŝu = E[S′

u],
where S′

u = min{Su, B},
set ŝρ̂ = 0;

5. define time bound B̂: let B̂ := (1 + ε13)B;
6. define the starting point: set ρ̂ to be the new starting point.

Lemma 2. The (V̂ , d̂) of the TOP instance ITO in Definition 2 is a metric
space.

The proof is easy.

Algorithm 2. Algorithm AlgSO for SOP on input ISO = (π, V, d, {rv}v∈V ,
{Sv}v∈V , B, ρ) and parameter 0 < ε < 1
1. for all v ∈ V do
2. let Rv := rv · PrSv∼πv [Sv ≤ (B − d(ρ, v))] be the expected reward of the single-

node tour from ρ to v;
3. w.p. 1/2, just visit the point v̂ with the highest Rv̂ and exit.

4. let ITO(ε, ISO) := (V̂ , d̂, {r̂u}∀u∈̂V , {ŝu}∀u∈̂V , B̂, ρ̂);
5. run AlgTO (Algorithm 1) on the valid TOP instance ITO(ε, ISO),

6. get the path P , the reward ÔPTTO;
7. replace the starting point ρ̂ in path P of ITO(ε, ISO) by ρ and output path P̂ ;

8. go through path P̂ in ISO with time budget (1 + ε)B and output the total reward

ÔPTSO.

We want to prove that Algorithm2 is a polynomial time O(ε−14)-
approximation for Stochastic Orienteering problem with respect to a relaxed
time budget of (1 + ε)B, 0 < ε < 1.

Define the expected reward on optimal adaptive policy on ISO as OPT, and
define the expected reward on optimal policy on ITO(ε, ISO) as OPTTO.

We design to have either a single-point tour ρ −→ v of expected reward Rv =
Ω(OPT) with 50 % chance, or the path P̂ on ISO of reward ÔPTSO = Ω(OPT)
with 50 % chance. For this purpose, we want the following theorem.
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Theorem 3. Given an instance ISO for which an optimal adaptive strategy has
an expected reward of OPT, either there is a single-point tour with expected
reward Ω(OPT), or the valid Task Orienteering instance ITO(ε, ISO) has reward
OPTTO = Ω(OPT), with constant approximation parameter ε14.

We will prove Theorem 3 later in Sect. 4. For now, let us assume that
Theorem 3 is correct, and use it to complete the proof of Theorem1. The follow-
ing proof is for Theorem1.

3.3 Proof for Theorem1

Suppose we enter Algorithm 2 line 4, and in line 6, AlgTO (Algorithm1) finds
a path P = (ρ̂, v1, v2, . . . , vk) with reward ÔPTTO. And then we get the path
P̂ = (ρ, v1, v2, . . . , vk).

Lemma 3. In ISO = (π, V, d, {rv}v∈V , {Sv}v∈V , B, ρ), for any point vi ∈ P̂ , the
probability of successfully reaching to v and finishing the job at v before violating
the budget (1 + ε)B is at least 1 − ε13.

Proof. Note that now we relax the time budget on ISO to (1 + ε)B, but we still
have time budget (1 + ε13)B on ITO(ε, ISO) as in Definition 2.

In Definition 2, for ITO(ε, ISO),
∑k

i=1(ŝvi
+ d̂(vi−1, vi)) ≤ (1 + ε13)B, S′

vi
=

min{Svi
, B}, and ŝvi

= E[S′
vi

]. Since d̂(ρ̂, v1) = B, E[S′
v1

] +
∑k

i=2(E[S′
vi

] +
d̂(vi−1, vi)) ≤ ε13B.

Define S�
vi

=

{
S′

v1
if i = 1,

S′
vi

+ d̂(vi−1, vi) if 2 ≤ i ≤ k.

Then
∑k

i=1 E[S�
vi

] ≤ ε13B. By using Markov’s inequality, for each j ≤ k, we
have

Pr[
j∑

i=1

S�
vi

≤ εB] ≥ 1 − ε13

The change from Su to S′
u does not effect on optimal adaptive policy on

ISO, the distance d(ρ, v1) ≤ B, and d(vi−1, vi) = d̂(vi−1, vi). So in path P̂ of
ISO with time budget (1 + ε)B, for each point vj (1 ≤ j ≤ k), the probability
we successfully reach to point vj , and complete the job on point vj is not less
than Pr[

∑j
i=1 S�

vi
≤ εB]. Thus the probability of successfully reaching to v and

finishing the job at v before violating the budget (1+ ε)B is at least 1− ε13. And
this complete the proof for Lemma 3.

Proof (The proof of Theorem 1). We prove that AlgSO (Algorithm 2) is a poly-
nomial time O(ε−14)-approximation for Stochastic Orienteering problem with
respect to a relaxed time budget of (1 + ε)B, 0 < ε < 1.

We assume that Theorem 3 is correct. Then either there is a single-point
tour with expected reward Ω(OPT), or the valid Task Orienteering instance
ITO(ε, ISO) has reward OPTTO = Ω(OPT), with a constant approximation para-
meter ε14.
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1. There is a single-point tour ρ −→ v satisfies Rv = Ω(ε14OPT).
We have 50% chance to obtain the highest Rv̂. And Rv̂ ≥ Rv = Ω(ε14OPT).

2. The valid Task Orienteering instance ITO(ε, ISO) has reward OPTTO =
Ω(OPT).
We have 50% chance to get ÔPTSO.
In Algorithm 2 line 6, by applying Theorem2, AlgTO (Algorithm 1) will
find a path P = (ρ̂, v1, v2, . . . , vk) with reward ÔPTTO = Ω(OPTTO).
By assuming Theorem 3 is correct, we have OPTTO = Ω(ε14OPT). Then
ÔPTTO = Ω(OPTTO) = Ω(ε14OPT).
Now applying Lemma 3 on path P̂ that we get in Algorithm 2 line 7, and
that gives us an expected reward of at least ÔPTSO = ÔPTTO · (1 − ε13) =
Ω(ε14OPT).

So we always have at least 50% probability to get Ω(ε14OPT) by Algorithm2,
and thus we complete the proof of Theorem1.

4 Optimal Policy for Stochastic Orienteering

The main method to deal with the huge optimal decision tree defined in Sect. 4.1
is Discretization and Block Policy [10]. Since all quantities are all real-valued, by
scaling, we can assume B = 1 and the size of each item is distributed between 0
and B. The relaxed time budget B + O(ε) should be less than 2B.

4.1 Policy and Decision Tree

A policy σ for an SOP instance (π, V, d,B) can be represented as a decision tree
Tσ(π, V, d,B).

Fig. 1. Decision tree Tσ

In Fig. 1, each node of Tσ is labeled by a vertex v ∈ V , with the root of Tσ

being labeled by ρ. The vertices on a path from the root to a node are distinct,
hence Tσ has depth at most n = |V |. A node of Tσ has countably many children,
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or one for each element of U , where U = {t ∈ R
+ : πv(t) > 0 for some v ∈ V } is

the (countable) support set of the time size distributions. Let z ∈ Tσ be a node
of label v ∈ V , and let e be the t-th edge emanating from z, t ∈ U ; then e has
probability πe := πv(t) = Pr[Sv = t]; moreover if z’s parent node is node y ∈ Tσ

of label u ∈ V , then e has weight we := d(u, v) + t.
We will sometimes refer to nodes in Tσ by their label. (With little chance of

confusion.) For a node v ∈ Tσ, we define P (v) to be the path of edges of leading
from the root to v. We define W (v) :=

∑
e∈P (v) we and Φ(v) :=

∏
e∈P (v) πe.

Thus W (v) is the total time elapsed before reaching v and Φ(v) is the probability
of reaching v.

We note that a given policy σ will be “compatible” with any tuple (π′, V ′,
d′, B′) such that V ′ = V and such that π′ has the same support U as π. Namely,
the modified π′ and d′ will induce modified edge weights w′

e and modified edge
probabilities p′

e. We emphasize this by including (π, V, d,B) as arguments to Tσ

(though we will always use the same V for a given policy σ).
We let

R(σ, π, V, d,B) =
∑

v∈Tσ,e=(v,u):W (v)+we≤B

πe · rvΦ(v)

denote the expected reward that policy σ achieves with respect to the metric
d, time size distributions π, and time budget B. We use OPT to denote the
expected reward of the optimal adaptive policy.

For the following lemma, we also consider a modified node label Xv := Sv +
d(u, v), where u is the parent and v is the child. Thus, while we = t+d(u, v) is a
number, Xv is a random variable (Moreover, Xv “ignores” the fact that edge e is
the t-th edge of v, i.e., that edge e is associated to a particular outcome of Sv.).

Lemma 4 (part of Lemma 2.4 in [4]). For any policy σ on instance (π, V, d,B),
there exists a policy σ′ such that

R(σ′, π, V, d,B) = (1 − O(ε))R(σ, π, V, d,B),

and for any realization path P in Tσ′(π, V, d,B),
∑

v∈P E[Xv] = O(B/ε).

Here we mention that policy σ′ is just cutting some branches on policy σ to
ensure

∑
v∈P E[Xv] = O(B/ε). Note that policy σ is all designed by us, we surely

may have a node v that
∑

v∈P E[Xv] > O(B/ε) though v has no contribution
to reward.

4.2 Discretization

We present how to discretize the decision tree in Sect. 4.1 with given ε. We use
the discretization method similar in paper [10] Sect. 2.1. We split all jobs into two
parts: small size vertices and big size vertices, and discretize them separately.

Denote S̃v for value of vertex v after discretization, and the new distribu-
tion π̃v. And for each node v in the tree, define X̃v := S̃v + d(u, v) as a random
variable which is similar in the definition of Xv in Sect. 4.1.
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1. Small size region if Sv ≤ ε4.
There exists a value 0 ≤ h ≤ ε4, such that Pr[Sv ≥ h|Sv ≤ ε4] · ε4 =

E[Sv|Sv ≤ ε4]. Then set: S̃v =

⎧
⎪⎨

⎪⎩

0, 0 ≤ Sv < h;
ε4, h ≤ Sv ≤ ε4;
Sv, Sv > ε4.

2. Large size region if Sv > ε4.
We simply discretize it as S̃v = �Sv

ε5 �ε5.

We denote the set of the discretized size by S = {s0, s1, · · · , sz−1} where
s0 = 0, s1 = ε5, s2 = 2ε5, . . . , sz−1. Note that s1 = ε5, s2 = 2ε5, . . . , s1/ε−1 =
ε4 − ε5 are also in S though their probability is 0. The total number of values of
time size is |S| = z = O(B/ε5) which is a constant.

4.3 Canonical Policies

We need to use canonical policies introduced in [4]. A policy σ̃ is a canonical
policy if it makes decisions based on the discretized sized of vertices, but not their
actual sizes. Under the canonical policy, we will keep trying new vertices if the
total discretized size budget does not exceed, even the actual budget overflows.
But no reward will get from these vertices which make actual budget exceeding.

Lemma 5 (Lemma 4.2 in [10]). Let π be the distribution of vertice size and π̃
be the discretized version of π. Then, the following statements hold:

1. For any policy σ, there exists a canonical policy σ̃ such that

R(σ̃, π̃, V, d, (1 + 4ε)B) = (1 − O(ε))R(σ, π, V, d,B);

2. For any canonical policy σ̃,

R(σ̃, π, V, d, (1 + 4ε)B) = (1 − O(ε))R(σ̃, π̃, V, d,B).

Proof sketch: for the first result, we prove that there is randomized canonical
policy σr such that R(σr, π̃, V, d̃, (1 + 4ε)B) = (1 − O(ε))R(σ, π, V, d,B). Thus
such a deterministic policy σ̃ exists. The randomized policy σr is derived from
σ as follows. Tσr

keeps the same tree structure as Tσ. If σr visits a vertex v
and observes a discretized size s ∈ S, it chooses a random branch in σ among
those sizes that are mapped to s. Let t1, t2, . . . , tk are possible size realization of
s as per size distribution π and let πv(t1), πv(t2), . . . , πv(tk) be the correspond-
ing probabilities. Hence we choose one of the branches corresponding to size
t1, t2, . . . , tk w.p. πv(t1), πv(t2), . . . , πv(tk) (normalized) respectively. For more
detail, see Lemma 4.2 in [10].

From Lemma 5, we conclude that the reward will not loss too much if we
using canonical policies to applying the policies with Tσ̃ described in Sect. 4.2,
but not T .
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4.4 Block Tree

Now we partition the decision tree Tσ̃ created in Sect. 4.3 into blocks.
For any node v in the decision tree Tσ̃, we define the leftmost path of v to be

the realization path which starts at v,ends at a leaf, and consists of only edges
corresponding to size zero. We define the block starting with node v (denote
as seg(v)) in Tσ̃ as the maximal prefix of the leftmost path of v such that: If
E[X̃(v)] > ε13, seg(v) is the singleton node {v}. Otherwise, E[X̃(seg(v))] ≤ ε13.

We partition Tσ̃ into blocks as follows. We say a node v is a starting node
if v is a root or v corresponds to a non-zero size realization of its parent. For
each starting node v, we greedily partition the leftmost path of v into blocks,
i.e., delete seg(v) and recurse on the remaining part.

Lemma 6. A canonical policy σ̃ with expected reward (1 − O(ε))OPT can be
partitioned into several blocks that satisfy the following properties:

1. There are at most O(ε−14) blocks on any root-leaf path in the decision tree.
2. There are |S| = O(B/ε5) children for each block.
3. Each block M with more than one node satisfies that

∑
b∈M E[X̃b] ≤ ε13.

Proof. 1. Fix a particular root-to-leaf path R. Let us bound the number of blocks
on R.
We have

∑
v∈R E[X̃(v)] = O(B/ε) = O(1/ε) = O(ε−1) by Lemma 4. By defi-

nition of Block Policies, any single-point block v in Tσ̃ satisfies E[X̃(v)] > ε13.
Then there are at most O(ε−1)/ε13 = O(ε−14) single-point in path R.
By definition of Discretization, any X̃(v) with non-zero size after discretiza-
tion, is no less than ε4. Then there are at most O(1/ε4) = O(ε−4) nodes w
corresponding to a non-zero size realization.
This gives a bound O(ε−14 + ε−4) = O(ε−14) blocks on any root-leaf path in
the decision tree.

2. After Discretization in Sect. 4.2, we have only O(B/ε5) number of values
which means there are |S| = O(B/ε5) children for each block.

3. This is exactly what we define our blocks.

And then we prove Theorem 3.

Proof (The proof of Theorem 3). By Properties 1,2 in Lemma 6 above, there are
only constant number of blocks in the decision tree Tσ̃ with block policies. Since
there are at most O(ε−14) blocks in the optimal policy path in decision tree Tσ̃

of reward (1 − O(ε))OPT, there exists a block M with Ω(ε14OPT) reward.
We consider two situations in block M with different number of nodes.
Block M is a single-node block of node v.
And the node v has a huge reward. Then the single-node tour from the

starting point ρ to v has an expected reward Ω(ε14OPT).
Otherwise, block M has at least two nodes.
And block M has an expected reward Ω(ε14OPT). By Property 3 in Lemma6,

we have
∑

b∈M E[X̃b] ≤ ε13. Since the distance from the starting point ρ̃ to the
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first node in M is at most 1, the path P � which connects ρ̃ and the block M in
order has length at most 1 + ε13. Thus P � is a feasible path for ITO(ε, ISO) as
defined in Definition 2, and it has an expected reward Ω(ε14OPT) ≤ OPTTO.

Thus, either there is a single-point tour with expected reward Ω(OPT), or
the valid Task Orienteering instance ITO(ε, ISO) has reward OPTTO = Ω(OPT),
with constant approximation parameter ε14. And this completes the proof for
Theorem 3.

5 Conclusion

We describe an O(1)-approximation algorithm with time budget (1+ε)B. As the
expected reward of the optimal policy at time budget B is at most O(ε−14) times
the expected reward of our [time (1+ ε)B] policy, we get an O(1)-approximation
for any constant 0 < ε < 1.
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