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ABSTRACT

Data providers have a profound contribution to many fields such
as finance, economy, and academia by serving people with both
web-based and API-based query service of specialized data. Among
the data users, there are data resellers who abuse the query APIs to
retrieve and resell the data to make a profit, which harms the data
provider’s interests and causes copyright infringement. In this work,
we define the “anti-data-reselling” problem and propose a new
systematic method that combines feature engineering and machine
learning models to provide a solution. We apply our method to a
real query log of over 9,000 users with limited labels provided by a
large financial data provider and get reasonable results, insightful
observations, and real deployments.
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1 INTRODUCTION

Data providers (aka. data vendors) collect and index both public
and proprietary data source into a searchable database and serve
people in various areas such as finance [2, 7, 16] and academia [1, 5].
The key value-add for data providers is data integration, cleaning,
updating and offering the structured query interface. For example,
Bloomberg [2] users can query real-time financial and economic
data by using manual commands or scripting-friendly APIs.

It is important for the data providers to protect their data by
only allowing users who commit to the fair use of the data. While
providers have different definitions of fair use, almost everyone
agrees that data reselling is not acceptable use. In general, data
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resellers (DRs) pull loads of data through the query API from data
providers, and resell them, or offer their own data service. Such data
reselling activities can cause loss of revenue to the data provider
and potential copyright infringement to the data source. Thus it is
necessary for the data providers to identify DRs and take counter-
measures against them.

Identifying data resellers, which we call the anti-data-reselling
(ADR) problem, is different from the anti-web-crawling (AWC)
problem. Existing AWC work analyzes the web access patterns
to distinguish automatic web crawlers from humans [4, 6, 9, 13,
15, 17, 18] or to detect malicious crawlers for security issues (e.g.,
defending against DDoS attacks) [14, 19].

However, these techniques do not help solve ADR problem. A key
goal for AWC is to distinguish bots from human, while many data
providers offer API-based queries to support scripting as a feature,
allowing different kinds of bots. Thus, the goal is to distinguish
a specific type of abnormal data retrieval behavior, rather than
whether the task is done programmatically. In some sense, for ADR,
we need to reason about “why the data is taken” rather than “how
the data is taken”, making it a hard problem. Technically, AWC
often relies on analyzing very short-term behaviors to identify a
bot, while ADR focuses on much longer-term patterns.

It is nontrivial to precisely identify data resellers. People of-
ten use simple rules, such as limiting the query volume. However,
modern applications may need lots of data. For example, some au-
tomated trading applications use lots of queries to track the price
of a set of stocks. If the user paid for the query volume, setting a
quota hurts the user experience. Thus, we need more sophisticated
features and model to distinguish DRs from regular heavy data
users. As an additional challenge, there are not many labeled DRs
for model training, and thus we have to leverage unsupervised
learning techniques as much as possible.

While people can write rules to capture DR’s patterns, DRs can
change their patterns to avoid the detection. We design our systems
based on a set of fundamental behavior patterns that the DRs cannot
change easily, and we have the following three key insights about
DRs’ behavior patterns:

1) Volume. While heavy data users are not necessarily DRs, the
other way around is usually true (they may not be the heaviest
users, but still heavy). This is because someone retrieving only a
small data volume cannot cause much damage anyways.
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2) Spread. DRs need to retrieve a large variety of data items,
instead of getting a small set over and over, as legitimate users
do. This is because normal users often focus more on certain keys
(e.g., a subset of stocks, or a specific academic discipline), while
data resellers need more data variety for reselling. Note that spread
by itself does not necessarily lead to DR suspicion. For example,
legitimate users may conduct a survey that requires retrieving a
variety of keys.

3) Periodicity. DRs need to query data periodically to update
the database they are reselling, and thus they will send queries
periodically over time.

Based on these three insights, we propose a systematic method
combining feature engineering and supervised/unsupervised learn-
ing techniques to solve the ADR problem. Our basic idea includes: 1)
Feature creation. Based on the three characteristics above, we create
some features covering user behavior patterns including query vol-
ume, distribution, time, periodicity and burstiness. The goal of this
step is to cover the three characteristics from as many aspects as
possible and as redundant as possible, to make it difficult for DRs to
avoid; 2) feature selection and reweighting. The key problem is that
there is no precise definition of the DR behavior, even from the data
providers. We take a learn-by-example approach and automatically
select a subset of features based on the few observed DR samples.
The goal here is to “learn” the data provider’s definitions of DR
behavior. 3) DR identification. Using the selected features above,
we use unsupervised outlier detection algorithms (and supervised
classification, if we have some labels) to identify DRs. We report
the detected DRs to the data provider, and it decides what measures
to take against each of them.

Without ground truth labels, we cannot quantitatively evaluate
the detection result. Instead, we focus on getting interpretable re-
sults and insights and getting feedbacks from data security experts
at the data provider.

We perform experiments on a real-world query log containing
9,000+ users’ queries from a large-scale financial data provider.
There are very limited data labels. Our method can identify a num-
ber of DRs, achieving much better accuracy than the naive methods.
Security experts at the data provider have confirmed our detection
results and our system has been deployed at the data provider.

We define ADR problem and focus on solving a general frame-
work. In summary, our major contributions are:

o We define the anti-data-reselling (ADR) problem, identify the
three key characteristics behaviors of DRs and propose ex-
pressive features and a systematic method to identify them;

e We apply our methods to a real query log and provide in-
sightful detection results.

2 DATASET AND METHODS

Dataset. In this study, we use query log D from a large finan-
cial data provider with tens of thousands of paying subscribers.
This data provider maintains information on stocks, bonds, for-
eign exchange, economic indices and so on. The data are organized
into five databases (D4 to Dg), and each DB contains many data
items retrievable by keys. For brevity, we use keys to refer to these
data items. The log D contains one-month of query history. Ta-
ble 1 shows basic statistics of D. For confidentiality, we normalize

Table 1: Dataset overview. The numbers are normalized to
the number of users of Dg.

DB id | # queried indices | # users | Total query volume
Da 1x 103 14 6% 103
D3 2 % 102 17 4x103
D¢ 9 x 102 16 1% 10%
Dp 6 % 102 2 4 % 10%
Dg 5x 102 1 2 x 104

Table 2: Features of Each User’s Profile. X is the time gran-
ularity that can be second, minute, hour, or day. A user is
active on a day if she has at least one query.

Feature Definition

index_day_entropy | See text
index_num_entropy| See text

index_avg_entropy
total_num
total_indices

sum_day_indices

avg_day_indices
day_set_ratio
avg_7nday_indices

avg_7day_indices

X_num
X_num_rank
X_rate
X_rate_rank

See text
‘Total query volume T
Total number of unique queried data indices

Sum of each day’s number of unique queried data
indices

sum_day_indices/number of active days
avg_day_indices/total_num

Total number of unique queried data indices for every
consecutive 7 days

Total number of unique queried data indices for every
consecutive 7 active days

Total number of active Xs

Percentile of X_num

total_num / X_num

Percentile of X_rate

normal_num
abnormal_num
abnormal_ratio

Total query volume occurred during 8 am-10 pm
total_num - normal_num
abnormal_num / total_num

all numbers. While the log records contain many fields, in this
work, we only use the following self-explanatory fields: account_id,
query_time, queried_DB and queried_indices.

Security experts at the data provider have labeled about 1/6 of
the users in D 4, and we call the labeled subset D 4(1). Within D 4z,
3% are labeled as DRs, and the rest 97% are legitimate. All other
users are unlabeled.

We analyze each DB separately, as both legitimate users and
labeled DRs access each DB independently. As we have introduced
in Section 1, we follow a three-step method: feature creation, feature
selection and reweighting, and DR identification.

2.1 Step 1: Feature creation

Based on the three insights in Section 1, we design 29 features to
capture each user’s query history on each DB. Table 2 provides an
overview. There are three categories of features:

1) Entropy features to capture the uniformity of access pat-
terns. We use entropy to capture the “uniformity” of a certain
distribution, leading to the first three features in Table 2. Formally,
given a set X with n discrete probabilities p; such that }; p; = 1, its
entropy is H(X) = — 3; pi log pi. Given a user u, DB T with m keys,



and T; as the i-th key in T, we count number of days on which u
retrieves T; at least once, as well as the total number of u’s retrieval
on T; for the month, and we denote them as ¢; and w;, respectively.
Then we define the entropy of these two counts:

=H({qi/XiqiDi=12,---,m) (1)
index_num_entropy = H({w;/>;wiD)(i=1,2,---,m) (2)

index_day_entropy

Additionally, we vary index_day_entropy to create index_avg _en-
tropy as the entropy of the seven-active-day-moving-average of
the number of unique keys retrieved.

Intuitively, the entropy features capture the uniformity of a user’s
queries over different data indices and a user’s query periodicity.
Legitimate users have a bias on the keys they retrieve, and usually
access a different number of keys in different time periods. However,
DRs usually retrieve many more different keys and exhibit stronger
periodicity, resulting much higher entropy than legitimate users.

2) Retrieval volume features to capture the activity. The sec-
ond group of 23 features in Table 2 are designed to capture access-
count-related features, such as volume, diversity, activeness and
temporal density of a user’s queries.

3) Features about the time-of-the-day for queries. The last

three features (from normal_num, abnormal_num and abnormal_ratio)

are designed to capture whether a user queries at night, which
makes him more suspicious.

Finally, we assemble all features into a vector viT = (fo(hi),
fi(hi), -+, fa8(hi)). where fi. is the k-th feature, and h; is the query
history of u; on DB D (where Dt € Dy, ..., Dg). We create one
such vector for each user on each DB, and we call ’Ul.T the profile of
u; on D7.

2.2 Step 2: Feature selection and reweighting

Redundancy in the designed features makes it harder for DRs to
avoid a feature but affects detection by introducing noisy ones. We
leverage the labeled subset D 41 to select useful features. In other
words, we try to learn which features are important for the security
experts.

We use L1-penalized logistic regression (LR), a common feature
selection technique to learn a weight for each feature, and we only
use the features with nonzero weights. Without losing generality,
we denote the selected n’ features by fy, - - - fr—1(n” < 29).

While LR helps us to pick some features initially, we further
adjust the weight of each feature using the procedures discussed
in [8]: We run the Random Forest (RF) algorithm [3] on all labeled
users in D 4z to train a classifier G. During the training process,
we also learn relative importance of the features according to their
depth in the learned decision trees. Assuming the importance of
the n’ features are ¢, - - - , c;—1, we rescale each user profile vector
vl.T to 53— = (c(])C - fo(hi), - ’Cﬁ’—l - fwr—1(hi)), where k is a scaling
parameter with a default value of 0.5.

We use labeled data to train the label weights instead of using
the trained classifier directly on other DBs. This is because the
feature distributions for different DBs vary, and we believe DRs’
key behavior patterns are more stable. In other words, from the
labels, we learn the “rules” about which features are important to
look at rather than a data-dependent detection model.

Table 3: Feature importance estimation.

Selected feature | Importance
index_day_entropy 0.375
total_indices 0.245
index_avg_entropy 0.114
minutes_rate_rank 0.069
sum_day_indices 0.058
seconds_rate_rank 0.052
days_num 0.035
abnormal_ratio 0.032
minutes_num_rank 0.021

2.3 Step 3: Data reseller identification

We assume that the vast majority of the users are legitimate and
behave differently from DRs in our feature space, and thus we can
model DRs as outliers in the data. We evaluated different outlier
detection algorithms, and find density-based algorithms and those
insensitive to dimension rescaling (e.g., Isolation Forest [10]) both
perform poorly on our dataset. Thus, we adopt one-class SVM [11],
a nearest-neighbor-based algorithm that takes advantage of dimen-
sion rescaling.

For D4, we do not want to waste its precious labels, and thus
we compliment the outlier detection results with the classifier G’s
prediction result on the unlabeled data by taking the union of both
the results.

Many users are detected as outliers because they do not have
many activities. We take a simple post-processing step to filter
out these low-activity outliers using threshold-filter on the three
features days_num, total_num and index_day_entropy. We set the
threshold at the median of all users. The accuracy of the threshold
does not affect results much, as the activity level for DRs is much
higher than the median anyway.

3 RESULTS

We implement our method using scikit-learn [12]. Due to limited
space, we only report the best set of hyperparameters we find. We
set C = 15 for L1-penalized LR, n_estimators = 64 for the random
forest, kernel = rbf, gamma = 0.1, and nu = 0.004 for the one-class
SVM. The outlier fraction parameter nu is an important tradeoff
between precision and recall, and we find 0.004 a good setting for
precision.

Feature weightings. L1-penalized LR selects 9 out of the 29 fea-
tures, and Table 3 lists them with their importance estimation from
RF. We can see that two of the entropy-related features and the
total_indices feature are significantly more important than others.
This finding matches experts’ intuitions that DRs tend to retrieve
relatively more keys and in a relatively more uniform way.
Detection results on D4. On D4, we detect 24 DRs and Table 4
shows 6 samples. The classifier G finds 21 DRs and outlier detector
finds 9 (both detect 6).

All the 24 detected DRs have very high values in the top-3 fea-
tures in Table 3, with a percentile rank of at least 91%, and almost
70% of these features are above the 99-th percentile.

Different types of data resellers. To see whether all DRs have
the same pattern, we run k-means clustering algorithm with k = 2



Table 4: Example of detected DRs on D4. Numbers are
the percentile rank. Algo indicates the detection method
(C=classifier, OD=outlier detector).

uid | algo | index_day | total_ | index_avg | minutes_ | sum_day
_entropy | indices | _entropy | rate_rank | _indices
0 both 99.93% 99.93% 99.51% 63.46% 96.17%

1 both| 99.98% 99.98% 96.24% 57.36% 98.69%
T2 C9959% | 99.48% | 99.38% | 67.55% | 92.87%
3 C 99.56% 99.66% 99.93% 57.48% 96.75%
4 | OD | 9320% | 91.11% | 96.31% | 99.23% | 99.95%
5 OD 94.95% 94.15% 95.39% 98.74% 99.97%

on the 24 detected DRs, and exactly three DRs stand out as a separate
cluster, two of which are shown in the last two rows in Table 4.
Interestingly, the classifier detects none of the three outliers. We
believe it is not coincidental. Given the limited training set, the
classifier tends to overfit to a single DR behavior pattern, but there
are more new patterns. For example, the three outliers have all the
features high as the other DRs but have additional features like min-
utes_rate_rank, sum_day_indices and days_num also abnormally
high. Intuitively, they are not only retrieving data uniformly over
keys but also at an extreme frequency and intensity. Thus, they are

highly suspicious DRSs, if not the worst ones’.

Detection results on other DBs. We manually examine the de-
tection results from the other four DBs and confirm that the top-3
features are also significantly high for DRs, and thus showing that
the features have some transferability to other data. We show an
example detected DR in Dp, who never uses D 4. All of his top-5
features are over the 99-th percentile. We believe that he is a DR
because 1) he retrieved nearly 9,000 distinct keys within two hours,
130% higher than average; and 2) he repeatedly and only retrieved
a set of around 500 keys in about 20 days, all around the same time
of the day. Thus, he has all three characteristics of large volume,
spread, and strong periodicity, making him highly suspicious.
Result validation from the data provider. We reported our
detected DRs to the security experts at the data provider. They
manually examined these results and confirmed most of them. They
took actions on the confirmed ones and marked others as suspicious
for a longer-term tracking. The method is now deployed in their
systems.

Comparison with a naive method. The most popular method
for data providers to defend themselves is limiting the query volume
(our total_num feature). We compare our detection result with the
naive method. Surprisingly on D 4, the top 35 heavy users do not
overlap at all with our detected 24 (the heaviest user in our results
ranks 36th in utilization).

Security experts do not believe the heavy users are DRs. Com-
paring to manual labels in D 4(z), no labeled DRs are among the
top-10% heaviest users, while 12% of the labeled legitimate users
ranks among the top 10%. We show the top-3 heavy users in Ta-
ble 5 as an example. We can see that their entropy features and
total_indices are not very unusual. In fact, they use a few keys
repeatedly, but not many keys. This is typical behavior of many

I Their the entropy is a little lower, but they have so many retrievals and thus can
query many keys over and over as cover traffic for their retrieval pattern.

Table 5: Example heavy users. Number are the percentile
rank on the features. None are DRs.

uid rank of index_day total_ index_avg | minutes
total_num _entropy indices _entropy | _rate_rank

6 1 86.56% 86.73% 89.75% 99.84%

7 2 65.65% 70.10% 56.89% 32.25%

8 3 81.98% 81.30% 84.76% 99.87%

automated stock trading scripts. Our method permits these heavy
users, unlike the naive method.

4 CONCLUSION AND FUTURE WORK

Anti-data-reselling (ADR) is key to protect data providers, but many
people still use naive query-volume limiting, which we show is not
an effective method, while hurting the user experience. In this paper,
we identify the most fundamental behavior characteristics of DRs
and build a set of sophisticated features and models to capture the
query volume, the spread over the dataset, as well as the periodicity
of the data retrieval patterns. Experiments on a real-world dataset
with 9,000+ users on five independent databases demonstrated the
effectiveness of our method. We also discover interesting divergent
behavior patterns of different DRs.

As future work, we will build a visualization system to help
experts to examine the detection result. We will also explore ways
of leveraging semi-supervised learning to adopt the user-confirmed
outlier detection results to fine tune the classifier. Last but not least,
we will integrate DR detection results with other log-based fraud
detections (e.g., fake account detection) and cross-check the results.
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