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The intrinsic unpredictability of measurements in quantum mechanics can be used to produce genuine
randomness. Here, we demonstrate a random number generator where the randomness is certified by
quantum contextuality in connection with the Kochen-Specker theorem. In particular, we generate random
numbers from measurements on a single trapped ion with three internal levels, and certify the generated
randomness by showing a bound on the minimum entropy through observation of violation of the
Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality. Concerning the test of the KCBS inequality, we
close the detection efficiency loophole for the first time and make it relatively immune to the compatibility
loophole. In our experiment, we generate 1 3 105 random numbers that are guaranteed to have 5.2 3 104 bits
of minimum entropy with a 99% confidence level.

R
andom number generation is important for many applications1,2. For cryptographic applications, random
numbers should have good unpredictability in order to be secure under attack by the adversaries3. Genuine
random numbers can never be generated by a classical device because any classical device bears in principle

a deterministic description. Quantum mechanics, on the other hand, has intrinsic randomness, and thus can be
explored to construct a genuine random number generator. There have been many demonstrations of random
number generators based on quantum principles4–14.

Self-certified random number generation is an advance made recently, where the randomness is guaranteed by
violation of certain fundamental inequalities14–16. In particular, it was proposed in Refs. 14,15 that through
violation of the Clauser-Horn-Shimony-Holt (CHSH) inequality, one can certify the generated random numbers
in a device-independent fashion that is secure against the adversaries who have only classical side information17.
The first proof-of-principle experiment for this scheme has been recently demonstrated14.

We consider here a scenario where the provider of the device is assumed to be honest. However, we still need to
physically certify that the random numbers are generated due to the intrinsic uncertainty of quantum mechanics
instead of some uncontrolled classical noise process in the device. In this case, we can use quantum contextuality
manifested through the violation of certain Kochen-Specker (KS) inequality to certify the generated random
numbers18,19. Quantum contextuality is a basic property of quantum mechanics, where the measurement out-
comes depend on the specific context of the measurements20,21. Quantum contextuality would be revealed by
violations of some KS inequalities, and such violations can be observed even in a single indivisible system without
any entanglement22–27. Because there is no need of entanglement, a certification scheme of random numbers based
on the KS theorem can significantly simplify the experimental requirement and generate certified random
numbers with a much higher speed18. A proof-of-principle experimental implementation of this idea has been
reported with a photonic system quite recently18.

A particular type of the KS inequality, the Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality22, is
convenient for certification of random numbers. Violation of the KCBS inequality has been observed before in
a single-photonic system23. For experimental test of the KCBS inequality, there are two possible loopholes: the
detection efficiency loophole if the detectors only register a subset of data due to their inefficiency, and the
compatibility loophole, which occurs if additional assumptions are required to guarantee that the observables
with simultaneous assignment of values in the KCBS inequality are compatible with each other and remain
identical when their measurement contexts change. The test of the KCBS inequality with the photonic system is
immune to the compatibility loophole23, however, it requires the fair-sampling assumption due to the low photon
detection efficiency and thus subject to the detection efficiency loophole.
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In this paper, we report a random number generator certified by
quantum contextuality with a single trapped ion, which allows us to
close the detection efficiency loophole for the first time for the KCBS
inequality. For the compatibility, we follow basically the same con-
figurations as in Ref. 23, where errors in compatibible measurement
settings only reduce the amount of the violations. Even with experi-
mental noise and imperfections, we get significant violations of the
KCBS inequality, which lead to lower bounds the minimum entropy
of the generated random string. Compared to the experimental cer-
tification based on the CHSH inequality14, the generation rate of
random numbers is increased by about four orders of magnitudes
in our experiment, which is important for practical applications.

The paper is organized as follows. First, we introduce the KCBS
inequality and show the experimental violation of this inequality.
Then, we introduce the relation between the violation of the KCBS
inequality and the minimum entropy of the generated random string
for the case of an honest provider, and compare the theoretical pre-
diction with our experimental observation. The generated random bits
are tested under uniform or biased choice of measurement settings.
We conclude the paper by summarizing the results and discussing
further improvements of our random number generation scheme.

Results
The KCBS inequality. The Kochen-Specker theorem states that the
results of quantum mechanics cannot be fully explained by non-
contextual classical theories which assume that the measurement
outcomes of a physical system are predetermined and independent
of their own and other simultaneous compatible measurements20,21.
The KCBS inequality illustrates the conflict between quantum
mechanics and non-contextual classical theory in the simplest
possible system with the Hilbert space dimension d 5 322.

The KCBS inequality is connected with the following simple algeb-
raic equation.

a1a2za2a3za3a4za4a5za5a1§{3, ð1Þ

where the value of ai is either 1 or 21. If the values of the observables
are predetermined, the average of the left hand of the above equation
should be no less than 23, leading to the following inequality:

xKCBSh i~ A1A2h iz A2A3h iz A3A4h iz A4A5h iz A5A1h i§{3: ð2Þ

In quantum mechanics, however, the outcomes of Ai do not have
predetermined values, which allows violation of the KCBS inequality
(2) for a specific state jy0æ in systems with d $ 3. In the case of d 5 3,
we denote the bases by j1æ, j2æ and j3æ and the observable Ai, repre-
sented by Ai 5 1 – 2 jviæ Ævij, is the projector on the axis jviæ. The
maximal violation of the KCBS inequality (2) is achieved for the state
along the symmetric axis of the pentagram shown in Fig. 1(a). Here
jv1æ 5 j1æ, jv2æ 5 j2æ, jv3æ 5 R1 (c, 0) jv1æ, jv4æ 5 R2 (c, 0) jv2æ, jv5æ 5 R1

(c, 0) jv3æ and v’1
�� �~R2 c,0ð Þ v4j i, where c 5 51.83u and R1,2 denote

the rotation operations between j1æ to j3æ and between j2æ to j3æ,
respectively. Maximal violation the KCBS inequality is achieved

under the state y0j i~
1ffiffiffi
54
p 1j iz 1ffiffiffi

54
p 2j iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

2ffiffiffi
5
p

s
3j i (2), with the

corresponding value xKCBSh i~5{4
ffiffiffi
5
p

<{3:944.
Figure 1(b) shows the scheme for preparation of the initial state jy0æ

starting from the basis state j3æ, and Fig. 1(c)–(g) describe the imple-
mentation of the measurement configurations along the five axes. To
ensure context independence, we emphasize that the measurement
configuration of Ai remains the same when it is measured with either
Ai–1 or Ai11 (let A0 ; A5, A6 ; A1). For example, the scheme for the
measurement A2 is exactly the same in the first [Fig. 1(c)] and the
second stage [Fig. 1(d)]. To move to the second configuration, we
perform a rotation between the states j1æ and j3æ, which does not
influence the state j2æ that corresponds to the observable A2. Only the
observable related to the state j1æ is changed from A1 to A3.

The configuration for the measurement of A1 in Fig. 1(c) is not the
same as that in Fig. 1(g), which is therefore denoted by A

0
1. If A1 and

A
0

1 are not identical, it is possible to violate the inequality (3) even in
classical theory. To solve this problem, similarly to Ref. 23, we use a
new inequality that includes the observable A

0

1 with the form
x’KCBSh i~ A1A2h iz A2A3h iz A3A4h iz A4A5h iz

A5A
0

1

D E
z 1{ A1A

0

1

D Eh i
§{3:

ð3Þ

Note that the inequality (3) becomes the original KCBS inequality (2)
when A1~A’

1. Therefore, the difference between two measurements

Figure 1 | The representation in 3d space and pulse sequences of a state and measurement configurations for the maximal violation of the KCBS
inequality (2). (a) The five vectors form a regular pentagram, which represent observables A1, A2, ??? , A5 that are the projectors on them. The vectors

related to observables Ai, Ai11 are orthogonal, which makes the neighboring observables compatible. The initial state | y0æ for the maximal violation is

located at the center axis (blue arrow) of the pentagram. The initial state and measurements of the compatible observables are realized by the pulse

sequences shown in (b) and (c)-(g). (b) The pulse sequence to prepare y0j i~
1ffiffiffi
54
p 1j iz 1ffiffiffi

54
p 2j iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

2ffiffiffi
5
p

s
3j i. Here, R1 and R2 represent the coherent

rotations between | 1æ to | 3æ and between | 2æ to | 3æ, respectively, where h 5 41.97u and w 5 64.09u. The sequence starts from | 3æ state (black filled circle)
after optical pumping. (c)–(g) The pulse sequences for the measurement configurations (c) A1A2, (d) A2A3, (e) A3A4, (f) A4A5, (g) A5A

0
1, where

c 5 51.84u. The important aspect of the configuration is that the measurement scheme for Ai is perfectly unchanged when it is measured with either Ai–1 or

Ai11 except A1, similarly to the photon realization23. The pulse sequence for the confirmation of the identicalness between A1 and A
0
1 is shown in Fig. 2(d).

For the random number generation, we choose one of the five configurations shown in (c)–(g) based on software random numbers.
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decrease the violation that can be obtained in the experiments23.
Another possible way out is to introduce an empirical parameter to
upper bounds the violation of compatibility, which would be similar in
spirit to a recent work where a parameter in introduced to bound
violation of the locality loophole for test of the Bell inequality28. Any
imperfection in the initial state preparation or final measurements only
leads to a reduction of violation of the KCBS inequality, so a significant
violation of this inequality guarantees that the randomness comes from
the quantum origin instead of a classical noise process.

Experimental violation of the KCBS inequality. The violation of
the KCBS inequality have been observed with single photons18,23,
however, those experiments are subject to the detection efficiency
loophole. Here, we present the experimental violation of the KCBS
inequality in a single trapped ion. Because of the high detection
efficiency for the trapped ion, we close the detection efficiency
loophole for the first time for this inequality.

We perform the test of the KCBS inequalities (2) with a single
trapped 171Yb1 ion in a four-rod radio-frequency trap26,29. The qubit
states are represented by the two internal levels in the S1/2 ground-
state manifold, with jF 5 1, mF 5 0æ ; j"æ and jF 5 0, mF 5 0æ ; j#æ.
The transition frequency between j"æ to j#æ is vHF 5 (2p)
12642.821 MHz, determined by the hyperfine interaction.

The procedure of the experiment consists of Doppler cooling,
initialization, coherent operation, and detection (see the Method
Section). The initial state preparation and the measurement config-
urations are shown in Fig. 1(b)-(g), and they are realized by two
microwaves with the frequencies v1 and v2, which produce Rabi
oscillations R1 (h1, w1) and R2 (h2, w2) between j1æ to j2æ and between
j1æ to j3æ, respectively. Here, h1,2 and w1,2 are controlled by the dura-
tion and phase of the microwaves. R1 (h1, w1) and R2 (h2, w2) are have
the following explicit forms

R1 h1,w1ð Þ~
cos

h1

2
0 {iei w1z

p
2ð Þ sin

h1

2
0 1 0

{ie{i w1z
p
2ð Þ sin

h1

2
0 cos

h1

2

0
BBB@

1
CCCA,

R2 h2,w2ð Þ~

1 0 0

0 cos
h2

2
{ie{i w2z

p
2ð Þ sin

h2

2

0 {ie{i w2z
p
2ð Þ sin

h2

2
cos

h2

2

0
BBB@

1
CCCA:

For experimental convenience, we transform the observable Ai to
Vi 5 (1 2 Ai)/2, which is assigned to value vi 5 0 when photons are
detected or vi 5 1 when no photons are detected. With Vi, the KCBS
inequality (3) is rewritten as

x’KCBSh i~5{4
X5

i~1

Vih iz4
X4

i~1

ViViz1h iz V5V
0

1

D E !
z

4 V1h i{4 V1V
0

1

D Eh i
§{3:

ð4Þ

We obtain ÆViæ by mapping the axis vi to the state j3æ and then mea-
suring the probability Pj3æ (vi 5 1) 5 ÆViæ (Fig. 2(b)). For simplicity, let
Pj3æ 5 P. The correlation terms ÆViVi11æ are obtained by sequential
measurements depicted in Fig. 2(c). First, we transfer Vi on the state
j3æ and apply the standard fluorescence detection scheme. If we detect
photons, the state should not be j3æ and we assign vi 5 0 to the
observable Vi, where the outcome of the correlation term ViVj vanishes
and no further measurements are needed. If we detect no photons, we
assign vi 5 1 to the Vi. Then, we apply the swapping microwave p-pulse
that converts Vj to j3æ before another round of fluorescence detection. If
we observe photons, vj 5 0, and if no photons, vj 5 1. We asign the
value 1 to the correlation term ViVj only when we detect no photons for
both rounds of measurements. We obtain the average of the correlation
term ÆViVjæ 5 P (vi 5 vi11 5 1) by repeating the same experimental
sequence many times26.

The expectation value V1V
0
1

� �
is obtained by the scheme shown in

Fig. 2(d). If V1~V
0
1 ideally, the correlation V1V

0
1

� �
shoud be same to

ÆV1æ since V1 is projection operator V2
1 ~V1. The state j1æ at the

beginning of Fig. 1(g) corresponds to the observable V1, which is
exactly the same configuration as in Fig. 1(c). Therefore, if photons
are detected (v1 5 0) or not detected (v1 5 1) at the place where V1

would be measured, photons should be observed (v
0
1~0) or not be

observed (v
0
1~1) for the v

0
1 shown in Fig. 2 (d). After repeating the

Figure 2 | The trapped 171Yb1 ion system and detection schemes (a) The schematic diagram of trapped ion 171Yb1 experimental setup for observing the
violation of the KCBS inequality and for generating random numbers certified by the inequality. The three states | F 5 1, mF 5 0æ, | F 5 1, mF 5 1æ, and

| F 5 0, mF 5 0æ in the S1/2 ground state manifold are mapped onto | 1æ, | 2æ, and | 3æ, respectively. One of the five measurement configurations in

Fig. 1(c)–(g) is chosen by the software generated random number and the pulse sequence of the chosen setting is transfered to the arbitrary wave form

generator and is applied to the ion through the amplifier. Depending on the photon counts on the PMT, we assign values on the observables mapped on

the state | 3æ. (b) The detection schemes for obtaining results of single observables Vi, Vj. First, Vi or Vj is mapped to the state | 3æ and apply the standard

fluorescent detection method. If we detect photons (no photons), we assign zero (one) on the observable Vi or Vj. After repeating the same pulse sequence

and the detection, we obtain the average value of the observable. (c) The sequential measurement scheme for the correlation ViVj. ViVj has a value one

when both of Vi and Vj have one, where no photons are detected at each stage. (d) The experimental confirmation of the identicalness of V1 and V
0

1. Ideally,

whenever V1 has a result one (no photons), V
0
1 should have the same result (no photons). Any imperfection or changes in the system will cause the

mismatch of them, which reduces the violation in the extended KCBS inequality (3).
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sequence of Fig. 2(d), we acquire the probability that no photons are
measured (P v1~v

0
1~1

� �
), which gives V1V

0
1

� �
by definition.

We randomly choose one of the five configurations (c)–(g) of
Fig. 1 based on computer generated random numbers and perform
the sequential measurements. We change the order of sequential
measurements ( ViVi11 or Vi11Vi) with equal probability. We occa-
sionally check the overlap of V1 and v

0

1. We repeat the sequences 1 3

105 times and observe ÆxKCBSæ 5 3.852(0.030), which violates the
extended KCBS inequality (3,4) by 31 s. The detailed results of the
measurements are summarized in Table 1. We emphasize that our
result of the violation cannot be explained by any non-contextual
classical theory which does not exploit the compatibility loophole
(the detection loophole is closed in our experiment). In other words,
any classical part of the system such as technical noise, imperfections
and/or unexpected changes of control parameters can not produce
the violation. Therefore, as long as we observe the violation of the
inequality, we can ensure that the outcomes of our measurements
originate from quantum mechanics.

The relation between violation of the KCBS inequality and the
min-entropy. We establish the relation between violation of the
KCBS inequality (2, 4) and randomness of the generated string
from the experiment, similar to the photonic demonstration18. We
focus on the scenario with an honest provider of the device17 rather
than the extreme adversary scenario where the device has been
produced by a malicious manufacturer. Even though we trust the
device provider, we still need to ensure that the randomness of the
generated sequence is caused by quantum uncertainty instead of
technical noise17. For this purpose, we assume: (1) the system can
be described by quantum theory; (2) the input at lth trial is chosen
from a random process that is independent and uncorrelated from
the system and its value is revealed to the system only at step l; (3) the
outcomes of the corresponding pairs of measurements at step l are
compatible (the measurement of one observable does not influence
on the marginal distribution of the results of the other observable);
(4) the adversary does not have any capability of controlling the
inside of the system. The first and the second assumptions here are
identical to those made in the certification scheme of Bell’s
inequality14. The third is the contextuality assumption that replaces
the role of locality assumption for the Bell inequality. The fourth is an
assumption about the honest provider17.

We consider five sets of measurement configurations S 5 {A1A2,
A2A3, A3A4, A4A5, A5A1}, where Ai is the observable with the output
ai 5 61 and compatible with Ai–1 and Ai11. We can rewrite the
KCBS inequality (2) as

L:
X5

i~1

X
ai,aj

P ai~aiz1 AiAiz1jð Þ{P ai=aiz1 AiAiz1jð Þ½ �ƒ3, ð5Þ

where P (ai 5 ai11jAiAi11) or P (ai ? ai11jAiAi11) is the probability
that the output results are the same or different for a chosen mea-
surement setting AiAi11. Note that we change the sign of the inequal-
ity to make the derviation similar to that in Refs. 14,17,30. In our
experiment, since we use the observable Vi (result vi50,1) intead of
Ai and only distinguish the event of vi 5 vi11 5 1 from others, the
Eq. (5) is modified as

L:{5z4
X5

i~1

P vi~1 Vij ið Þ{

4
X5

i~1

P vi~viz1~1 ViViz1jð Þ
( )

ƒ3,

ð6Þ

where P (vi 5 1jVi) is the probability that the output result vi is 1 at a
measurement setting Vi. The result of terms inside {??? } is ideally
zero and non-zero positive value can be occurred by experimental
errors or imperfections, which only reduces the amount of violation
from the optimal. Therefore, we can conclude that the experimental
violations of the inequality (6) arise from solely quantum mechanical
origin not any classical mean.

In our relization, we estimate the violation of the inequality (6) by
repeating the sequences n times and additional runs ncc of the com-
paribility check, the measurement setting V1V

0

1. The estimation L̂ of
Eq. (5), obtained from the experimental data, is written as

Table 1 | Experimental results for each of five settings and five joint
probabilities for the KCBS inequality (4). We also perform the same
experiments with exchanged order. The total trials of the experi-
ment are 1 3 105. The standard deviations of the final result are
0.005 and 0.001 for the single observables and correlations,
repectively as shown in the parenthesis. Our experimental test
clearly shows the violation of the extended inequality (3) with 31 s

P | 3æ Correlations

Setting Term Ideal Result Term Ideal Result

Fig. 1(c) ÆV1æ 0.452(5) ÆV1V2æ 0.014(1)
ÆV2æ 0.446(5) ÆV2V1æ 0.015(1)

Fig. 1(d) ÆV2æ 0.448(5) ÆV2V3æ 0.016(1)
ÆV3æ 0.436(5) ÆV3V2æ 0.016(1)

Fig. 1(e) ÆV3æ 0.447 0.428(5) ÆV3V4æ 0 0.014(1)
ÆV4æ 0.443(5) ÆV4V3æ 0.016(1)

Fig. 1(f) ÆV4æ 0.464(5) ÆV4V5æ 0.015(1)
ÆV5æ 0.439(5) ÆV5V4æ 0.014(1)

Fig. 1(g) ÆV5æ 0.443(5) ÆV5V1
9æ 0.017(1)

ÆV1
9æ 0.431(5) ÆV1

9V5æ 0.014(1)
Fig. 2(d) ÆV1V1

9æ 0.447 0.451(5)

x’KCBSh i ~{L̂~{3:944
� �

~{3:852 30ð Þ

Figure 3 | The min-entropy vs. the violation. The function f(L) in Eq. (8)

depending on the violation L of the KCBS inequality (5), which is

calculated by semi-definite programming (SDP). The function f L{ð Þ at

various confidence levels 1{ ’ð Þ such as 90%, 99% and 99.9% are plotted

for the uniform choices of measurement configurations, where

: Lmmax z1=rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{2 ln ’=n

p
and r 5 miniP (AiAi11) 5 1/5. Here we

divide interval with the spacing Lm{Lm{1~ Lmmax {3ð Þ=10 ~0:0944ð Þ.
Given a measured L̂ and confidence level, we can estimate the min-entropy

of a generated random string as summarized in Eq. (8). Note that we ignore

the term log2 d in Eq. (8) that does not have dependence on the trial n.
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L̂~{5z
4
n

X5

i~1

N vi~1jVið Þ
P Við Þ

{
4
n

X4

i~1

N vi~viz1~1 ViViz1jð Þ
P ViViz1ð Þ z

N v5~v’1~1 V5V ’
1

��� �
nP V5V ’

1

� �
( )

{
4N v1~1 V1jð Þ

nP V1ð Þ
{

4N v1~v’1~1 V1V ’
1

��� �
ncc

� 	
,

ð7Þ

where N (vi 5 1jVi) or N (vi 5 vi11 5 1jViVi11) is the number of
times that the outcome vi or vi and vi11 is one under a measurement
setting Vi or Vi and Vi11, respectively. P (Vi) or P (ViVi11) is the
probability with which a measurement configuration Vi or Vi and
Vi11 is chosen. Note that positive result of terms inside {???} and
[???] originates from the experimental flaws, which only reduces the
amount of violation.

The randomness of a single generated bit vi from a measurement
setting Vi can be characterized by the min-entropy H? vi Vijð Þ~
{ log2 maxvi P vi Vijð Þ½ �, where P (vijVi) is the conditional probability
of obtaining vi when the input setting Vi and the maximum is taken
over all possible values of the output string. The theorem 1 of Ref. 17
shows that the min- entropy of the generated string after n trials is
bounded by

H? v V,j mð Þ§nf Lm{ð Þzlog2d, ð8Þ

whereLm m~0,1, � � �mmaxð Þ is a series of KCBS violation thresholds
with L0~3 the classical bound, and Lmmax ~4

ffiffiffi
5
p

{5 the maximum
violation, and : Lmmax z1=rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{2ln 0=n

p
, with r the smallest

probability of input choices miniP (Vi). The parameter ’ parameter
denotes the closeness between the resulting distribution that char-
acterize k successive uses of the device and another extended distri-
bution that is well defined mathematically. The function f is found by
semidefinite programming at various expectations L. Fig. 3 presents
how the min-entropies are affected by the confidence levels, 1{ ’
and 1 2 d. When we set a high confidence level, 1{ ’, the bound on
the min-entropy reduces as expected. Note that the certified min-
entropy is only determined by measured value L̂ and the choice of ’,
independent of experimental details.

Random number results. We perform ten thousand trials to gene-
rate random bits as described in the previous section: [Experimental
violation of the KCBS inequality]. At each trial, we choose one of the
five measurement configurations shown in Fig. 1 (c)2(g) by
computer-generated random numbers, perform the sequence
composed of Doppler cooling, state initialization and rotations for
the chosen configuration and finally record the existence of
fluorescence (see Method section). As explained, we obtain a
random bit, i.e., 1 (or 0) with fluorescence (or no fluorescence) for
each trial. The sequence takes about 10 ms, mainly limited by the
wave-form loading time to the pulse generator. Note that the random

Figure 4 | Comparison between theory and experimental results. (a)(c)The min-entropy H‘ (v | V) (8) depending on the number of trials for (a) an

uniform distribution of measurement settings P(Vi) 5 1/5 and (c) a biased distribution with P (V1) 5 1 2 4q, P (V2) 5 P (V3) 5 P (V4) 5 P (V5) 5 q,

where q 5 6(100000)21/2 with the probablity of errors ’~0:01 and d 5 0.001. The min-entropies H‘ (a | A) (8) are bounded by the relation of the violation

L̂ of the KCBS inequality (8), where we set the 10 intervals of L̂ between L0 and Lmmax . The min-entropies are linearly increasing as the number of trial

increases and the slopes are basically dependent on the thresholds of the intervals L7~3:6610 (blue), L8~3:7554 (green), L9~3:8496 (yellow), and

L10 Lmmaxð Þ~3:944 (red). The black dots are obtained from the violation values that were observed at the number of trials. (b)(d) The correlation between

the KCBS violations (8) and the min-entropy (8) of the strings for (b) the uniform input choices and (d) the baised settings. Here we divide the total 1 3

105 numbers by 10 division and show the KCBS violations L̂ and min-entropies in the division. We can clearly show that the monitor of L̂ at each division

provides sufficient information to guarantee the min-entropy in the division.
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generator based on the CHSH inequality produced a random bit per
several min.

Figure 4 shows the min-entropies of generated strings discussed in
the previous section: [The relation between violation of the KCBS
inequality and the min-entropy]. We produce a string of length 1 3

105 with uniform choices of the measurement settings, P (Vi) 5 1/5.
As shown in Table 1, we observe the expectation L̂~3:852+ 0:030,
implying the min-entropy Huni

? v Vjð Þw5:24|104 with 99% confid-
ence. Note that the other confidence level d does not have any notic-
able influence on the bound of min-entropy. Here we used the

thresholds of KCBS violations L9~3:8496 ~
9

10
Lmmax {3ð Þ


 �
.

Fig. 4 shows clearly the advantage of our certification scheme, i.e.,
we can guarantee the min-entropy of the generated random string by
only monitoring the violation L̂ independent of experimental details.
Fig. 4(a) shows the accumulated behavior of the min-entropy as the
number of experimental trials n increases. The solid lines show the
theoretical linear increment of the minentropies and the slopes are
determined by only the thresholds Lm. Due to drifts of experimental
parameters, the violations L̂ are fluctuating from one threshold to
another, which accordingly introduces the changes to the min-
entropy, accordingly. Fig. 4(b) shows details of the transient behavior
of the generated random string. We monitor the violation L̂ for each
batch of n 5 1 3 104 trials and estimate the min-entropy in the batch.
Fig. 4(b) reveals that the min-entropies are correlated to the viola-
tions L̂ and completely determined by the thresholds Lm at given
confidence level 99%. Here, we we do not need massive random tests
to ensure the amount actual random number in the generated string.
The amount of min-entropy of our random numbers is guaranteed
by the the measured violations L̂, regardless of unexpected changes of
experimental parameters.

We also generate random bits with a biased choice of measure-
ment settings, where P (V1) 5 1 2 4q, P (V2) 5 P (V3) 5 P (V4) 5

P (V5) 5 q, and q 5 an21/2 with a 5 6 and n 5 105. We observe
basically the same behavior of the min-entropy for the generated
stream except for a slightly smaller bound due to the non-uniform
setting. We get the min-entropy bound Hbia

? v Vjð Þw1:4|104 from 1
3 105 rounds with violation of L̂~3:901. For the biased choice of
measurement settings, the output entropy (1.35 3 104) exceeds the
input entropy (1.14 3 104), and we obtain 2.1 3 103 net random bits.
For the case of uniform measurement settings, we always need more
initial randomness and thus cannot obtain net randomness. This is
similar to the random number generation scheme with the CHSH
inequality, where to generate net randomness, one always needs to
consider nonuniform measurement settings.

Finally, we carry out a series of random tests (see Methods)31 to
examine the quality of our random numbers obtained by collecting

the outcomes of the first measurement in each trial. As expected, our
generated random numbers passed all the tests. Fig. 5 shows the
summary of the test results. Actually the real randomness of our
generated strings is already certified by the KCBS inequality, which
is a much stronger statement than claiming that the produced num-
bers pass all the random tests, since no random tests on finite strings
should be considered complete.

Discussion
In summary, we have demonstrated violations of the KCBS inequal-
ity using a single trapped ion, with the detection efficiency loophole
closed for the first time. We use quantum contextuality to certify
randomness of the measurement outcomes. The randomness of our
device is ensured by observing violations of the inequality independ-
ent of experimental details. With our device, we already obtained a
net output entropy. The device can generate random numbers with a
higher speed, which is important for practical applications.

Methods
Experiment procedure. The experimental procedure consists of Doppler cooling,
initialization, coherent operations and detection. After 1 ms Doppler cooling, the
internal state of the ion is initialized to j3æ by 3 ms standard optical pumping with
efficiency 99.1%26. The states are coherently manipulated by the microwaves v1 and
v2 that are resonant to the transitions between j1æ and j3æ, and between j2æ and j3æ,
respectively. The quantum operations of the microwaves v1 and v2 are described by
the rotation matrix R1 (h1, w1) and R2 (h2, w2), respectively. Here h1, h2 and w1, w2 are
controlled by the duration and the phase of the applied microwaves. The 2 p times for
both Rabi oscillations are adjusted to 29.5 ms, that is V1,2 5 (2p) 33.9 kHz in
frequency. The maximum probability of off-resonant excitation V2/(v2 2 v1)2 is
about 1.6 3 1025, small enough to ensure independence of each Rabi oscillation. The
standard fluorescent-detection method enables us to differentiate between one state
versus the other two states of a qutrit. We observe on average 10 photons at 369.5 nm
for the j1æ or the j2æ state and detect no photon for the j3æ state. The state detection
error rates for wrongly registering the state j3æ and missing the state j3æ are 0.9% and
1.9%, respectively, with the discrimination threshold nph 5 1. As shown in Fig. 2(b),
we transfer the information of obervable Ai (Aj) by p-pulse and apply the
measurement sequence. Then we assign the value ai 5 1 (aj 5 1) on the obsevable Ai

(Aj) when photons detected or ai 5 21 (aj 5 21) when no photons are detected.
After repeating the same experimental procedures, we obtain the ÆAiæ (ÆAjæ). Here we
emphasize that our setup is not subject to detection loophole and provide a value of
the measurement at every trial.

Random test. We apply the random tests that are appropriate for the size of our
random numbers, which are ‘Frequency’, ‘Block Frequency’, Cumulative Sums
(Cusums)’, ‘Runs’, ‘Longest-Run-of-Ones in a Block (LROB)’, ‘Rank’, ‘Discrete
Fourier Transform Test (FTT)’, ‘Approximate Entropy (AE), ‘Serial.’ The p-values of
all the test, which are the probabilities that an ideal random number generator would
produce less random sequence than the tested one. Therefore, a p-value of 0 simply
means that the tested sequence appears to be completely non-random, whereas a p-
value of 1 implies that the sequence in test appears to be perfectly random. The p-
values lie in the open interval (0, 1) and if p-value is larger than a significance level h,
we accept the sequence as random for the test. Typically h is chosen to be in the range
[0.0001, 0.01] and we set h 5 0.01. Note that we use Von-Neumann extractor for the
output strings to make uniform distributions, which reduces the size of random
numbers to one quarter. We also note that the random tests are different from

Figure 5 | The results for random tests. The summary for the results of random tests31 on our generated random numbers. In the tests, we can consider

the sequences as random if P – values of the tests are over the threshold that we set, 0.01. All of random numbers pass the listed tests.
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guaranteeing the amount of min-entropy in the generated string. In other words, even
the data could not pass the random tests but still have the quoted min-entropy.
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