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We report a numerical observation where the infinite-temperature out-of-time-order correlators
(OTOCs) directly probe quantum phase transitions at zero temperature, in contrast to common
intuition where low energy quantum effects are washed away by strong thermal fluctuations at high
temperature. By comparing numerical simulations with exact analytic results, we find that this
phenomenon has a topological origin and is highly generic, as long as the underlying system can be
mapped to a 1D Majorana chain. Using the Majorana basis, we show that the infinite-temperature
OTOCs probe zero-temperature quantum phases via detecting the presence of Majorana zero modes
at the ends of the chain that is associated with 1D Z2 topological order. Our results demonstrate
an intriguing interplay between information scrambling and topological order, which leads to a
new phenomenon in the scrambling of generic non-integrable models: topological order induced
pre-scrambling, that defines a time-scale for the restricted scrambling of topologically-protected
quantum information.

I. INTRODUCTION

Out-of-time-order correlators (OTOCs) have become a
widely-appreciated tool to measure the correlation build-
up in space and time, and hence quantitatively charac-
terize information scrambling in interacting many-body
systems [1–5]. Started off as a theoretical tool to un-
derstand quantum information in a black hole [6, 7] its
impact quickly expanded to a wide variety of subjects
including but not limited to: quantum chaos [8–12],
many-body localization [3, 10, 13–15], quantum integra-
bility [9, 12, 16, 17], quantum criticality [18] and recently
symmetry-breaking quantum phase transitions [19, 20].

At temperature T = 1/β, an OTOC is defined as,

F (t) = Tr
(
e−βHW †(t)V †W (t)V

)
, (1)

where W and V are local quantum operators and H is
the Hamiltonian. At infinite temperature (T = ∞ and
β = 0), the Boltzmann weight e−βH becomes an identity
operator and thus the OTOC reads

F (t) =
1

M

M∑
n=1

〈
ψn|W †(t)V †W (t)V |ψn

〉
,

≈
〈
ψh|W †(t)V †W (t)V |ψh

〉
, (2)

Here we sum over a complete basis of the Hilbert space of
dimension M , while in the second line, we use a random
state |ψh〉 drawn from the Haar measure [15, 21] to ap-
proximate an infinite-temperature state in a correlation
function, e.g. Eq. 1 [22–26].

The OTOC of a generic system is expected to decay to
zero fast where the rate of decay carries information on
the chaotic properties of the system; and saturate at zero
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FIG. 1. The schematic of dynamic phase boundaries de-
termined by OTOC time-average F̄ with respect to control
parameter h and temperature T . The system experiences a
topological phase transition (TPT) defined at T = 0 temper-
ature from Z2 topologically ordered phase to a trivial phase.
The graphics with red-grids and solid-blue show how the topo-
logical phase survives in dynamics and at higher tempera-
tures for integrable and generic non-integrable models, re-
spectively. While integrable models recover zero-temperature
phase boundary at infinite temperature, non-integrable mod-
els experience a shift that tends to destroy order quicker than
at low temperature.

in long time dynamics. Saturation at zero indicates that
the system scrambles information completely, whereas a
finite saturation value points to a restricted scrambling
[27]. In this manuscript, we focus on the regime starting
shortly after the (initial) decay of OTOC and lasts for a
time interval of T . It has been recently found that the
OTOC saturation value at zero-temperature exhibits or-
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der parameter-like behavior, and thus can directly probe
the long-range quantum order and quantum phase transi-
tions [19]. In contrast to the naive intuition, where ther-
mal fluctuations wash away low energy quantum effects
at high temperature, in this work we observe an emergent
relation between infinite-temperature information scram-
bling and zero-temperature Z2 topological order in the
bulk in multiple model systems, e.g. non-interacting,
interacting and/or non-integrable. The effect is robust
where the qualitative features remain invariant regardless
of microscopic details, e.g. integrability and symmetries.
In particular, by setting W and V as local degrees of free-
doms localized near the edge of the system, we find that
the time-average of OTOC F̄ = 1/T

∫
dtF (t) (or equiv-

alently the saturation value, if the OTOC saturates) be-
haves like an order parameter (Fig. 1). It is worthwhile
to emphasize that the infinite temperature OTOCs are
effective tools for detecting chaos that is based on the
entire energy spectrum [8–12, 15]. Hence it is surpris-
ing and highly not obvious that this correlator can also
directly probe zero temperature physics of the ground
state, such as quantum phase transitions. Then what is
the underlying physics that allows the infinite tempera-
ture out-of-time-order correlator at the edge to accurately
sense the bulk ground state physics and capture the bulk
phase transition? Is this a generic feature?

Through a careful analysis, we find that this connec-
tion arises universally as long as the quantum system
can be mapped to a Majorana chain (1D superconduc-
tor) [28], and F̄ value serves as the Z2 topological order
parameter. Furthermore our study reveals that a new
time-scale appears in information scrambling when Z2

topological order [29] exists. We name this phenomenon
topologically induced pre-scrambling and hence define
the time-scale as pre-scrambling time by juxtaposing the
well-known phenomenon of pre-thermalization [30, 31].
Fig. 2 shows a cartoon picture of pre-scrambling for a
generic (non-integrable) model with solid-red line where
the system experiences restricted scrambling, F̄ 6= 0,
starting at τpresc for a period of time T after the first
OTOC decay and preceding the full scrambling at τsc
in a topological phase. On the other hand, the purple-
dotted line in Fig. 2 shows the expected rapid OTOC
decay until scrambling time τsc for a generic system with
no topological order. Pre-scrambling (green) region in
Fig. 2 extends to infinite-time in thermodynamic limit for
systems with extensive number of symmetries, e.g. non-
interacting and/or integrable limits, with no full scram-
bling occurring. Such systems might demonstrate F̄ 6= 0
in their trivial phases [10, 15, 32], nevertheless it is still
possible to mark down the topological phase transition
due to sharp transition signatures. We compare the
infinite-temperature dynamic phase boundary with zero-
temperature quantum phase boundary where topological
order starts to develop in Fig. 1 and observe that they
perfectly coincide with each other in integrable systems.
Away from the integrability, the dynamical phase bound-
ary significantly shifts away from the zero-temperature

FIG. 2. The schematic of infinite-temperature OTOC evolv-
ing in time t for a quantum system with (solid-red line) and
without (dotted-purple line) Z2 topological order. A generic
system with Z2 topological order would exhibit topologically
induced pre-scrambling F̄ 6= 0 before fully scrambles at scram-
bling time τsc. We coin τpresc for the pre-scrambling time-
scale. Our study focuses on this pre-scrambling regime (green
panel), where the OTOC time-average exhibits order param-
eter like behavior (Fig. 1).

phase boundary, although the qualitative trend of F̄ sur-
vives.

Previously, the OTOC of the integrable Ising model
[16] and XX-chain [33] are analytically studied, which
required periodic boundary conditions [34] and hence
double-OTOCs [16, 33]. Our study indicates that
OTOCs of edge operators contain new information,
which is not accessible by the bulk operators. It is known
that Z2 topological order results in a two-fold degener-
acy for all energy eigenstates of the entire spectrum; and
recently it is pointed out that this degeneracy structure
of Z2 topological order has a highly nontrivial impact on
dynamics at any temperature, e.g. long coherence times
for edge spins in Ref. [35] and pre-thermalization effect in
Ref. [36]. Our results extend this impact of Z2 topolog-
ical order to information scrambling and OTOCs, opens
up new avenues to dynamically detect and study topolog-
ical order through utilizing information scrambling as an
order parameter. The dynamical detection of topological
order has been under intensive investigation [35–39]. Fur-
thermore, the topological insulators and superconductors
have been studied [40–44] and classified [45] according to
their non-equilibrium dynamics rather in an analogy to
the classification tables for topological states of matter
[46] superposed with the notion of dynamical quantum
phase transitions [47–49]. Thus, understanding if the in-
formation scrambling has fundamental restrictions when
topological order exists is a puzzle left at the intersection
of many sub-fields.

In Sec. II, we are going to detail our numerical ob-
servation around its corresponding Majorana chain and
discuss about the connection between infinite tempera-
ture scrambling and T = 0 topological order with quan-
titative arguments. Later in Sec. III, we are going to
show how the topological order is encoded in the sat-
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uration regime of OTOCs based on the non-interacting
limit analytical calculations. In Sec. IV, we extend the
discussion to interacting and/or non-integrable models
and show how topological order persists in two separate
contributions to the coherence times of the edge spins.
Later we end Sec. IV with a discussion on topologically
induced pre-scrambling in generic models and the effect
of pre-scrambling on dynamic phase diagrams. We con-
clude in Sec. V and elaborate on possible questions to
answer in the future.

II. DEMONSTRATION OF TOPOLOGICAL
ORIGIN

It turns out that the connection between infinite-
temperature information scrambling and quantum
phases at zero temperature has a robust topological ori-
gin. Let us demonstrate how the topological origin re-
veals itself in the dynamics of OTOCs with an example
on 1D XXZ chain,

H = J
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

Jz
J
σzi σ

z
i+1

)
. (3)

At T = 0, the model exhibits quantum phase transitions
between a gapped Ising phase |Jz| > 1 and a critical XY-
phase |Jz| < 1 where the spectrum is gapless [50]. We
employ Haar-distributed random states |ψh〉 and com-
pute F̄ shown in Fig. 3.

If spin operators at the edge of the chain W = V =
σzedge are utilized (blue-circles), the infinite-temperature
OTOC saturation value behaves like an order parameter
of the zero-temperature quantum phase transition, i.e.,
F̄ ∼ 0 in the XY phase (|Jz/J | < 1) and increases mono-
tonically as we enter the Ising phases (|Jz/J | > 1). In
contrast, under periodic boundary conditions (yellow di-
amonds line) and for a bulk spin W = V = σzbulk (green
left-pointing triangles), the OTOC no longer differenti-
ates the two phases, and the transition point is smoothed
out consistent with predictions from Ref. [19].

To demonstrate the role of topological order, we
rewrite the Hamiltonian of the XXZ model in the Ma-
jorana basis. First, via the Jordan-Wigner (JW) trans-
formation [34]

σzi = −
∏
j<i

(
1− 2c†jcj

)(
ci + c†i

)
, (4)

σxi = 1− 2c†i ci,

σyi = −i
∏
j<i

(
1− 2c†jcj

)(
ci − c†i

)
.

the spin Hamiltonian is mapped to

H = J
∑
i

[(
1− 2c†i ci

)(
1− 2c†i+1ci+1

)
−
(
ci + c†i

)
×
(
ci+1 − c†i+1

)
+
Jz
J

(
ci − c†i

)(
ci+1 + c†i+1

)]
, (5)

FIG. 3. Long-time average of OTOC for XXZ model for
edge-spin operators W = V = σzedge in blue circles and its
(later explained) diagonal contribution in orange squares; for
bulk-spin operators σzbulk with periodic boundary chain (pbc)
in yellow diamonds and its diagonal contribution in purple
hexagons; with open boundary chain (obc) in green left-
pointing arrows and the diagonal contribution in light-blue
right-pointing arrows. System size is N = 14 and the time of
averaging is tJ = 800.

which can be written in terms of the Majorana fermions

a2j−1 = cj + c†j and a2j = −i
(
cj − c†j

)
[28]:

H = −J
∑
i

(a2i−1a2ia2i+1a2i+2 + ia2i−1a2i+2)

+ iJz
∑
i

a2ia2i+1. (6)

In the Majorana basis, the spin system is mapped to an
interacting Majorana chain. The XY (Ising) phase is
mapped to a gapless (topological) phase, and the quan-
tum phase transition becomes a topological transition.
Same as the Kitaev chain, the topological phase in Eq. (6)
develops Z2 topological order and is characterized by two
Majorana zero-modes localized at the two ends of the
chain [28].

The physics can be understood by considering the
Jz � J limit, where Eq. (6) converges to the Kitaev
model [28] with two zero-energy Majorana modes γ1 = a1
and γ2 = a2N fully decoupled from the rest of the
chain. Away from the Jz � J limit, quartic terms in
the Hamiltonian introduce interactions, but the zero-
energy Majorana modes at the two ends of the chain
remain topologically protected for the entire topologi-
cal (Ising) phase. The existence of two Majorana modes
at the two ends of the chain (γ1 and γ2) indicates that

a zero-energy non-local fermion d = γ1+iγ2√
2

can be de-

fined. Because of its zero-energy nature, for an eigen-
state of the Hamiltonian |ψ0〉, another degenerate state
|ψ1〉 = d |ψ0〉 must exist with an opposite fermion parity.
Therefore, in the topological phase, the edge modes are
responsible of the degenerate subspaces forming not only
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in the ground state, but throughout the entire spectrum
[28, 50]. In other words, in contrast to an conventional
(Landau-type) quantum phase transition, where across
the phase boundary the ground state changes from non-
degenerate (the disordered phase) to degenerate (the or-
dered phase), Z2 topological order has a direct impact
for the degeneracy of all eigenstates in the entire energy
spectrum, i.e. two-fold degeneracy for the entire spec-
trum. The effect has a direct impact on measurements
and dynamical quantities at any temperature [35, 36] and
it is in sharp contrast to a conventional phase transi-
tion that can only be detected by zooming to the ground
state at low-temperature. This is the key reason why
the infinite-temperature OTOC is capable of detecting
a zero-temperature topological order, but not a regular
Landau-type quantum order (unless it can be mapped
into a topological order).

III. TOPOLOGICAL EDGE PHYSICS
ENCODED IN THE OUT-OF-TIME-ORDER

CORRELATORS

In this section, we study the non-interacting limit to
provide analytical arguments in the demonstration of
how infinite-temperature information scrambling of edge
spins encodes the existence or absence of Majorana zero-
energy modes. Later we will mark the topological phase
transition point via F̄ in this non-interacting limit.

A. Transverse-field Ising Model

We consider a non-interacting, hence analytically solv-
able model and directly compute the contributions of
Majorana zero-modes in the infinite-temperature OTOCs
with edge operators. The Hamiltonian for the transverse-
field Ising model with open boundary conditions is,

H = −J
N−1∑
j=1

σzjσ
z
j+1 + h

N∑
j=1

σxj . (7)

Eq. 7 has a critical point at h = 1 that separates a fer-
romagnetic ordered phase from a disordered phase. The
time-average of OTOC F̄ with σz1 at β = 0 is shown
with the lines with blue-circles and orange-diamonds for
N = 14 and N = 50, respectively in Fig. 4a. The simula-
tion with N = 50 spins is performed with matrix product
states (MPS) in a t-DMRG (time-dependent density ma-
trix renormalization group) method, (see Appendix A for
details). Here the error bars stand for the extend of os-
cillations in time, as we time-average the real part of the
OTOC signal in a time interval of tJ = π

4 10 ∼ 7.85. For

an edge spin operator σz1 , F̄ behaves like an order param-
eter, which is F̄ ∼ −1 in the disordered phase (h > J)
and increase monotonically in the ordered phase (h < J).
On the contrary, for a bulk spin operator, σz7 , this feature
disappears (green-triangles in Fig. 4a). This observation

reflects that the physics captured by edge- and bulk-spin
operators are different; a similar observation to what we
presented for the XXZ model earlier. To further show
how the real-time OTOC dynamics look like, we contrast
time-evolving OTOC F (t) of edge and bulk operators in
Fig. 4b. The OTOCs of the edge spin converge to differ-
ent values at large times, depending on the value of h/J ,
while the OTOCs of bulk spins always converge to 0 at
large t, as long as h 6= 0. The h = 0 limit is trivial for in-
formation scrambling, because the spin chain turns into
a classical system (i.e. a classical Ising model) without
quantum fluctuations or non-trivial dynamics, and thus
information cannot scramble, F (t) = 1.

The results above can be easily understood by using
the Majorana basis, which transforms the spin Hamilto-
nian into a non-interacting Majorana chain

H = −iJ
N−1∑
j=1

a2ja2j+1 − ih
N∑
j=1

a2j−1a2j , (8)

where we used Eqs. (4). In contrast to the XXZ model
discussed above, Eq. (8) only contains quadratic terms,
hence non-interacting, and thus can be easily diagonal-
ized, which enables us to compute infinite-temperature
OTOC saturation values F̄ exactly. This exact solution
agrees perfectly with numerical simulations in Fig. 4a.
More interestingly, as will be shown below, the analyti-
cal result exhibits that F∞ is solely contributed by Ma-
jorana zero-energy modes, while the contributions from
all other finite energy excitations fade away at large t.

B. Exact solution

We compute the OTOC of an edge spin using the
Majorana basis in this section. In the Majorana ba-
sis, the OTOC of Majorana fermions can be defined
as F2i−1,2i−1(t) = Tr (a2i−1(t)a2i−1a2i−1(t)a2i−1) /2N ,

where we set W = V = a2i−1 = ci + c†i . Since it
can be easily showed that the OTOC of edge Majorana
fermions must be identical to the OTOC of edge spins,

σz1 =
(
c1 + c†1

)
= γ1 and σzN = P

(
cN − c†N

)
= iPγ2,

where P =
∏N
j

(
1− 2c†jcj

)
is the parity operator, here

we focus on F11 with W = V = a1.
The Majorana-fermion OTOC F2i−1,2i−1(t) can be

conveniently computed by utilizing the Bogoliubov-de
Gennes (BdG) basis, as detailed in Appendix B. With
fermion operators defined for a space of double spec-
trum, we write the BdG Hamiltonian and calculate
F2i−1,2i−1(t) at site i,

F 2i−1,2i−1(t) =[
2N∑
α

(
|ψα,i|2 + ψα,iψ

∗
α,i+N

)
cos (Eαt)

]2
(9)

+

[
2N∑
α

(
|ψα,i+N |2 + ψα,i+Nψ

∗
α,i

)
cos (Eαt)

]2
− 1.



5

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

(a)

0 2 4 6 8
-1

-0.5

0

0.5

1

(b)

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

(c)

FIG. 4. Transverse-field Ising model at infinite-temperature. (a) The OTOC time-average of the edge spin operators σz1 via
real-time OTOC dynamics (blue circles) at N = 14 and (orange diamonds) at N = 50 where we used MPS (see Appendix A)
for a time interval tJ = π

4
10 ∼ 7.85. The yellow-pentagrams show F11 based on Eq. (9) where the Majorana edge states are

extracted from HBdG matrix at N = 50 at infinite time limit for a comparison with other data. The green-triangles show the
OTOC time-average of the bulk spin operator σz7 at N = 14 for a time interval tJ = π

4
103 ∼ 800. (b) The OTOC dynamics F (t)

with respect to tJ . Blue-circle and orange-cross lines are the OTOC of edge σz1 operator for h = 0.1 and h = 0.9, respectively.
Red-diamond and purple-triangle lines are the OTOC of bulk σz25 operator for h = 0.1 and h = 0.9, respectively. All curves
are computed in t-DMRG for a system size of N = 50, averaged over 10 random product states to generate β = 0 results. The
error bars stand for 1σ variation of OTOC in this set of random states. (c) Robustness of order against changing the boundary
conditions: a strong field is applied to the first spin only for N = 13 and tJ ∼ 8 (blue circles); and to the edge fermions in the
non-interacting fermion chain for N = 50 and tJ →∞ (yellow squares). The edge modes shifted to the nearest site that is free
of pinning field, F̄ of σz2 spin (red-diamonds) and F̄33 of a3 Majorana fermion (purple asterisks), respectively.
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FIG. 5. (a) The second derivative of the OTOC time-average
d2F̄11(t → ∞)/dh2 pinpoints the phase transition point via
its maximum. (b) The system-size scaling of the phase tran-
sition point gives hdc ∼ N−0.7189 + 1.0069 with R2 = 0.9996,
meaning in the thermodynamic limit the OTOC pinpoints the
phase transition point as h∞dc = 1.0069.

where Eα and ψα are the eigenenergy and eigenstate of
the BdG Hamiltonian, while the sum goes over all energy
eigenstates α = 1, . . . 2N . In the long-time limit, only
the non-oscillating terms (i.e., Eα = 0) contribute to the
saturation value of F2i−1,2i−1(t), i.e., only zero-energy
modes need to be considered for t → ∞. For h < J in
the Ising ordered phase, the BdG Hamiltonian describes
a topological superconductor with Majorana zero modes
at the two ends, and hence we only sum over the two Ma-
jorana zero modes, e.g. α = mj. In the disordered phase
(h > J), the BdG Hamiltonian describes a topologically-
trivial superconductor without any zero-energy modes.
Thus in the absence of zero-energy modes, Eα = 0,
F2i−1,2i−1(t) → −1, explaining F̄ approaching to −1 in

the Ising model results (Figs. 4). By calculating Eq. (9)
as t → ∞, we plot F11 = Fmj in Fig. 4a with orange-
pentagrams, which matches well with the Ising model
results. To conclude, the derived relation, e.g. Eq. (9)
rigorously proves that the saturation value of an OTOC
with Majorana fermions (W = V = a2i−1) is contributed
only by Majorana zero-energy modes (Eα = 0), while the
contributions from any excited states (Eα 6= 0) vanish at
long times. Since the Ising model can be exactly mapped
to a 1D Majorana chain, the infinite-temperature OTOC
of the edge spins directly probes the presence or absence
of the Majorana zero-energy modes. This is one of the
key conclusions in our manuscript.

Motivated by this observation, we pinpoint the phase
boundary of the topological phase transition in the fol-
lowing. Since the OTOC F11(t → ∞) has a continuous
transition from topologically non-trivial to trivial phase,
we focus on its second derivative d2F̄11(t→∞)/dh2 with
respect to external field h. The maximum of the second
derivative pinpoints the transition point, Fig. 5a. Then
the system-size scaling provides the transition point in
the thermodynamic limit as h∞dc = 1.0069 in a power-law
scaling hdc ∼ N−0.7189+1.0069 (Fig. 5b). For further de-
tails, see Appendix D. We note that the results obtained
in the non-interacting limit (Ising model) are valid at the
infinite time in the thermodynamic limit since topolog-
ically induced pre-scrambling persists indefinitely (Ap-
pendix D).
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C. Robustness against varying the boundary
conditions

Although the phenomenon discussed above relies on
utilizing edge degrees of freedom, all the key conclu-
sions are robust against any local perturbations and in-
dependent of boundary conditions. Because, the physics
is based on topological edge modes. To demonstrate
this robustness, we vary the boundary condition of the
transverse-field Ising chain by introducing a constant
magnetic field (along the x direction) for the edge spin
only, i.e. h1/J = h/J + 6 where h1 is the strength of the
transverse field for the first site, while the rest of the spins
have the same transverse field h. This strong field at the
edge site introduces a strong pinning to the first spin and
hence F̄ oscillates significantly, being featureless across
the phase boundary (blue-circles in Fig. 4c). However, if
we choose the spin operator at the second site instead, the
physics discussed above is recovered as shown in Fig. 4c
with orange-diamonds. This is because such a local field
cannot destroy the Majorana zero-energy mode, which is
topologically protected by the nontrivial bulk. Instead,
it can only move the location of the zero-energy modes,
and thus, utilizing the second site, the conclusion re-
mains the same. We additionally show the results for
non-interacting fermion chain with an additive field af-
fecting only the fermion at the edge. Yellow-squares in
Fig. 4c show F̄mj (Eq. (9)), the OTOC of edge Majorana
mode γ1 at the infinite-time limit, hence demonstrating
no transition point. Purple-asterisks, on the other hand,
show F̄33, the OTOC of Majorana mode a3 at site i = 2
at the infinite-time limit, which is observed to match with
F̄ of the Ising model, implying an agreement between nu-
merics and analytics.

IV. THE INTERPLAY BETWEEN
TOPOLOGICAL ORDER AND SCRAMBLING

The default expectation for generic systems in 1D is
scrambling over a time interval where the OTOC decays
fast or slow but saturates to a residue close to zero, both
depending on the set of symmetries existing in the system
and the size of the Hilbert space [10, 13, 15, 32, 51]. An
exception to this observation is the models that possess
a symmetry-breaking phase transition with a long-range
ordered phase at zero temperature regardless of the inter-
actions [19] or the non-integrability [20]. However, could
order in such generic systems be captured at higher tem-
peratures, preferably at infinite temperature? Now we
systematically study the detection of topological order
in generic systems at infinite temperature.

A. Dynamical decomposition method

Since it is challenging to obtain analytical results on
OTOC away from the non-interacting limit, we develop a

framework that can allow us to gain more insight about
detecting the topological order in generic systems via F̄ .
By applying dynamical decomposition to OTOC [19], we
calculate F̄ with a term that becomes the dominant con-
tribution in F̄ and a correction to it, as we move away
from the non-interacting limit. Dynamical decomposi-
tion method is previously utilized to find a leading-order
term in F̄ (of arbitrary bulk spins) at zero-temperature to
probe zero-temperature symmetry-breaking phase tran-
sitions [19]. Here we generalize the idea to infinite tem-
perature and put forward a conjecture in analogy to the
Eigenstate Thermalization Hypothesis (ETH).

By utilizing the energy eigenstates as a complete basis
of the Hilbert space, OTOC at infinite-temperature can
be written as

F (t) =
1

M

∑
α,β,γ,δ

WαβVβγWγδVδαe
i(Eα−Eβ+Eγ−Eδ)t

(10)

where Wαβ and Vαβ are defined as Wαβ = 〈ψα|W |ψβ〉
and Vαβ = 〈ψα|V |ψβ〉 with |ψα〉 and |ψβ〉 being the en-
ergy eigenstates with associated energies Eα, . . ., Eδ. To
keep the notation simpler, we do not explicitly specify
the degeneracies in Eq. (10) (see Appendix C).

In the long time limit (t → ∞), only the static terms
with Eα−Eβ +Eγ−Eδ = 0 contribute to the saturation
value, while the rest of the terms dephase. Then the
saturation value, and equivalently the long time-average
F̄ , of OTOC [19] reads,

F̄ =
1

M

 ∑
Eα=Eβ ,
Eγ=Eδ

+
∑

Eα=Eδ,
Eβ=Eγ

−
∑

Eα=Eβ=
Eγ=Eδ

+
∑

Eα 6=Eβ 6=
Eγ 6=Eδ


×WαβVβγWγδVδα, (11)

where
∑
Eα=Eβ , Eγ=Eδ

implies that we take the operator

matrix elements that satisfy the corresponding energy
condition Eα = Eβ , Eγ = Eδ. Since we look for a domi-
nant contribution to Eq. (11) as the interaction strength
increases, the most suitable dynamical decomposition is
through a conjecture where F̄ is dominated by the diag-
onal contribution. This corresponds to the contribution
with the energy condition Eα = Eβ = Eγ = Eδ on the
spectrum. The conjecture we put forward is valid when
an ansatz on the matrix elements of W and V is satisfied.
This ansatz implies that the off-diagonal elements of the
operator matrices are suppressed with respect to the di-
agonal elements when the spectrum is explicitly degener-
ate; and can be formulated as |WEα 6=Eβ

|2 � |WEα=Eβ
|2

for both W and V , as well as |VEα 6=Eβ
|2 � |WEα=Eβ

|2
and vice versa. When the ansatz is satisfied, F̄ simplifies
to the diagonal contribution Fdiag,

Fdiag =
1

M

∑
Eα=Eβ=
Eγ=Eδ

WαβVβγWγδVδα. (12)
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If W and V are Majorana operators, i.e. a2i−1, the
only contribution to Fdiag comes from the degenerate
energy levels which contain two eigenstates with oppo-
site fermion parity. Since the two-fold degeneracy arises
in the entire spectrum, a finite Fdiag is expected in the
topologically non-trivial phase. However in the topolog-
ically trivial phase, although it could arise accidentally
for some energy levels, two-fold degeneracy is generically
not expected implying F̄diag ∼ 0. Hence F̄diag directly
probes topological degeneracy in any system with Z2

symmetry. Fdiag can be analytically calculated in the
non-interacting limit (Appendix C) via a calculation of
matrix elements in edge operator W ,

Wαβ

∣∣
Eα=Eβ

= 〈ψα| f(h)γ1

(
γ1 + iγ2√

2

)
|ψα〉

=
2f(h)√

2
=
√

1− h2, (13)

in the topologically non-trivial phase, Wαβ

∣∣
Eα=Eβ

= 0

otherwise. Here f(h) if a smooth function of magnetic
field h, that can be extracted numerically for finite size
systems whereas f(h) =

√
2(1− h2)/2 holds in the ther-

modynamic limit. Hence Fdiag = (1−h2)2 is contributed
by Majorana zero-energy modes only.

We note that the operator ansatz is the generalization
of ETH’s second criteria [52–54] to a degenerate spec-
trum. However, since we do not need to assume that the
diagonal elements of the operator matrix are a smooth
function of energy WEα=Eβ

= g(Eα), the first criteria of
ETH [52] does not need to be followed, hence our con-
jecture does not require thermalization. Therefore, we
can anticipate that our conjecture should be applicable
for a wider range of systems e.g. including integrable but
interacting systems.

As shown in the Appendix C, this conjecture can
be rigorously proven for two-time correlation functions,
where the off-diagonal contributions do not satisfy the
corresponding energy condition Eα − Eβ = 0 and thus,
must vanish in long time. However, for four-point corre-
lators like OTOC, the contribution of diagonal elements
is not the only way to satisfy the energy condition, and
hence other contributions to F̄ exist, e.g. off-diagonal
contributions. We note that, when the operator ansatz
is not satisfied, these off-diagonal contributions can be-
come comparable to the diagonal contribution, and even
can dominate F̄ . As can be supported by the numeri-
cal evidence of ETH holding in non-integrable systems
[52–54], we numerically observe that the operator ansatz
is satisfied away from the non-interacting limit in the
Ising-type models; and hence F̄ is dominated by diag-
onal contribution validating our conjecture. To demon-
strate these arguments, we calculate F̄diag for three dif-
ferent scenarios: i) strongly interacting but integrable
case (XXZ model), ii) non-integrable models with differ-
ent interacting strengths and iii) non-interacting limit.

1. Strongly interacting but integrable case

We revisit the Fig. 3 of the XXZ model in Sec. II.
Fdiag is shown for an edge-spin σz1 (obc) with red-squares;
whereas the Fdiag of bulk-spins σz1 (pbc) and σz7 (obc) op-
erators are with purple-dots and light-blue right-pointing
triangles, respectively. We observe that the diagonal con-
tribution could be used to approximate F̄ at the edge in
the Ising phases, confirming the conjecture. Even though
this model has interactions between Majorana fermions
Eq. (6), it is still an integrable system which might ex-
plain why F̄ does not completely reduce to its diagonal
contribution in the long-time limit. However, the qual-
itative behavior is the same. The diagonal (and hence
topological) contribution in the XY-phase becomes zero
which is consistent with a gapless phase. Hence the sole
contribution in the XY-phase is the corrections, which
shows a steady non-zero residue F̄ 6= 0. This residue
seems to be a consequence of the rotational symmetry of
the system, [H,Sz] = 0 and could be expected to van-
ish away in the thermodynamic limit (Appendix F). Since
the topological order is not visible to bulk degrees of free-
dom, we see Fdiag ∼ 0 for bulk operators.

2. From non-integrable cases to non-interacting limit

A generic Ising model could be introduced as,

H = −J
N−1∑
j=1

σzjσ
z
j+1 −∆

N−2∑
j=1

σzjσ
z
j+2 + h

N∑
j=1

σxj , (14)

= −iJ
N−1∑
j=1

a2ja2j+1 + ∆

N−2∑
j=1

a2ia2i+1a2i+2a2i+3

− ih
N∑
j=1

a2j−1a2j , (15)

where ∆ is the next-nearest neighbor coupling between
spins in Eq. 14 and breaks the integrability of the model.
The strength ∆ introduces interactions between Majo-
rana fermions in Eq. 15. We focus on three differ-
ent ∆ values in our numerical analysis from weak to
strong integrability-breaking terms (i) ∆/J = −0.1, (ii)
∆/J = −0.5 and (iii) ∆/J = −2.

As we increase the interaction strength, F̄ ∼ F̄diag as
expected from the conjecture. Fig. 6a compares the dy-
namic phase diagrams of ∆/J = −0.5 and ∆/J = −2
where time of averaging is fixed to tJ = 800 for a sys-
tem size of N = 14. On the other hand, at the vicin-
ity of the non-interacting limit ∆/J = −0.1, F̄ differ
from its diagonal contribution F̄diag considerably (yellow-
triangles and green-circles Fig. 6b). Consistently, the op-
erator ansatz in the non-interacting limit fails, leading
to F̄ 6= F̄diag. Black-circles and red-diamonds in Fig. 6b
show F̄ and F̄diag calculated at N = 200 in the infinite-
time limit, respectively. Note that the difference is the
contribution due to the off-diagonal matrix elements of
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FIG. 6. Comparison of F̄ and its diagonal contribution F̄diag
at different non-integrability breaking term strength ∆/J . (a)
For a time interval of tJ = 8× 102 and size N = 14, F̄ (red-
triangles) and F̄diag (green-squares) of ∆/J = −0.5; and F̄
(black-circles) and F̄diag (yellow-diamonds) of ∆/J = −2.
Hence F̄ ∼ F̄diag holds for a generic non-integrable sys-
tem. (b) F̄ (yellow-triangles) and F̄diag (green-squares) of
∆/J = −0.1 for a time interval of tJ = 2 × 103 and size
N = 14; and F̄ (black-circles) and F̄diag (red-diamonds) of
non-interacting fermion model for a size of N = 200 at the
infinite-time limit. At the vicinity of the non-interacting limit,
off-diagonal contributions start to be significant.

the edge operator, which increases towards the phase
boundary h/J → 1 and clearly is not bounded. Remark-
ably off-diagonal contribution turns out to be robust, e.g.
it does not vanish at infinite-time in thermodynamic limit
(as seen in Fig. 6b). Robust off-diagonal contribution
also shows up in a generic model at the vicinity of the
non-interacting limit (∆/J = −0.1), seen in the observa-
tion that F̄ diverges from F̄diag (Sec. IV B and App. D).
Hence we observe that OTOC (time-average) captures
additional correlations that are not visible to a two-time
correlator at the vicinity of the non-interacting limit. In
fact, the effect of these contributions can be glimpsed at
in Eq. (11) where the off-diagonal elements of the matri-
ces explicitly contribute to F̄ . However as we move away
from the special non-interacting limit, only the diago-
nal contribution remains topologically protected. Hence,
while the conjecture does not reduce the cost of the com-
putation, it helps us to demonstrate these additional cor-
relations.

In the next section, we will focus on coherence times of
the pre-scrambling in the non-trivial phases for generic
systems and see how the pre-scrambling process governs
the dynamic phase diagrams.

B. Coherence times of pre-scrambling

Z2 topological degeneracy does not only slow down the
scrambling process, but also temporarily freezes the dy-
namics for generic non-integrable models, causing topo-
logically induced pre-scrambling. Hence we observe that
the topological order has a profound effect on the dy-
namics of systems [35, 36], suggesting a new time-scale
for information scrambling in our case. In this section,
we systematically study the coherence times of the pre-
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FIG. 7. Coherence times of pre-scrambling at (a)-(b) ∆ =
−0.1, (a) deep in the topologically non-trivial phase h/J = 0.3
and (b) at h/J = 0.7; (c) ∆ = −0.5 at h/J = 0.3 show-
ing negative pre-scrambling values. N = 60 is computed via
t-DMRG with 25 random initial states to have the infinite-
temperature OTOC. (d) Pre-scrambling deep in the topologi-
cally non-trivial phase of XXZ model with Jz/J = 10 persists
indefinitely.

scrambling process to understand its associated time-
scale in the thermodynamic limit.

Fig. 7a shows how the coherence times of the weakly-
interacting model (∆/J = −0.1) exponentially increase
until around N = 15 where the increase halts, suggesting
that the curves of the systems with larger sizes collapse
on each other. Better examples can be seen in Figs. 7b-7c
of h/J = 0.7 of weakly-interacting model and deep in the
non-trivial phase of the model with stronger interactions
∆/J = −0.5, respectively. Therefore, pre-scrambling has
a finite life-time in generic systems, including the vicin-
ity of non-interacting limit. When the model becomes
integrable, pre-scrambling persists indefinitely, meaning
that a system in thermodynamic limit never scrambles.
Fig. 7d shows the exponential increase of pre-scrambling
decay times in the XXZ model, thus implying that the
observed scrambling is a finite-size effect. Similar behav-
ior can be found for different Jz/J parameter (Appendix
E), as well as the non-interacting limit (Appendix C).

We note that at which size the curve collapse would
happen depends on the strength of integrability-breaking
term ∆/J (interaction strength) as well as the transverse
field strength h. Noting that the pre-scrambling persists
indefinitely in the non-interacting limit, it is not unusual
to see an initial exponential increase in N in a weakly-
interacting model (Fig. 7a).

We draw attention to a main difference between
Figs. 7a and 7b where the former is a point deep in
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the non-trivial phase with F̄ ∼ F̄diag (Fig. 6b). This
suggests that the coherence times of pre-scrambling in
Fig. 7a mainly contributed by diagonal elements, ex-
plaining the similarity to the results in two-time cor-
relators [35]. Whereas in Fig. 7b, we see F̄diag ∼ 0,
hence the OTOC time-average is mainly contributed by
off-diagonal elements, which is specific to OTOC as ex-
plained in previous section. Thus, maybe most impor-
tantly the additional correlations that OTOC detects
help sustaining a finite F̄ 6= 0 and contributing the pre-
scrambling process.

The qualitative differences in coherence times in the
topological phase is reflected to the dynamic phase di-
agrams (compare Figs. 7a-7c). For example, the form
of decay in h/J looks different for different ∆/J : For
∆/J = −0.1, we have a decay in a quadratic form b−ah2
up until the dip around h/J ∼ 0.6 and exponential after-
wards (Fig. 6b), whereas for ∆/J = −0.5 we see a form of
exponential function in h/J only, ∼ aexp(bh) (Fig. 6a).
For ∆/J = −2 in Fig. 6a the functional form is quadratic
at 0 < h/J < 0.5 with exponential tails in the rest of
h/J > 0.5. The observation that topologically induced
pre-scrambling occurs in a generic non-integrable system
also suggests that the dynamic phase diagrams would sig-
nificantly depend on the interval of the time-averaging
(Appendix D for demonstration). Hence it is not clear
even if a dynamical phase transition boundary could be
well-defined for a generic system at infinite-temperature.
We will elaborate on this intriguing question in the next
section before concluding.

C. Effect of scrambling on dynamic phase diagrams

A natural question that follows the discussion in the
last section is how a generic system could host pre-
scrambling for mostly long but finite amount of time.
Finite coherence times of edge spin two-time correlators
in generic systems have been recently based on spec-
trum characteristics [35]. Hence these recent findings
should be applicable to information scrambling. Inter-
actions in generic spin systems tend to cause massive
degeneracies in the bulk of the spectrum due to the so-
called easy spin flips [35] that can happen at any site
in the chain. As opposed to exponentially close and
hence paired topological degeneracy due to an edge spin
flip, the energies of these degenerate states are close
polynomially in size. Then these massive degeneracies
that increase with the system size suggest that the topo-
logical degeneracy pairing between many-body states in
the thermodynamic limit becomes negligible. Therefore
at infinite-temperature a generic spin system tends to
scramble completely after pre-scrambling that lasts only
for a finite amount of time. In other words, topologi-
cal imprint of the spectrum on dynamics vanishes (no
topologically-induced pre-scrambling). Additionally in-
creasing the transverse-field strength h (linked to spin flip
operator) enhances this effect on the spectrum. Hence
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FIG. 8. Coherence times of the edge spins based on OTOC
of (a) ∆/J = −0.5 and (b) ∆/J = −2 closer to the critical
point in their respective topological phases at h/J = 1 for
different system sizes. The size N = 40 in both sub-figures
is calculated via t-DMRG by averaging 10 different random
product states.

the full scrambling is induced early on in h before the
zero temperature topological transition boundary hc is
reached. We emphasize that the zero temperature topo-
logical transition boundary hc is governed by the ground
state topological degeneracy, which is free of these so-to-
speak accidental degeneracies in the rest of the spectrum.

To exemplify this argument, we bound the dynamic
phase boundaries in generic systems that we study. The
topological transition for ∆/J = −0.5 and ∆/J = −2
occurs at h/J ∼ 1.7 and h/J ∼ 3.78 (Appendix E),
respectively. On the other hand, Fig. 6a shows early
transitions for their dynamic counterparts. Since Fig. 6a
is for a system size of N = 14, and it is yet not clear
if a transition boundary could be defined purely based
on pre-scrambling over a finite time interval, we aim to
bound the non-trivial phase boundary instead. Figs. 8a
and 8b demonstrate a very limited pre-scrambling that
is mostly over in tJ ∼ 20 for multiple system sizes
that also show collapse with ED (exact diagonalization)
and DMRG (density-matrix renormalization group) for
∆J = −0.5 and ∆/J = −2, respectively at h/J = 1.
Hence we can safely state that the dynamic non-trivial
phase boundary over a relatively long period of time is
bounded to hdc/J < 1, suggesting a significant shift from
the zero-temperature phase boundaries. (hdc stands for
the dynamically critical h value.)

Such phase boundary shifts, though more mild than
demonstrated here, in dynamical phase diagrams with
corresponding symmetry-breaking transitions and that
are initiated with polarized states in generic spin sys-
tems have been very recently discussed [55]. These shifts
are argued to be linked to exciting the system to higher
energy levels. Hence we can anticipate that working at
infinite-temperature enhances the amount of shifts from
the zero-temperature phase boundary. Therefore, we
lower the temperature to zero and compute F̄ and its
diagonal contribution which is simply the ground state
contribution F̄gs in Fig. 9a at N = 60 and over a time
interval of tJ = 10. Both F̄ and F̄gs behave qualita-
tively the same, which motivates us to apply system-size
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FIG. 9. (a) OTOC time-average of edge spin for the non-
integrable Ising model with ∆/J = −2 at zero temperature
and N = 60 system size. Blue-circles and orange-diamonds
show F̄ real-time average over tJ = 10 and the ground-state
subspace contribution Fgs. (b) The system-size scaling of the
critical point determined by Fgs. The scaling parameters read
hdc ∼ N−1.0344+3.8367. All computations in (a)-(b) are done
either with t-DMRG or DMRG.

scaling on F̄gs. Fig. 9b demonstrates this system-size
scaling that reads hdc ∼ N−1.0344 + 3.8367, marking the
transition point as h∞dc = 3.8367 which is close enough
to h∞c ∼ 3.78 (Appendix E) up to data resolution in h,
δh = 0.05. We also note that the power-law exponent ex-
tracted from F̄ and the minimization of energy gap (Ap-
pendix E) are sufficiently close to each other, η ∼ −1.
Hence the dynamical phase diagram based on OTOC
matches fairly well with the topological phase transition
boundary in low temperature.

As a result, increasing the temperature significantly
shifts the dynamic phase boundary (of OTOC) in a
generic system. Whether it is possible to find a func-
tional dependence of the hdc on temperature is an in-
teresting question that can be studied systematically in
future studies.

V. CONCLUSIONS AND DISCUSSIONS

We put forward an interesting numerical observa-
tion on the XXZ model, where we showed the infinite-
temperature OTOC, namely a correlator that probes the
quantum chaos in interacting many-body systems, is also
susceptible to ground-state phase transitions. We proved
that its origin is Majorana edge modes existing in the sys-
tem with a systematic study of first the non-interacting
and then the generic models. We marked the topolog-
ical phase transition in the non-interacting limit via F̄ .
We further numerically studied the coherence times of
the edge spins in the non-integrable limit and gained in-
sight about the imprint of topological phase transitions
to dynamics in the generic systems. We found that F̄
continues to be an order parameter for the topologically
non-trivial phase even in the non-integrable limit where
the dynamic phase boundary is significantly altered by
the temperature. Our observations on finite topologi-
cal order detected via OTOC point to edge spins that

remain local for long times in generic systems. Hence
the scrambling of the edge spins with the rest of the
system is negligible when the topological order exists.
Therefore, we demonstrate how topologically-protected
degrees of freedom fight against being scrambled, either
completely preventing (integrable systems) or restricting
(generic systems) the operator spreading and thus ex-
hibiting a clear interplay between the topological order
and scrambling. We called this process topologically in-
duced pre-scrambling.

Non-integrable systems at infinite temperature are al-
most always expected to scramble down to zero where
the decay rate depends on the symmetries existing in the
Hamiltonian. However, our results indicate that this is
not always the case and the scrambling can be severely
hindered by the topological protection of information.
This introduces the new time-scale to information scram-
bling, τpresc. Our conclusions in principle can be gener-
alized to higher dimensions for topological states with
similar fraction excitations and topological degeneracy,
although the numerical verification is yet to be found.

In principle, this probe allows experimental detec-
tion of topological states without a need to cool down
the system to ultra-low temperatures whether it is the
OTOCs, Eq. 12 or two-point correlators [38] when the
control parameter is sufficiently away from the zero-
temperature phase boundary. In particular, the infinite-
temperature OTOCs are experimentally more appealing
to zero-temperature OTOCs [56], since it can be chal-
lenging to prepare a ground state as the initial state in
certain experimental platforms.

The interplay between information scrambling and
topological order, though just started to be explored, is
an intuitive one. The entanglement entropy of a ground
state has a universal topological contribution in topolog-
ically non-trivial phases [57–59]. Moreover, the connec-
tion between OTOCs and the entanglement entropy of
the time-evolved states has been discussed too [32, 60].
Hence here we make another connection which also re-
lates a dynamical quantity to a static property of the
Hamiltonian. As a result, F̄ provides a robust signature
to study the topological order that is independent of the
perturbations and boundary conditions. Furthermore we
make the role of temperature and the interval of time-
averaging clear in the dynamical detection of topological
phase boundaries via OTOCs in generic spin systems.
While defining a dynamic phase boundary in low tem-
perature is straightforward, it is not so as we increase
the temperature. Hence, it is definitely an interesting di-
rection how to incorporate finite temperature and thus
resulting finite-time pre-scrambling effect into marking
TPTs dynamically in the future.
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Appendix A: Methods Explained

To determine the degeneracy in the spectrum, we need
to characterize the uncertainty in energy, ∆E. This
means that we define an energy window around each en-
ergy level with ∆E as [Em − ∆E,Em + ∆E] where we
assume that the states remain in this window are de-
generate with the state whose associated energy is Em.
This process defines an energy resolution and in a way
coarse-grains the energy spectrum.

As discussed in Ref. [19], the energy resolution is
related to the interval of the time-evolution. Longer
time-evolution translates to finer energy resolution, re-
solving the smallest energy differences in the spectrum,
T ∆E ∼ 1, where T is the total time of the evolution.
Hence anytime we simulate a system with a finite time in-
terval, we define an energy resolution as ∆E = π

4T . In re-
turn, the parameter ∆E determines the degenerate sub-
spaces in the spectrum and hence helps us to determine
the diagonal contribution Fdiag in OTOC time-average.
Note that this reverse relation between the time interval
and energy resolution also implies that any degeneracy
lifting will be eventually captured by a long-time evolu-
tion.

We call an equation derived by the dynamical decom-
position as a framework equation. If the operator in
the eigenbasis Wαβ can be calculated analytically for
an integrable system, that would present us the analyt-
ical expression of its OTOC saturation value. However,
one can numerically derive the matrix elements Wαβ too
and use them in the framework of dynamical decompo-
sition. Any brute force calculation of the OTOC satura-
tion value requires an estimation on the time-dependent
part in the dynamical Eq. C1, e.g. which energy pairs
are equal to each other. The energy resolution ∆E is
used here to define a threshold so that we could ex-
ert the degenerate subspaces on the OTOC calculation.
Crudely speaking, this threshold determines whether the
saturation value is contributed by the found energy set{
E[κτ ], E[θα], E[φγ], E[φ′γ′]

}
. In the end, the numerical in-

corporation of a finite energy resolution into our frame-
work equation that analytically determines the satura-
tion value, also provides us the time-average of OTOC
over any time interval up to dramatic transient features
[19]. Hence we equivalently call F̄ both for long-time
saturation value and the time-average of OTOC.

When we numerically calculate the OTOC saturation
value, we do the summations in Eq. 11. This introduces
an approximation to the final OTOC saturation value in
our numerical result. We set a threshold where any term
greater than the threshold is found and summed over.
We determine our threshold based on the dimension of
the Hilbert space, ∼ 1/M2, where M is the dimension
of the Hilbert space. This generally bounds the error on
the order of ∼ 10−2 (we remind the reader that |F | ≤ 1).

We utilize ITensor platform in C++ environment and
MPS (matrix product states) for our density matrix
renormalization group (DMRG) computations [61]. To
prepare infinite temperature states in MPS format, we
average over random product states. We restrict the
bond numbers to m <∼ 100. Since the bond numbers in-
crease rapidly as the system evolves in time, this results
less accuracy for the later times. Therefore, we restrict
our time-evolution with MPS at infinite-temperature to
tJ <∼ 10. The t-DMRG of OTOC in low temperatures or
zero temperature present modest bond numbers, hence
we are able to simulate OTOC at zero temperature for
longer times.

Appendix B: Derivation of Fermionic OTOC

In order to (both analytically and numerically) solve
Kitaev chain, we double the Hilbert space of single-
particles and generate the BdG Hamiltonian. This
Hamiltonian gives us a symmetric spectrum around en-
ergy E = 0 where there are two states at E = 0 when the
chain is open due to the Majorana fermions at two ends.
Therefore, if we derive an equation for OTOC in terms
of single-particle states, via summing over only E = 0
states (Majorana zero-energy modes) due to Eq. (9), we
can calculate the OTOC in the infinite-time limit.

We work with the fermion operator in doubled space,

that is, in addition to di = ci we also have di+N = c†i ,
hence di has a dimension of 2N where N is the dimen-
sion of the free fermionic system without pairing terms.
Note that in addition to the familiar anti-commutation

relation
{
di, d

†
j

}
= δij , we have {di, dj+N} = δij and{

d†i , d
†
j+N

}
= δij . Hence, a Majorana operator can be

defined as a2i−1 = ci+c†i =
(
di + d†i + di+N + d†i+N

)
/2.

With this algebra in mind, we can derive

F2i−1,2i−1(t) =
1

2N
Tr (a2i−1(t)a2i−1a2i−1(t)a2i−1) .(B1)

After the substitution of di operators,

F2i−1,2i−1(t) =
1

2N
1

24
Tr

(
di(t)a2i−1di(t)a2i−1 + d†i (t)a2i−1d

†
i (t)a2i−1 + di+N (t)a2i−1di+N (t)a2i−1

+ d†i+N (t)a2i−1d
†
i+N (t)a2i−1 + 2

(
di(t)a2i−1d

†
i (t)a2i−1 + di(t)a2i−1di+N (t)a2i−1 + di(t)a2i−1d

†
i+N (t)a2i−1

)
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+ 2
(
d†i (t)a2i−1di+N (t)a2i−1 + d†i (t)a2i−1d

†
i+N (t)a2i−1 + d†i+N (t)a2i−1di+N (t)a2i−1

))
. (B2)

Since the dimension of the Hilbert space is 2N+1, the
following identities hold:

Tr
(
did
†
i + d†idi

)
= 2N+1 → Tr

(
did
†
i

)
= 2N .

Tr
(
di+Nd

†
i+N

)
= Tr (didi+N ) (B3)

= Tr
(
d†id
†
i+N

)
= 2N .

Tr
(
did
†
i

(
d†idi + did

†
i

))
= 2N → Tr

(
did
†
idid

†
i

)
= 2N .

Tr
(
di+Nd

†
i+Ndi+Nd

†
i+N

)
= Tr (didi+Ndidi+N )

= Tr
(
d†id
†
i+Nd

†
id
†
i+N

)
= 2N .

Eq. (B2) takes a form of

F2i−1,2i−1(t) = (B4)

1

2N
1

24

2N∑
k,l

[
(Gik(t)Gil(t) +Gi+N,k(t)Gi+N,l(t)

+ 2Gik(t)Gi+N,l(t))Tr(dkγidlγi) + h.c.

]

+
2

2N
1

24

2N∑
k,l

[
(Gik(t)G∗il(t) +Gik(t)G∗i+N,l(t))

× Tr(dka2i−1d
†
l a2i−1)

+
(
G∗ik(t)Gi+N,l(t) +G∗i+N,k(t)Gi+N,l(t)

)
× Tr(d†ka2i−1dla2i−1)

]
,

in terms of the matrix elements of the single-particle
propagators G(t) = exp (−iHBdGt).

The term Tr(dka2i−1dla2i−1) is non-zero only when
k = l = i or k = l = i + N where in
both cases Tr(dka2i−1dla2i−1) = 2N+2. The term

Tr(dka2i−1d
†
l a2i−1), on the other hand, vanishes for

k = l = i and k = l = i + N , however survives
for k = l 6= i and k = l 6= i + N . In this case,

Tr(dka2i−1d
†
l a2i−1) = −2N+2. Note that none of these

terms survives if k = i, l = i+N and vice versa. There-
fore we end up with

F2i−1,2i−1(t) =
1

22

[
(Gii(t))

2
+ 2 (Gi,i+N (t))

2
+ (Gi+N,i+N (t))

2
+ 2 (Gii(t)Gi+N,i(t) +Gi,i+N (t)Gi+N,i+N (t)) + c.c

]
− 1

2

2N∑
k 6=i,k 6=i+N

(
|Gik(t)|2 + |Gi+N,k(t)|2 +Gik(t)G∗i+N,k(t) +G∗ik(t)Gi+N,k(t)

)
. (B5)

The unitarity condition reads
∑2N
k |Gik|2 = 1, then

2N∑
k 6=i,k 6=i+N

|Gik(t)|2 = 1− |Gii(t)|2 − |Gi,i+N (t)|2.(B6)

Furthermore, we utilize the relation
∑2N
k=1GikG

∗
i+N,k =

0 which leads to

2N∑
k 6=i,k 6=i+N

Gik(t)G∗i+N,k(t) = (B7)

−Gii(t)G∗i+N,i(t) − Gi,i+N (t)G∗i+N,i+N (t).

When these relations are utilized, one can write the final
result as

F2i−1,2i−1(t) = (Re (Gii(t)) + Re (Gi,i+N (t)))
2

(B8)

+ (Re (Gi,i+N (t)) + Re (Gi+N,i+N (t)))
2 − 1,

for OTOC for a Majorana fermion of type a2i−1. Given
Gij(t) =

∑
α exp (−iEαt) 〈ψα,j |ψα,i〉 where ψα,i means

the ith element of the eigenstate α of HBdG, this result
should eventually lead to the result stated in the main
text,

F 2i−1,2i−1(t) = (B9)[
2N∑
α=1

(
|ψiα|2 + ψiαψ

∗
i+N,α

)
cos (εαt)

]2

+

[
2N∑
α=1

(
|ψi+N,α|2 + ψi+N,αψ

∗
i,α

)
cos (εαt)

]2
− 1.

Appendix C: Detailed Review on Dynamical
Decomposition Method and its Application to

Two-time Correlators

The idea behind the dynamical decomposition method
is to decompose the saturation value of a dynamical
quantity over a time interval in mutually exclusive parts
that might reflect different physics by either being the
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leading order term or the corrections in the dynamical
quantity via some assumptions [19]. For example, in Ref.
[19] the assumptions are stated accordingly so that the
decomposition reveals the ground state physics being the
leading order term to F̄ . Therefore, we could gain insight
about the relation between scrambling and symmetry-
breaking phase transitions via determining how and when
the OTOC could be used to dynamically detect the quan-
tum phases. In this sense, the method helps us to see
what physics is at play in a complicated dynamical cor-
relation function, e.g. OTOC.

A correlator can be reduced to a combination of two
basic constituents: eigenstate expectation values (EEV)
that is the operator in the eigenbasis and the eigenstate
occupation numbers (EON) that is the projection of ini-
tial state on the spectrum [52, 62, 63]. Here we will
review the dynamical decomposition method by writing
the degenerate structure of the spectrum explicitly. The
equations in this form are used in numerical computa-
tions. We write the dynamic equation for the degenerate

spectrum as,

F (t) =
∑

θθ′φφ′κ

∑
αβγγ′τ

c∗[θα]c[θ′β] (C1)

× exp
[
−i(E[κτ ] − E[θα] + E[φγ] − E[φ′γ′])t

]
×W †[θα][φγ]V

†
[φγ][φ′γ′]W[φ′γ′][κτ ]V[κτ ][θ′β].

The initial state is |ψ(0)〉 =
∑
θα c[θα]

∣∣ψ[θα]

〉
, with

eigenstates
∣∣ψ[θα]

〉
where the symbols represent degen-

erate subspace θ and the state α within, respectively.
Both the long-time saturation value and time-average
of Eq. C1 could be obtained under the constraint
E[τκ] − E[θα] + E[φγ] − E[φ′γ′] = 0. If we focus on
an infinite-temperature initial state, [θα] = [θ′β] be-
cause I = |ψ0〉 〈ψ0| =

∑
θα |c[θα]|2

∣∣ψ[θα]

〉 〈
ψ[θα]

∣∣ and

|c[θα]|2 = 1
M . In order to simplify the expression fur-

ther, we assume hermitian operators and W = V . Then
F̄ is,

F̄ =
∑
αγγ′τ

 2

M

∑
θφ

W[θα][φγ]W[φγ][φγ′]W[φγ′][θτ ]W[θτ ][θα] −
1

M

∑
θ

W[θα][θγ]W[θγ][θγ′]W[θγ′][θτ ]W[θτ ][θα]


+
∑
αγγ′τ

∑
θ 6=φ6=φ′ 6=κ

1

M
W[θα][φγ]W[φγ][φ′γ′]W[φ′γ′][κτ ]W[κτ ][θα], (C2)

in its most general form. Alongside the assumption on
the initial state, (i) infinite-temperature OTOC, we ap-
ply (ii) the ansatz on the matrix elements of the operator
as |W[θα][θ′β]|2 � 1 where θ 6= θ′ for the entire spectrum.
This operator ansatz is more strict than the one used in
Ref. [19] whose operator ansatz exerted an assumption
only on the eigenstate where the phase transition is ex-
pected to happen. So, the relaxation in the initial state
condition comes at a cost of making the operator con-
dition tighter, reflecting an interesting trade-off between
our two conditions.

Under the assumptions (i)-(ii), the OTOC satura-
tion dynamically decomposes into a diagonal contribu-
tion Fdiag and corrections (off-diagonal contribution).
In the topologically non-trivial phase, the fluctuations
are suppressed between the matrix elements in all sub-
spaces, implying |W[θα][θβ]| ∼ O (1). Hence the operator
ansatz in the topologically non-trivial phase takes the
form |W[θγ][θγ′]|2 � |W[θα][θ′β]|2, as stated in the main
text. Therefore, we derive the diagonal contribution in
this phase as,

Fdiag = (C3)
1
M

∑
θ

∑
αγγ′τ W[θα][θγ]W[θγ][θγ′]W[θγ′][θτ ]W[θτ ][θα].

This equation is the Eq. (12) in the main text, writ-
ten in the notation that takes the degeneracy explic-

itly into account. The operator ansatz in the topolog-
ically non-trivial phase simultaneously guarantees that
the OTOC Eq. (C2) is dominated by the diagonal con-
tribution Eq. (C3), leading to our conjecture.

Similar to a disordered phase in a symmetry-breaking
phase transition, in the topologically trivial phase the
fluctuations are expected to exist between the matrix el-
ements in any subspace, leading to the absence of order
|W[θα][θβ]| ∼ 0, and hence Fdiag ∼ 0. Then the off-
diagonal correction term dominates the OTOC, while
the operator ansatz |W[θα][θ′β]|2 � 1 still guarantees
bounded corrections. The importance of bounded cor-
rections can be seen in generic models, giving rise to
bounded OTOC signature in topologically trivial phases.
To conclude, since (i) Eq. (C3) captures the diagonal
contribution throughout the spectrum and if (ii) the cor-
rections remain bounded due to the operator ansatz,
the topological order can be dynamically detectable via
OTOC time-average of an edge operator at infinite-
temperature.

As already pointed out by earlier studies [35, 36, 38]
in different forms, one can write the saturation value of
a two-time correlator of edge Majorana fermions as

C∞ = Tr (W (t)W )

=
1

M

∑
θ

∑
αγ

W[θα][θγ]W[θγ][θα], (C4)
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at infinite temperature where W = σz1 = γ1. Eq. (C4)
shows that the saturation value of a two-time correlator
will always be governed by the diagonal elements in the
operator W . Then W[θα][θγ] =

〈
ψ[θα]

∣∣W ∣∣ψ[θγ]

〉
can be

straightforwardly calculated in the non-interacting limit.
Here,

∣∣ψ[θγ]

〉
and

∣∣ψ[θα]

〉
are even and odd parity states

in a doubly-degenerate subspace that is dictated by the
Majorana zero-energy modes. We note that

∣∣ψ[θγ]

〉
=

d
∣∣ψ[θα]

〉
= f(h)

(
γ1+iγ2√

2

) ∣∣ψ[θα]

〉
, where f(h) is a func-

tion of magnetic field h and f(h = 0) = 1/
√

2, however
decreases as h→ 1. The quantity that we need to calcu-
late becomes

〈
ψ[θα]

∣∣Wf(h) (γ1 + iγ2)
∣∣ψ[θα]

〉
/
√

2. The
effect appears when we use edge spins, hence

W = σz1 =
(
c1 + c†1

)
= γ1 (C5)

W = σzN =
∏
j<N

(
1− 2c†jcj

)(
cN + c†N

)
= P

(
cN − c†N

)
= iPγ2, (C6)

where P =
∏N
j

(
1− 2c†jcj

)
is the parity operator. Eqs.

C5-C6 show the operatorW in Ising, Dirac and Majorana
bases, respectively. If we work with the operator Eq. C5,〈

ψ[θ,α]

∣∣ f(h)γ1

(
γ1 + iγ2√

2

) ∣∣ψ[θ,α]

〉
=

2f(h)√
2
, (C7)

where we utilized (γi)
2

= I and −iγ1γ2
∣∣ψ[θ,α]

〉
=

−
∣∣ψ[θ,α]

〉
since

∣∣ψ[θ,α]

〉
is an odd-parity state. Similarly

for Eq. C6,

if(h)
〈
ψ[θ,α]

∣∣Pγ2(γ1 + iγ2√
2

) ∣∣ψ[θ,α]

〉
=

2f(h)√
2
, (C8)

where we additionally use P
∣∣ψ[θ,α]

〉
= −

∣∣ψ[θ,α]

〉
. Given

each degenerate subspace contributes equally, we write
C∞ = 2f(h)2. A simple functional form of Eq. C4 is
calculated as C∞ = 1 − h2 for h < J and C∞ = 0
for h > J in Ref. [38]. We substitute this analytical

result into Eq. (C4) and obtain W[θ,γ][θ,α] =
√

1− h2
for h > J in the topologically non-trivial phase. Hence
we observe that the diagonal contribution of OTOC is
a direct dynamical probe of topological order, giving a

non-zero Fmjex =
(
1− h2

)2
in the non-trivial phase.

To demonstrate how F̄diag of Ising model can match
with Eq. (13) of non-interacting fermionic system whose
calculation is purely based on Majorana zero-energy
modes, we plot Fig. C1. Blue right-pointing triangles
and orange left-pointing triangles show F̄mjdiag numerically
computed via Majorana zero-energy modes from BdG
Hamiltonian for system sizes of N = 14 and N = 100,
respectively. Note that F̄ isdiag of the Ising model (purple-

squares) computed atN = 14 for a time interval of tJ ∼ 8

matches well with Fmjdiag at the same size, implying that

F isdiag could be used to detect the presence/absence of
Majorana zero-energy modes. The difference between
N = 14 and N = 100 sizes of F̄mjdiag shows how finite
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0

FIG. C1. Diagonal contribution in the Ising model and non-
interacting fermionic model after dynamical decomposition
is applied. Purple-circles show the diagonal contribution
Eq. (12) at N = 14 in the Ising model (for a time inter-
val tJ = π

4
10 ∼ 7.85), while the blue right-pointing trian-

gles (N = 14) and red left-pointing triangles (N = 100)
show Eq. (12) for HBdG in non-interacting fermion system
at infinite-time limit. The exact form is derived from the
two-time correlators of Majorana fermions (solid-orange).
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FIG. D1. Coherence time computation of the integrable Ising
model deep in the non-trivial phase h/J = 0.3. The coherence
times exhibit exponential increase with the system size which
implies that pre-scrambling lasts indefinitely.

size effects show up near the transition point due to the
divergent length scale associated with the quantum crit-
ical point. Additionally we compare F̄mjdiag at N = 100

with the analytically derived result F̄mjex that is denoted
by solid-orange line in Fig. C1 and observe that they
match perfectly.

Appendix D: Further results on the Ising Model

Fig. D1 shows that the pre-scrambling time-scale scales
with the system size in the Ising model. Hence, in the
thermodynamic limit, pre-scrambling continues to sur-
vive, giving a finite OTOC saturation (time-average)
F̄ 6= 0 at the infinite-time limit.

Fig. D2 shows the system-size scaling of fermionic
OTOC time-average at the phase transition point that
is also determined by OTOC itself. The scaling parame-
ters of the phase transition point was already given in



15

40 100 200
10

-3

10
-2

10
-1

FIG. D2. The scaling of OTOC, F with the system size N
at the transition point determined by the second derivative
of the OTOC (see main text). The scaling parameters are:
F∞ ∼ N−1.5452 − 1 with R2 = 0.9994.

the main text. Here we provide the scaling parame-
ters of the OTOC amplitude with respect to system size:
F∞ ∼ N−1.5452 − 1, meaning the OTOC in thermody-
namic limit should saturate at F∞ = −1 in the transition
point.

Finally we explicitly demonstrate the operator ansatz
both satisfied and violated via the Ising model. For this,
we plot the matrix elements |Vβα|2 for various β in the
spectrum at different h values in Fig. D3. Note that |ψβ〉
and |ψα〉 in |Vβα|2 denote states sorted according to their
energies. This notation should not be confused with [θα]
notation in App. C where θ enumerates the degenerate
manifolds.

The first two subfigures (a)-(b) are for an edge spin
operator σz1 , whereas the rest (c)-(d) are for a bulk spin
operator. We sample the ground state (a)-(c) and a state
in the middle of the spectrum (b)-(d) in these subfigures.
Deep in the topologically non-trivial phase, h = 0.1, we
see that the operator ansatz is satisfied |V[θγ][θγ′]|2 �
|V[θγ][θ′γ′]|2 for an edge spin (blue-circles). For a bulk
spin, the operator ansatz is valid only in the ground state
subspace, hence it is actually |V[1γ][1γ′]|2 � |V[1γ][θ′γ′]|2,
the condition put forward by Ref. [19] for the dynami-
cal detection of symmetry-breaking phase transitions via
OTOCs. This is how the edge spins preserve the topolog-
ical order in the OTOC throughout the spectrum, while
the bulk spins can preserve only the symmetry-breaking
order. Closer to the transition point, e.g. h = 0.8, the
order |V[θγ][θγ′]|2, expectantly, decreases while the off-

diagonal matrix elements |V[θγ][θ′γ′]|2 grow, which is a
signature of integrability at this special non-interacting
limit. Hence the operator ansatz still in the topolog-
ically non-trivial phase breaks down, hence explaining
how the OTOC saturation starts to be dominated by
off-diagonal contributions (see Fig. 6b in the main text
where F̄ 6= F̄diag in the non-trivial phase). Note that
this breakdown of the operator ansatz in the ordered
phase does not happen for the bulk spin that is in its
ground state, Fig. D3c. The red-squares at h = 0.8 ex-
hibit |V[1γ][1γ′]|2 � |V[1γ][θ′γ′]|2, though clearly getting
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FIG. D3. The operator ansatz tested on the Ising model.
Matrix elements |Vβα|2 are plotted for (a) β = 1 (b) β = 2000
with respect to α for an edge operator σz1 (open boundary);
same β (c)-(d) for a bulk operator (periodic boundary) at a
size N = 12. Blue-circles, red-squares and orange-diamonds
stand for field strength h/J = 0.1, h/J = 0.8 and h/J = 1.5,
respectively for all subfigures.

weaker as we approach the transition point. The opera-
tor ansatz in the topologically trivial phase, e.g. h = 1.5,
|V[θγ][θ′γ′]|2 � 1, continues to fail (compare orange-
diamonds with blue-circles in Figs. D3a-D3b). Even-
tually this causes a non-vanishing OTOC time-average
F̄ 6= 0 in the trivial phase, even though this time-average
has nothing to do with topological order (Sec. III B).

Appendix E: Further results on the non-integrable
Ising models and XXZ model

The OTOC saturation of bulk spins in Figs. E1 behaves
drastically different than of an edge spin: as we increase
the system size, both F̄ and Fdiag approach to zero for
all h, and hence gets even farther away from the transi-
tion point. Figs. E1a and E1b show the OTOC of bulk
spins in the models with ∆/J = −0.1 and ∆/J = −0.5,
respectively.

The coherence times of the edge spins at ∆/J = −2
deep in the non-trivial phase (Fig. E2a) exhibit expo-
nential increase with the system size in Fig. E2b up to
an apparent odd-even effect. All different scaling samples
collapse at around ξ ∼ 1 for the exponent of the exponen-
tial scaling. While it is highly expected that this increase
should slow down with bigger system sizes, based on our
available data we cannot state that this behaviour is an
example of pre-scrambling, instead it looks like a finite-
size effect up until N = 15 system size. Hence it is not
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(a) (b)

FIG. E1. Non-integrable transverse-field Ising model. OTOC
time-average of bulk spins in (a) small integrability break-
ing term ∆/J = 0.1 in linear and logarithmic (inset) scales.
Red pentagrams, purple diamonds and light-blue crosses show
Fdiag whereas the blue circles, orange squares and green tri-
angles show F for N = 12, N = 13 and N = 14, respectively.
(b) The case of ∆/J = −0.5 integrability breaking term.
F̄ and F̄diag for N = 12 (blue-circles and red-pentagrams),
N = 13 (orange-squares and purple-diamonds) and N = 14
(green-triangles and light-blue crosses). All curves have open
boundary conditions and a time interval of tJ ∼ 800.
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FIG. E2. (a) Coherence times of the edge spins based on
OTOC at ∆/J = −2, deep in the topologically non-trivial
phase h/J = 0.3 and (b) the system-size scaling of the coher-
ence times in (a). Note that different curves correspond to
different threshold values η where we look for the times that
provide F (t) = η. ξ is the exponent in the exponential scaling
and all of them are around ξ ∼ 1.

always easy to extract a curve collapse to demonstrate
pre-scrambling in systems with small sizes.

Fig. E3 demonstrates the dependence of a dynamic
phase diagram on the interval of time averaging. The
data is for the weakly-interacting generic model. The re-
sult with blue-circles that is computed in a short time
interval of tJ = 10 converges to the OTOC of non-
interacting limit, while increasing the averaging time
from tJ = 10 to later times causes the phase diagram
to change significantly. Hence in the short-time limit,
the coherence times of the edge spins are significantly
contributed not only by the diagonal elements, but also
the off-diagonal elements of the edge operator. This
additional contribution, that is specific to OTOC, in
fact survives until very long times, e.g. t >∼ 2 × 103

(Fig. 7b in main text). However, farther away from the
non-interacting limit the off-diagonal contributions van-
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FIG. E3. Demonstration of the time-dependence of the phase
diagram for the model with ∆/J = 0.1 at N = 14 system
size. Blue circles, orange diamonds, yellow squares, purple
triangles, green pluses, red pentagrams and black hexagrams
stand for tJ = 10, 20, 40, 60, 80, 100, 800, respectively.
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FIG. E4. The scaling parameters for the ground state phase
transition of the model with ∆/J = −2, calculated via
DMRG. (a) The system-size scaling of the critical point,
giving h∞c = 3.7746 in the thermodynamic limit. (b) The
system-size scaling of the energy gap, giving an exponent of
∼ −1 and showing that the gap closes in the thermodynamic
limit.

ish faster, whereas the diagonal contribution remains for
longer times.

We provide DMRG results to mark the ground state
phase transition point in the model with ∆/J = −2
via minimizing the energy gap at the transition point.
The scaling parameters for the transition point read
hc ∼ N−1.2467 + 3.7746 where the transition point in
the thermodynamic limit is found h∞c = 3.7746 with
R2 = 0.9997. The scaling parameters for the energy gap
read ∆E ∼ N−0.9775 with R2 = 0.9999. So the system-
size scaling exponent for the energy gap is close to −1.
See Figs. E4 for the scaling figures.

Appendix F: Further results on the XXZ model

Fig. F1 shows long-time dynamics of OTOC in the gap-
less phase of the XXZ model and how the time-average
of this signal scales with the system size. We see the scal-
ing has a form of Re(F̄ ) ∝ N−ξ where ξ ∼ 0.9. Hence in
the thermodynamic limit we expect F̄ → 0 in the gapless
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FIG. F1. (a) The saturation value for long times and different
system sizes (N = 8 to N = 14) are plotted for the gapless
phase of the XXZ model. (b) The system size scaling of the
saturation value where the error bars show the extend of the
oscillations around the average of the signals in (a). The
scaling has a form of Re(F̄ ) ∝ N−ξ where ξ ∼ 0.9.
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FIG. F2. The coherence times of pre-scrambling in the gapped
phase of the XXZ model, Jz/J = 5 for different system sizes.
The exponential increase in the pre-scrambling time intervals
with the system size suggests that the scrambling seen is a
finite-size effect.

phase.
Fig. F2 shows pre-scrambling time scales exponentially

increase with the system size, a similar figure to Fig. 7d
in the main text, however much closer to the transition
boundary. The exponential increase in system size im-
plies that the scrambling is a finite-size effect, hence in
thermodynamic limit, pre-scrambling should persist, giv-
ing F̄ 6= 0 in the topologically non-trivial gapped phase.
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