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Abstract

We consider the communication complexity of finding
the longest increasing subsequence (LIS) of a string
shared between two parties. We prove tight bounds for
the space complexity of randomized one-pass streaming
algorithms for this problem. Our bounds are parame-
terized in terms of the LIS of the inputs. This resolves
an open question in [19]. We also give the first bounds
for approximating the LIS and its length.

Next, we consider the communication complex-
ity of finding the longest common subsequece (LCS) of
two strings held by different parties, as well as the prob-
lem of approximating its length. We improve the exist-
ing lower bounds for these problems, even in the most
difficult case when both parties have a permutation of
N symbols. Our results yield tight space bounds for
multipass deterministic streaming algorithms. For ran-
domized mutlipass algorithms, our bounds are tight up
to a logarithmic factor.

1 Introduction

Finding the longest increasing subsequence (LIS) and
the longest common subsequence (LCS) of integer se-
quences are well-studied problems in theoretical com-
puter science with applications in bioinformatics [3,
9, 27], clustering [6], physics [8], and string-matching
[24]. For details on these applications, see [19] for an
overview. The LIS/LCS problems and their many vari-
ants have also been extensively studied by the mathe-
matics community [1, 4, 5, 7, 8, 14, 15, 25].

To formally define the problems, consider a se-
quence S = x1, . . . , xn of elements of a totally-ordered
finite alphabet Σ. A subsequence of S is a sequence
xi1 , . . . , xik

with i1 < i2 < · · · < ik. We say that the
subsequence is increasing1 if xi1 ≤ xi2 ≤ · · · ≤ xik

.
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1Technically the sequence is non-decreasing, but we adopt the

definitions in [19] for consistency.

The longest increasing subsequence problem LIS is to
find an increasing subsequence of maximum length,
denoted LIS(S). The problem LIS-length is to out-
put the length of such a subequence. The problem
LIS-ε-apx for ε < 1 is to output an increasing subse-
quence of size at least (1 − ε)|LIS(S)|, and the prob-
lem LIS-length-ε-apx is to output a number x for which
(1− ε)|LIS(S)| ≤ x ≤ |LIS(S)|.

If S and T are two sequences, the longest common
subsequence problem LCS is to find a subsequence of
both S and T of maximum size, denoted LCS(S, T ).
LCS-length is the problem of outputting the length
of such a subsequence. LCS-k-decision is the decision
problem of determining if LCS(S, T ) has length at least
k. LCS-ρ-approx for ρ > 1 is the promise problem of
determining if |LCS(S, T )| ≥ ρ2 or |LCS(S, T )| ≤ ρ.
Note that this becomes trivial for ρ2 > n.

For a survey of algorithmic results for some of
these problems, see [11]. There is an easy dynamic
programming algorithm which solves LIS and LCS in
O(n2) time, and an early, very efficient algorithm for
LIS due to Fredman [10] running in time O(n log n).

Despite the apparent efficiency of these algorithms,
on large data sets these algorithms may no longer
be practical. Allowing the algorithm linear space is
infeasible if the input size is a few terabytes. In internet
applications, routers with only limited memory need to
analyze high-speed data passing through them. In these
scenarios, there is not enough space to store the input.
These complications have motivated a new paradigm for
studying algorithmic efficiency - the data-stream model
[2, 13, 22]. In this model, algorithms are only given
a few passes over the input data, which is arranged
in adversarial order, and must use limited space to
compute statistics of interest. As noted in [19], the
LIS and LCS are fundamentally different from many
previous problems studied in the streaming model since
they depend on the order in which data arrives.

Liben-Nowell, Vee, and Zhu [19] initiate the study of
the efficiency of streaming algorithms for the problems
above. Let k be the length of the LIS of a string
given in the data-stream model. The authors give
a 1-pass O(k log |Σ|)-space algorithm for LIS-length,
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and an dlog(1 + 1/ε)e-pass algorithm for LIS using
O(k1+ε log |Σ|) space for any ε > 0. For ε = 1 this
gives a 1-pass O(k2 log |Σ|) space algorithm for LIS.
They also prove an Ω(k) space lower bound for these
problems for any algorithm making a constant number
of passes. The main question left open here is the
quadratic gap for 1-pass algorithms for solving LIS.
Note that 1-pass algorithms are particularly important
in internet applications since once data has passed it
cannot return. The authors also leave open and suggest
the study of LIS-ε-apx and LIS-length-ε-apx.

For LCS, the same authors show that for general
alphabets Σ, even for randomized multipass algorithms,
even for constant-factor approximations, and even for
LCS-length, there is an Ω(N) lower bound on the space
required. Next, the authors consider the possibly more
promising case when both strings are permutations of
[N ] = {1, 2, . . . , N}. For LCS-k-decision, the authors
show an Ω(k) lower bound for randomized multipass
algorithms. We note that for two random permutations
of [N ], the expected length of the LCS is Θ(

√
N) [5],

and the distribution is tightly concentrated about its
expectation. Thus, since the lower bound of [19] is
only Ω(k), it may be the case that for average-case
permutations of [N ], or at least whenever the LCS has
length O(

√
N), there is an O(

√
N)-space upper bound.

Our Contributions: In this paper, we answer the
questions raised above. For LIS we improve the pre-
vious bounds [19] of Ω(k) and O(k2 log |Σ|) to a tight
Θ(k2 log |Σ|/k) for 1-pass randomized streaming algo-
rithms, provided that |Σ| = Ω(k2+δ) for any constant
δ > 0. Our techniques also work for other choices of
Σ. When k ≤ |Σ| = O(k2), our lower bound becomes
Ω(|Σ|), and for smaller |Σ| becomes Θ(|Σ|2 log k/|Σ|).

For LIS-length, we show a tight bound of
Θ(k log |Σ|/k) for deterministic constant-pass algo-
rithms and 1-pass randomized algorithms when |Σ| =
Ω(k). For constant-pass randomized algorithms, we
show a lower bound of Ω(k). We note that the bounds of
[19] for LIS-length only hold assuming that |Σ| = Ω(k2),
whereas all of our bounds hold for any |Σ| = Ω(k).
Finally, when |Σ| = O(k), we show tight bounds of
Θ(|Σ| log k/|Σ|) for LIS-length.

We also initiate the study of LIS-length-ε-apx
and LIS-ε-apx. If k denotes the output of LIS-
length, in the two-party setting we show tight bounds
of Θ((1/ε) log(ε|Σ|)) and Θ((k/ε) log(ε|Σ|)) for multi-
round deterministic and 1-round randomized protocols.

Next, for LCS-k-decision, and thus for LCS-length
and LCS, even when both strings are permutations of
[N ], we show that for every 3 ≤ k ≤ N/2, the ran-
domized multi-round communication complexity of this
problem is Ω(N). This bounds the space for constant

pass randomized streaming algorithms, improving the
previous bound of Ω(k) in [19]. Our restriction on k is
somewhat necessary: for k = 2, the problem reduces to
a randomized equality test, which has low communica-
tion complexity [18]. Also, for large k, we give a 1-pass
randomized upper bound of O((N − k) log N), which is
useful for very similar strings. We note that for deter-
ministic streaming algorithms we can improve our lower
bound to Ω(N log N).

For LCS-ρ-approx we show that for deterministic
constant-pass streaming algorithms, even when both
strings are permutations of [N ], the space is Ω(N).
This improves the Ω(N/ρ2) bound of [19], although ours
only holds for deterministic algorithms. We also give an
O(log N + N

ρ log N
ρ ) 1-pass randomized algorithm.

Related Work: Independently of our work, and
to appear in the same conference, Gopalan et al [12]
obtained the same lower bound for the randomized
multi-round complexity of LIS-length (our Section 4.3)
when the alphabet size |Σ| = Ω(k), thus also improving
a bound of [19], which held only for |Σ| = Ω(k2).
Moreover, they have the same two-party upper bound
for computing LIS-length-ε-apx (our Section 9.1), but
were cleverly able to extend it to a deterministic 1-pass
streaming algorithm with O(

√
N/ε log |Σ|) space. They

also prove a lower bound of Ω(
√

N) for a natural class
of algorithms for this problem. The best unconditional
lower bound still appears to be our Ω(1

ε log(ε|Σ|)).
Although similar, the focus of their paper is differ-

ent from ours. We look at the complexity of outputting
the LIS (Section 3), rather than just its length, as well as
improving the bounds in [19] for many problems related
to LCS (Section 5). Their focus is on approximating
the distance to monotonicity (our n − LIS(a, b)). Also,
we want instance-dependent bounds, e.g., bounds that
depend on the size of the LIS, or the similarity of strings
for the LCS (e.g., Section 5.2).

Techniques: We consider the following two-party
protocols. For LIS and LIS-length, Alice is given a ∈ Σn,
Bob is given b ∈ Σn, and the goal is to output LIS(a ◦ b)
or LIS-length(a ◦ b). For LCS and related problems,
our reductions work by giving Alice a ∈ Σn, Bob
b ∈ Σn, and the goal is to output LCS(a, b). As in
[19], we especially focus on proving lower bounds when
a, b are permutations of [N ]. We devise various novel
reductions from known problems of high communication
complexity, and use tools such as the round-elimination
lemma [21], and the rank method [18] (see Section 2).

Roadmap: In Section 2, we give background. In
Section 3, we lower bound the space of 1-pass streaming
algorithms computing LIS. Our improved upper bound
for LIS is in Appendix 6. In Section 4, we lower bound
the two-party communication of LIS-length assuming
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|Σ| = Ω(k), as well as give a better streaming algorithm
for it. The case when |Σ| = O(k) is handled in Appendix
7, a randomized multi-round upper bound in the two-
party setting for LIS-length is in Appendix 8, and the
extension of our results to the approximation versions
of LIS and LIS-length are in Appendix 9. In Section 5
we give bounds for LCS, LCS-length, LCS-k-decision, and
LCS-ρ-approx.

2 Preliminaries

We review some definitions and facts from communi-
cation complexity. Due to space constraints, we refer
the reader to [18] for more details. Consider a func-
tion f : X × Y → {0, 1} whose first input is held by a
party Alice, and second input by a party Bob. We use
D(f) to denote the deterministic multi-round commu-
nication complexity of f , that is, the maximum num-
ber of bits transmitted between Alice and Bob, over all
pairs of possible inputs, in the best deterministic proto-
col for computing f . Similarly, we define Rδ(f) to be the
randomized multi-round comunication complexity with
2-sided error at most δ, and R1−way

δ (f) to be the ran-
domized communication complexity with 2-sided error
at most δ in which only a single message is sent from Al-
ice to Bob. So, Rδ(f) ≤ D(f) and Rδ(f) ≤ R1−way

δ (f).
The communication matrix Mf associated with

f is the |X | × |Y| matrix with (x, y)th entry equal
to f(x, y). For our deterministic multi-round lower
bounds, we use the rank method which states that
D(f) ≥ log(rank(Mf )). For bounding R1−way

δ (f), we
need the following definition.

Definition 2.1. ([21]) Let f : X × Y → {0, 1} be a
function, and let f (k) be the following variation of f :
Alice has k inputs x1, . . . , xk and Bob has inputs y, i,
and x1, . . . , xi−1 (note the overlap of Alice and Bob
inputs). On these inputs f (k) evaluates to f(xi, y).

To bound R1−way
δ (f), one idea is to express f in the

form g(k) for some g and some k. If Alice does not
send many bits in the first round, her message is likely
not to reveal anything useful about xi for the i ∈ [k]
given to Bob. Thus, we can eliminate the first round
of the protocol. We are then left with no rounds,
and are likely to have a contradiction since non-trivial
functions require interaction. The following is the
round-elimination lemma which formalizes this.

Theorem 2.1. ([21]) If there is a one-round protocol
with error probability δ for f (k) in which Alice sends a
message of ≤ a bits to Bob, then there is a zero-round
protocol for f with error probability δ + O(

√
a/k).

Sometimes we will apply this theorem directly, and
other times we will reduce from the indexing function

IND : {0, 1}n × [n] → {0, 1}, where IND(x, i) = xi.
The following is well-known (see [17]).

Lemma 2.1. R1−way
1/3 (IND) = Ω(n).

To bound Rδ(f), we use the disjointness function DIS :
{0, 1}n × {0, 1}n → {0, 1}, where DIS(x, y) = 0 if and
only if there is some i ∈ [n] for which xi = yi = 1. The
following is a celebrated theorem of Kalyanasundaram
and Schnitger, [16] as well as of Razborov [23]:

Theorem 2.2. R1/3(DIS) = Ω(n).

Suppose a is Alice’s input and b is Bob’s input, and we
have a function f(a, b). We can derive lower bounds for
computing f(a, b) in the streaming model by considering
the stream a ◦ b. Any r-pass streaming algorithm A
yields a (2r−1)-round communication protocol for f in
the following way. Alice computes A(a) and sends the
state of the algorithm to Bob, who compute A(a ◦ b).
This corresponds to the first pass of A on the stream a◦b.
Bob sends the state of A back to Alice, who continues
the execution of A (the second pass) on the stream
a ◦ b. In the last pass Bob outputs the answer. The
communication is 2r−1 times the space of the streaming
algorithm. Thus, for constant r, the space complexity
must be at least the communication complexity of the
function f , up to a constant factor.

3 LIS

We consider lower bounds for LIS. Alice is given a ∈ Σn,
Bob b ∈ Σn, and their goal is to compute LIS(a ◦ b).
Assume |Σ| = Ω(k2+δ). Identify Σ with the first |Σ|
non-negative integers. Put M = Θ(k1+δ), and assume
M/k is a power of 2. We construct a as follows:

1. For 0 < i < k, choose a sequence ai =
(ai,1, . . . , ai,i) of i integers as follows: for 1 ≤ j ≤ i,
ai,j is an integer subject to

ai,j > 2M(i− 1) +
(j − 1)M

k
, and

ai,j ≤ 2M(i− 1) +
(j − 1)M

k
+

M

k
.

2. Set a = ak−1 ◦ ak−2 ◦ ak−3 ◦ · · · ◦ a1.

We construct b as follows:

1. Choose an i, 0 < i < k.

2. b is the concatenation of 0i−1 with
2Mi− k + i + 1, 2Mi− k + i + 2, . . . , 2Mi.

Lemma 3.1. LIS(a ◦ b) is ai concatenated with 2Mi −
k + i + 1, 2Mi− k + i + 2, . . . , 2Mi.
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Proof. Let s = ai ◦ 2Mi − k + i + 1, 2Mi − k + i +
2, . . . , 2Mi. We show s is increasing and of length k.
For this, it suffices to show that the last element of ai

is at most 2Mi− k + i+ 1. But the last element of ai is
at most 2M(i − 1) + M . Moreover, 2Mi − k + i + 1 ≥
2Mi−k ≥ 2M(i− 1)+M +k1+δ −k ≥ 2M(i− 1)+M ,
as needed (we have used that M ≥ k1+δ).

We show that any other sequence t of a◦ b of length
at least k is not increasing. Suppose t intersects aj for
some j. Let x ∈ aj ∩ t. Then t cannot intersect aj′ for
any other j′, since if j′ > j, any element y in aj′ satisfies
y > x and also y comes before x in a ◦ b. Moreover, if
j′ < j, any element y in aj′ satisfies y < x and also y
comes after x in a ◦ b.

Thus, t can contain only elements of aj ◦ b. Now
if j > i, then every element of aj is greater than every
element of b, and thus t can only contain elements in aj

or b. But aj and b have size less than k, contradicting
that t has size at least k. Suppose then that j < i. Then
aj ◦ b contains at most j + (k − i) < k elements, again
contradicting the size of t. Thus, j = i, and then aj ◦ b
is the only subsequence of aj ◦ b with size at least k, so
t = s. This completes the proof.

Theorem 3.1. Assume |Σ| = Ω(k2+δ) for a constant
δ > 0. Then R1−way

1/3 (LIS) = Ω(k2 log |Σ|
k ).

Proof. We reduce from the indexing function IND.
Since M

k is a power of 2, a may be viewed as a bit string
of length t =

∑k−1
i=1 i log M

k = Θ(k2 log |Σ|
k ), and any

such string gives rise to a sequence a. Suppose Alice and
Bob are given an instance of IND : {0, 1}t×[t] → {0, 1}.
Alice can interpret her given string a as a sequence
a = ak−1 ◦ ak−2 ◦ ak−3 ◦ · · · ◦ a1 as in the above
construction of a. Bob can then interpret his index as
uniquely indexing the `th bit of some integer ai,j in
some sequence ai in a. Bob constructs b by choosing
this value of i in step 1 of the above procedure for
generating b. By Lemma 3.1, LIS(a, b) contains ai,
and thus ai,j , and thus the `th bit of ai,j . Thus

R1−way
1/3 (LIS) ≥ R1−way

1/3 (IND) = Ω(t) = Ω
(
k2 log |Σ|

k

)
.

Theorem 3.2. Assume |Σ| = Ω(k2+δ) for some con-
stant δ > 0. Any (possibly randomized) 1-pass stream-
ing algorithm for LIS has space complexity Ω(k2 log |Σ|

k ).

One can get analogous lower bounds for smaller Σ. For
instance, if |Σ| = Ω(k), one can partition [|Σ|] into
|Σ|/(2k) intervals each of size 2k. Further partition
each interval into pairs of integers. There are 2i

different choices for ai (two choices for each pair), and
R1−way

1/3 (LIS) = Ω(|Σ|) follows along similar lines. We
omit the details.

4 LIS-length

We first give bounds for LIS-length in the two-party
communication model. We assume |Σ| = Ω(k), and
handle the case k = Ω(|Σ|) in Appendix 7. Alice is
given a ∈ Σn, Bob is given b ∈ Σn, and their goal is
to compute LIS-length(a ◦ b). Later we consider these
problems in the data-stream model.

4.1 Deterministic multi-round lower bounds
We reduce from the following function.

Definition 4.1. ORDk(x1, . . . , xk, y1, . . . , yk) =
1, if xj ≥ yj , j = 1, . . . , k,
0, otherwise.

where xi, yi ∈ {1, . . . ,m}.

Consider the related mk ×mk communication ma-
trix M whose (x1, . . . , xk, y1, . . . , yk)th entry is 1 iff
ORDk(x1, . . . , xk, y1, . . . , yk) = 1. By appropriately or-
dering the tuples (x1, . . . , xk) and (y1, . . . , yk), M can
be written as a lower triangular matrix with diagonal
1. Thus, M has full rank. Therefore, D(ORDk) =
Ω(log rank(ORDk)) = Ω(log mk) = Ω(k log m).

Assume we have an ORDk instance, and consider
the following LIS-length instance: the input of Alice
is a = a1, . . . , ak, with aj = 2m(j − 1) + 2xj , where
j = 1, . . . , k, and the input of Bob is b = b1, . . . , bk,
with bj = 2m(j− 1) + 2yj − 1, where j = 1, . . . , k. Here
Σ = {1, . . . , 2mk}.

We claim that LIS-length(a◦b) = k+1−ORDk(x, y).
From the construction of a and b we know that a1 <
a2 < · · · < ak, b1 < b2 < · · · < bk, and aj+1 > bj

for j = 1, . . . , k − 1. So LIS-length(a ◦ b) = k or
k + 1. LIS-length(a ◦ b) = k + 1 if and only if there
exists a j such that aj ≤ bj , i.e. 2xj ≤ 2yj − 1, or
xj < yj . This is equivalent to ORDk(x, y) = 0. Thus
LIS-length(a ◦ b) = k + 1 − ORDk(x, y). Therefore,
D(LIS-length(a ◦ b)) = D(ORDk(x, y)) = Ω(k log m) =
Ω(k log |Σ|/k).

4.2 Randomized one-round lower bounds Our
lower bounds for R1−way

1/3 (LIS-length) are derived from

R1−way
1/3 (ORDk).

Lemma 4.1. R1−way
1/3 (ORDk) = Ω(k log m).

Proof. Let f : {0, 1}×∅ → {0, 1} be defined by f(z) = z.
Let t = k log m, and consider a variation of f , f (t):
Alice has t inputs z1, . . . , zt, and Bob has inputs i and
z1, . . . , zi−1, and the goal is to output zi. Suppose in a
1-round protocol Alice sends O(t) bits to Bob, and Bob
outputs zi with probability at least 2/3. Then, for an
appropriate choice of constant in the big-Oh, Theorem
2.1 gives a zero-round protocol in which Bob outputs zi
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with probability at least 3/5. This is impossible since
zi ∈ {0, 1} is arbitrary, and so Bob’s probability is at
most 1/2. Thus R1−way

1/3 (f (t)) = Ω(t).
Now suppose Alice and Bob are given an instance

of f (t). Assuming m is a power of 2 (the general proof
works by replacing m with an integer in [m/2,m]), Alice
can group the z1, . . . , zt into k integers x1, . . . , xk ∈ [m].
This works by setting z1 to be the most significant bit
of x1, zlog m the least significant bit of x1, etc. Then
Bob can also group z1, . . . , zi−1 into integers, obtaining
some number j of integers x1, . . . , xj , together with the
leading bits of xj+1. Bob then creates k integers y` as
follows. If ` 6= j + 1, Bob sets y` = 1. Bob creates yj+1

by concatenating the leading bits of xj+1 with the bit
sequence 100 . . . 0. It is easy to see that x` ≥ y` for all
` iff xj+1 ≥ yj+1, which holds if and only if zi = 1, and
thus R1−way

1/3 (ORDk) ≥ R1−way
1/3 (f (t)) = Ω(t).

By the reduction in Section 4.1, it follows that
R1−way

1/3 (LIS-length) = Ω(k log |Σ|/k).

4.3 Randomized multi-round lower bounds
This time we reduce from disjointness DIS on inputs
of size k. From Theorem 2.2, R1/3(DIS) = Ω(k).
Assume we have an instance of DIS. The inputs are
two k bit strings x, y. Now consider the following LIS-
length problem: the input of Alice is a = a1 . . . ak, with
aj = 4j − 2xj , where j = 1, . . . , k, and the input of
Bob is b = b1 . . . bk, with bj = 4(j − 1) + 1 + 2yj , where
j = 1, . . . , k. Here Σ = {1, . . . , 4k}. We claim that
LIS-length(a ◦ b) = k + 1−DISk(x, y).

One can see that LIS-length(a ◦ b) = k or k + 1.
Moreover, LIS-length(a ◦ b) = k + 1 if and only if
there exists a j ∈ {1, . . . , k} such that aj ≤ bj , i.e.,
4j − 2xj ≤ 4(j − 1) + 1 + 2yj , or 2xj + 2yj ≥ 3. The
only time this can happen is if xj = yj = 1. This is
equivalent to DIS(x, y) = 0. Thus LIS-length(a ◦ b) =
k + 1 − DIS(x, y). Therefore, R(LIS-length(a ◦ b)) =
R(DIS(x, y)) = Ω(k). The proof uses |Σ| = 4k, but it
works just as well when |Σ| > 4k.

4.4 LIS-length in the streaming model The lower
bounds in the previous three subseections, as well as
those in Appendix 7 apply to streaming algorithms via
the reduction in Section 2. Therefore,

Theorem 4.1. Any O(1)-pass deterministic stream-
ing algorithm for LIS-length and any 1-pass random-
ized streaming algorithm for LIS-length requires space
Ω(log

(|Σ|+k−1
k−1

)
). Any O(1)-pass randomized streaming

algorithm for LIS-length requires space Ω(min(k, |Σ|)).

In [19] the authors achieve O(k log |Σ|) space in the
streaming model. We improve their data-stream algo-

rithm to match the lower bound of Theorem 4.1. Recall
their algorithm:

There is an array A, which always contains at most
k + 1 entries. The invariant maintained is that at any
point in time processing the input stream, A[i] contains
the final entry of an LIS of length i whose last element
is smallest possible over all such subsequences. The
exception is that the last entry of A contains ∞. This
implies A[1] ≤ A[2] ≤ A[3] · · · ≤ A[r] < A[r + 1], where
r + 1 ≤ k + 1 is the last entry of A. To maintain the
invariant, when processing stream element x, one finds
i for which A[i] ≤ x < A[i + 1], replaces A[i + 1] with
x, and increases r if necessary. This works because x
extends the sequence of length i to a sequence of length
i + 1 with a smaller final element.

We improve the space complexity as follows. Since
A[1] ≤ A[2] ≤ · · ·A[r + 1], we can encode the entries of
A by A[1], A[2] − A[1], A[3] − A[2], . . . , A[r] − A[r − 1].
To process item x, sum the differences from left to right
until the value x is exceeded. Suppose we find that
A[i] ≤ x < A[i + 1]. In our list replace A[i + 1] − A[i]
with x−A[i] and replace A[i+2]−A[i+1] with A[i+2]−x.

Theorem 4.2. There exists a 1-pass algorithm for LIS-
length using space O(k log |Σ|/k) = O(log

(|Σ|+k−1
k−1

)
).

We note that though this is optimal in space, we have
increased the time complexity.

5 Longest Common Subsequence

In [19], the authors show that when Σ is unrestricted,
R1/3(LCS-length) = Ω(N) (which thus holds for LCS).
They also mention that there is a trivial O(N log |Σ|)
1-pass deterministic upper bound, which simply stores
the entire stream. We note that by choosing a pairwise-
independent hash function, this can be reduced to
O(N log N) for 1-pass randomized algorithms.

Moreover, if one insists on deterministic constant-
pass algorithms, there is a simple Ω(N log |Σ|) lower
bound. Consider the two party-setting in which Alice is
given a and Bob is given b. Then LCS-length(a, b) = N
iff a = b, and thus there is a reduction from EQ(a, b),
which satisfies D(EQ) = Ω(|a|) = Ω(N log |Σ|).

As these bounds are trivial, the authors consider
the case when both inputs a, b are permutations of [N ].
We now focus on this case. Recall the LCS-k-decision
problem: Alice and Bob are given permutations a, b of
[N ] and the goal is to output 1 iff |LCS(a, b)| ≥ k.

5.1 Lower bounds for LCS-k-decision The following
padding lemma helps us focus on constant k.

Lemma 5.1. If for some constant k0, LCS-k0-decision
on inputs with size m has D(·) or R1/3(·) at least
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Ω(f(m)) for a non-decreasing function f(∗), then for
any k0 ≤ k ≤ n/2, LCS-k-decision on inputs with size n
has D(·) or R1/3(·) at least Ω(f(n/2)).

Proof. Consider an instance of LCS-k0-decision problem
on inputs of size n/2. Suppose the inputs of Alice
and Bob are a and b, respectively. Pad a and b by a
string s = n/2 + 1, n/2 + 2, · · · , n/2 + k − k0. Write
a′ = a ◦ s, b′ = b ◦ s. The size of a′, b′ is |a′| =
|b′| = n/2 + k − k0 < n. It is easy to show that
LCS(a′, b′) = LCS(a, b) + |s| = LCS(a, b) + k − k0.
Therefore, LCS(a′, b′) ≥ k ⇔ LCS(a, b) ≥ k0. Since
the LCS-k0-decision problem has D(·) or R1/3(·) at least
Ω(f(n/2)), so the LCS-k-decision problem has D(·) or
R1/3(·) at least Ω(f(n/2)).

Lemma 5.2. D(LCS-2-decision) = Ω(N log N).

Proof. Since a and b are permutations of [N ], it is easy
to show that LCS(a, b) = 1 iff a is the reverse of b.
Therefore, the LCS-2-decision problem is equivalent to
the decision problem EQ(a, r(b)) (here we use r(b) to
represent the reserve permutation of b). If we sort the
inputs a and b in an appropriate order, the communica-
tion matrix M of the EQ(a, r(b)) function is the identity
matrix. By the rank lower bound, D(EQ(a, r(b))) ≥
log (rank(M)) = log N ! = Ω(N log N).

Combining Lemma 5.1 and Lemma 5.2,

Theorem 5.1. Assume 2 ≤ k ≤ N/2. Then D(LCS-k-
decision) = Ω(N log N).

For the N/2 < k ≤ N case, we give a different proof,

Theorem 5.2. Assume N/2 < k ≤ N . Then D(LCS-
k-decision) = Ω(N log N).

Proof. Consider the following inputs (a, b): a = a′ ◦
k, k + 1, . . . , N, b = b′ ◦ N,N − 1, . . . , k, where a′, b′

are permutations of [k − 1]. It is clear LCS(a, b) =
LCS(a′, b′) + 1. Thus LCS(a, b) ≥ k iff LCS(a′, b′) ≥
k − 1. But a′, b′ are both permutations of [k − 1], so
LCS(a′, b′) ≥ k − 1 ⇔ a′ = b′. Therefore, LCS(a, b) ≥
k iff a′ = b′, so the communication matrix is the
identity matrix. From the rank lower bound, D(LCS-k-
decision) = Ω(log (k − 1)!) = Ω(k log k) = Ω(N log N).

In [19] an Ω(N/ρ2) bound is given for LCS-ρ-approx, the
promise problem of determining whether |LCS(a, b)| ≥
ρ2 or |LCS(a, b)| ≤ ρ, for any ρ ≥ 2. Thus, R1/3(LCS-4-
decision) = Ω(N). Lemma 5.1 allows us to extend this
to larger k, greatly improving the Ω(k) bound of [19]:

Theorem 5.3. Assume 4 ≤ k ≤ N/2. Then R1/3(LCS-
k-decision) = Ω(N).

Here we show that LCS-3-decision also has high random-
ized complexity.

Lemma 5.3. R1/3(LCS-3-decision) = Ω(N).

Proof. We reduce from DIS. W.l.o.g., we assume N
is a multiple of 3, and divide the integers {1, ..., N}
into groups of size 3: G1 = {1, 2, 3}, G2 =
{4, 5, 6}, . . . , GN/3 = {N − 2, N − 1, N}.

Suppose we have an instance of DIS. Alice is given
an N/3 bit string x, and Bob an N/3 bit string y,
and they want DIS(x, y). By Theorem 2.2 this has
randomized complexity Ω(N).

Now Alice creates input a = p1(G1) ◦ p2(G2) ◦ · · · ◦
pN/3(GN/3), where pi(m + 1,m + 2,m + 3) outputs a
permutation of {m+1,m+2,m+3} defined as follows:

pi(x+1, x+2, x+3) =
m + 1,m + 2,m + 3 if xi = 0
m + 1,m + 3,m + 2 if xi = 1

Bob creates b = qN/3(GN/3) ◦ qN/3−1(GN/3−1) ◦
· · · q1(G1), here

qi(m+1,m+2,m+3) =
m + 3,m + 2,m + 1 if yi = 0
m + 1,m + 3,m + 2 if yi = 1

Note that a, b are both permutations of [N ]. We claim
LCS(a, b) ≤ 2 iff x and y are disjoint. Any common
subsequence of a and b can contain integers from at
most one Gi. Indeed, if j and l were from different Gi,
j would appear before l in one sequence, but after l in
the other.

Consider any Gi = {m + 1,m + 2,m + 3}. Then
LCS(pi(Gi), qi(Gi)) = 3 iff pi(Gi) = qi(Gi) which oc-
curs iff xi = yi = 1. Otherwise, LCS(pi(Gi), qi(Gi)) ≤
2. So LCS(a, b) ≤ 2 if DIS(x, y) = 1, and LCS(a, b) =
3 otherwise. We conclude R1/3(LCS-3-decision) ≥
R1/3(DIS) = Ω(N).

5.2 Upper bounds for LCS-k-decision We give an
O(r log N) protocol for LCS-k-decision when k = N − r
for small r, which is useful for similar strings. We will
use the 1-round O(log n) protocol for EQ(x, y) function
as a subroutine [18]. We use the property that this
protocol has a small one-sided error: when x = y, the
error is 0 and when x 6= y, the error is less than 1/n.
Now we give the protocol for LCS-k-decision:

Alice and Bob represent their permutations as
O(N log N) bit strings. Alice runs the EQ protocol
on her string 3r times independently, and sends all
the results to Bob (this will need O(3r log (N log N)) =
O(r log N) bits). Bob does the following check: for ev-
ery permutation a′ such that LCS(a′, b) ≥ N − r, use
the EQ protocol to check whether a = a′. Since Alice
sends 3r copies, for each a′ Bob needs to check 3r times.
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Bob outputs 1 if there exists an a′ such that a′ passes
all the 3r EQ tests, and outputs 0 otherwise.

Now we prove the protocol is correct: if LCS(a, b) ≥
N − r, then Bob always outputs 1. Indeed, the EQ
protocol does not have error when the inputs are equal.
Now if LCS(a, b) < N − r, Bob outputs 1 if and only
if there exists some a′ such that LCS(a′, b) ≥ N − r,
and a′ passes all the 3r times EQ tests. For a string
a′ 6= a, the probability that a′ passes all the 3r times
tests is less than N−3r. So by the union bound,
Pr[Bob outputs 1] ≤

∑
a′:LCS(a′,b)≥N−r

1
N3r .

We claim that there are at most N2r sequences with
LCS(a′, b) ≥ N − r. Suppose π is the permutation such
that π(bi) = i for i = 1, . . . , N . Then LCS(a′, b) =
LIS(π(a′1)π(a′2) . . . π(a′n)). So we only need to bound
the number of permutations with LIS at least N − r.
One can choose an increasing subsequence of size N − r
in

(
N

N−r

)
< Nr ways, then insert the remaining r

elements in (N − r + 1)(N − r + 2) · · ·N < Nr ways.
Thus there are at most N2r such sequences. Therefore,
Pr[Bob outputs 1] ≤ N2r 1

N3r < 1
3 , so R1/3(LCS-k-

decision) = O(r log N).

5.3 Bounds for LCS-ρ-approx

Fact 5.1. (see, e.g., [20]) There exist 2Ω(n) elements
in {0, 1}n such that for any two elements x 6= y, their
hamming distance ∆(x, y) satisfies ∆(x, y) ≥ ( 1

2 − δ)n.
Here δ > 0 can be any constant.

Theorem 5.4. Assume ρ2 < ( 1
2 − δ)N . Then D(LCS-

ρ-approx) = Ω(N).

Proof. Let n = N/2 and S be the set of Fact 5.1. Then
|S| = 2Ω(N). Consider the EQ(x, y) problem on input
S × S. Then D(EQ) ≥ log |S| = Ω(N). Now we create
an LCS problem. For (x, y) ∈ S × S, Alice creates
a = p1p2 . . . pN/2(N +1−pN/2)(N +1−pN/2−1) . . . (N +
1− p1), where

pi =
{

i if xi = 0,
N + 1− i if xi = 1.

(i = 1, . . . , N/2).

Bob creates b = q1q2 . . . qN/2(N + 1 − qN/2)(N + 1 −
qN/2−1) . . . (N + 1− q1), where

qi =
{

N + 1− i if yi = 0,
i if yi = 1. (i = 1, . . . , N/2).

Note that a, b are both permutations of [N ]. From the
construction it is easy to show that if x = y, then
a = r(b), thus LCS(a, b) = 1. Moreover, LCS(a, b) ≥
2∆(x, y). Indeed, consider the positions i such that xi 6=
yi, and also positions N + 1− i. They form a 2∆(x, y)-
length common subsequence of a and b. Since in set S,

if x 6= y, ∆(x, y) ≥ ( 1
2 − δ)n = (1

4 −
δ
2 )N . Thus if x 6= y,

LCS(a, b) ≥ ( 1
2−δ)N . Therefore, if we can separate the

cases LCS(a, b) = 1 or LCS(a, b) ≥ ( 1
2 − δ)N , then we

can decide whether x = y. Since D(EQ) = Ω(N), we
have D(LCS-ρ-approx) = Ω(N) for any ρ2 < ( 1

2 − δ)N .

5.4 Streaming algorithm We give an O(N
ρ log N

ρ +
log N)-space randomized 1-pass streaming algorithm
for this problem. The streaming algorithm A(a ◦ b)
first chooses a pairwise-independent hash function h :
[N ] → [N ]. Let a′, b′ be the subsequences of a and
b, respectively, of elements i ∈ [N ] for which h(i) ≤
4N/ρ. A stores a′ and b′ in their entirety, provided that
|a′|+ |b′| = 2|a′| ≤ 48N/ρ. If this condition is not met,
A reports that |LCS(a, b)| ≤ ρ (alternatively, A could
output fail). The expected length of a′ is 4N/ρ, so the
probability of this event is at most 1/6. A computes
X = |LCS(a′, b′)|. If X > ρ, A reports |LCS(a, b)| ≥
ρ2, and otherwise reports |LCS(a, b)| ≤ ρ.

Since h is pairwise-independent, Chebyshev’s
inequality implies that A outputs the correct answer
with constant probability - we omit the details due
to space constraints. A can compute h in O(log N)
space. Then, in O(log

(
N+Θ(N/ρ)

Θ(N/ρ)

)
) space A can create

a list δ1, δ2, . . . , δΘ(N/ρ) such that δi > 0 for all i, and
h(x) ≤ 4N/ρ for x ∈ [N ] iff x =

∑j
i=1 δi for some j.

Next, when processing element x of a, A can sum the
δi from left to right. If it finds x =

∑j
i=1 δi for some

j, A maps x ∈ a to the integer j, and appends j to a′.
A similarly constructs b′. a′ and b′ then only consume
O(N/ρ log N/ρ) space. A can then use the linear-space
algorithm of Fredman [10] to compute LCS(a′, b′)
(since a′ and b′ are permutations on the same |a′|
symbols, this can be transformed into an instance of
LIS). Thus, A’s total space is O(log N +N/ρ log N/ρ).

Open Questions: One key open problem is the
complexity of multi-pass LIS. We have shown a tight
Θ(k2 log |Σ|/k) bound for 1-pass randomized algo-
rithms, and an essentially tight Ω(k) bound for a large
number of passes, but we don’t have results for an
intermediate number of passes. Resolving the gaps for
the other problems is also a challenging open problem.
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6 Appendix: Upper Bound for LIS

We first recall the streaming algorithm of [19] for
computing the LIS of a data stream in dlog(1 + 1/ε)e
passes and using O(k1+ε log |Σ|) space for any ε > 0.

The algorithm for 1-pass is similar to that in Section
4.4. We have an array A containing at most k+1 entries.
The difference is that the ith entry of A also contains
an LIS (not just the final entry) of length i whose
last element is smallest possible. One maintains the
invariant on A[i] as before, except instead of replacing
A[i + 1] with x when A[i] ≤ x < A[i + 1], one replaces
A[i + 1] with the LIS in A[i], prepended to x.

For multiple passes, the idea in [19] is in the
first pass to only store every qth element of each LIS
appearing in an entry of A. Then after the first pass the
state is b1, bq+1, b2q+1, . . ., where b1 ≤ b2 ≤ b3 ≤ · · · ≤
bk is an LIS of the input stream. In subsequent passes
the idea is to “fill in the blanks”. Note that the LIS
between b1 and bq+1 occurs before the LIS between bq+1

and b2q+1, so one can first compute the LIS between b1

and bq+1, then between bq+1 and b2q+1, etc. The point
is that the LIS between b1 and bq+1 can be computed,
after which we only retain the answer b1, b2, b3, . . . , bq+1.
We then free up the rest of the space and compute the
LIS between bq+1 and b2q+1, etc.

Our encoding trick is to represent each LIS in
each entry A[i] as a sequence of differences. Instead
of storing b1, . . . , bi, we store b1, b2 − b1, b3 − b2, etc.
Thus each LIS takes Θ

(
log

(
i+|Σ|−1

i−1

))
space. For the

1-pass algorithm the total space is Θ
(∑k

i=1 i log |Σ|
i

)
≤

Θ
(
k

∑k
i=1 log |Σ|

i

)
= Θ

(
k log |Σ|k

k!

)
= Θ

(
k2 log |Σ|

k

)
.

The same trick can be applied to the multiple-pass
algorithm, since in each pass the array A contains an
increasing subsequence. The update rule is similar to
that of Section 4.4.

Theorem 6.1. There is a deterministicdlog(1 + 1
ε )e-
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pass streaming algorithm for LIS using space
O(k1+ε log |Σ|

k ) for any ε > 0.

7 Appendix: Small Alphabets

In this section we assume k = Ω(|Σ|), and we prove
lower bounds for LIS-length.

7.1 Deterministic multi-round We use the follow-
ing direct-sum function:

Definition 7.1. ORD|Σ|(x1, . . . , x|Σ|, y1, . . . , y|Σ|) =
1, if xj ≤ yj , j = 1, . . . , |Σ|,
0, otherwise.

where x1 ≤ x2 · · · ≤ x|Σ|,y1 ≤ y2 · · · ≤ y|Σ|, and
xi, yi ∈ {1, . . . ,m}.

The value of m used here is different from that
of Definition 4.1. The related communication ma-
trix of the ORD|Σ| function is upper triangu-
lar with diagonal 1. Thus, the matrix has full
rank. Thus, D(ORD|Σ|) = Ω(log rank(ORD|Σ|)) =
Ω(log

(
m+|Σ|−1

m

)
) = Ω(|Σ| log m/|Σ|).

Assume we have a ORD|Σ| problem, the inputs
are x and y. Now consider the following LIS-length
problem: The input of Alice is a = |Σ|x|Σ| · · · 2x21x1 ,

where jxj means

xj︷ ︸︸ ︷
j · · · j. The input of Bob is b =

|Σ|(2m−y|Σ|) · · · 22m−y212m−y1 . Since x1 ≤ · · · ≤ x|Σ|,
y1 ≤ · · · ≤ y|Σ|, it is not hard to see that LIS-length(a ◦
b) = max1≤j≤|Σ|(xj+2m−yj). Since xi, yi ∈ {1, . . . ,m},
k =LIS-length(a ◦ b) ∈ [m, 3m].

Looking at the definition of ORD|Σ|, we have
LIS-length(a ◦ b) ≤ 2m iff ORD|Σ|(x, y) = 1. There-
fore, D(LIS-length(a ◦ b)) = D(ORD|Σ|(x, y)) =
Ω(|Σ| log m/|Σ|) = Ω(|Σ| log k/|Σ|).

7.2 Randomized one-round We now give the
lower bound for R1−way

1/3 (LIS-length) when |Σ| = O(k).

Lemma 7.1. R1−way
1/3 (ORD|Σ|) = Ω(|Σ| log m/|Σ|).

Proof. We consider the same function f (t) as in the
case |Σ| = Ω(k), but with the value t = |Σ| log m/|Σ|.
Suppose Alice is given z1, . . . , zt. She creates |Σ|
integers x1 ≤ x2 ≤ · · · ≤ x|Σ| as follows. She partitions
[m] into |Σ| contiguous blocks of size m/|Σ|. Then she
uses the first log m/|Σ| bits of z1, . . . , zt to determine x1

in the first block, the next log m/|Σ| bits to determine
x2, etc. Note that x1 < x2 < · · · < x|Σ|. Bob uses the
z1, . . . , zi−1 to determine x1, . . . , xj for some j, together
with the leading bits of xj+1. Bob then creates the
y1, . . . , y|Σ| as follows. Bob sets y` = m for ` ≤ j. Bob
sets y` = m for ` > j+1. Bob sets yj+1 to be the element

which agrees with the leading bits of xj+1, is 0 in the
next bit, and is one in the remaining bits. It follows
immediately that R1−way

1/3 (ORD|Σ|) ≥ R1−way
1/3 (f (t)) =

Ω(t).

By the reduction in Section 4.1, when |Σ| = O(k) we
have R1−way

1/3 (LIS-length) = Ω(|Σ| log k/|Σ|).

7.3 Randomized multi-round Assume we have a
DIS problem on inputs of size |Σ|, the inputs are x
and y. Now consider the following LIS-length problem:
The input of Alice is a = |Σ|a|Σ| · · · 2a21a1 , where
aj = 2j + xj (j = 1, . . . , |Σ|). The input of Bob is
b = |Σ|b|Σ| · · · 2b21b1 , where bj = 2|Σ| − (2j − yj). Then
a1 ≤ · · · ≤ a|Σ|, b1 ≥ · · · ≥ b|Σ|, and it follows

LIS− length(a◦b) = max
1≤j≤|Σ|

(aj+bj) = 2|Σ|+ max
1≤j≤|Σ|

(xj+yj).

Thus, k =LIS-length(a ◦ b) ∈ {2|Σ|, 2|Σ|+ 1, 2|Σ|+ 2}.
Looking at the definition of DIS(x, y), we have LIS-

length(a ◦ b) ≥ 2|Σ| + 2 iff DIS(x, y) = 0. Therefore,
R1/3(LIS-length(a ◦ b)) ≥ R1/3(DIS(x, y)) = Ω(|Σ|).
The proof uses k ∼ 2|Σ|, but it also works for large
k with a minor modification.

7.4 1-pass deterministic streaming algorithm
We have the array A in Section 4.4, but we save bits
in a different way. Since A[1] ≤ A[2] ≤ . . . ≤ A[k + 1],
we can, for each i ∈ [|Σ|], keep track of the smallest j
and largest j′ for which A[j] and A[j′] contain i. By
recording differences in this list, one can show the space
is O(|Σ| log(k/|Σ|) + log k). Details omitted.

8 Appendix: Randomized Multi-round Upper
Bound for LIS-length

We show how to improve the log
(
k+|Σ|−1

k−1

)
space in the

upper bound for LIS-length in Section 4 (which was
stated in the streaming model, but is also a 1-round
deterministic protocol) by allowing randomization and
multiple rounds. This shows randomization plus multi-
ple rounds is strictly more powerful than either 1-round
or deterministic protocols for this problem.

Consider the case |Σ| ≥ k. In this case Alice has
s1 ≤ s2 ≤ · · · ≤ sk, Bob has t1 ≥ t2 ≥ · · · ≥ tk, and
they must compute LIS-length(a◦b) = max 1≤i,j≤k

si≤tj

(i+j).

We use the well-known fact [18] that the function LT :
{0, 1}n × {0, 1}n → {0, 1} defined by LT (x, y) = 1 iff
x < y, satisfies Rδ(LT ) = O(log n + log 1

δ ). The idea
is for Alice to merge her si with the tj , so that Bob
obtains a sorted list containing both the si and the tj .
Then LIS-length(a◦b) can be determined locally by Bob.

In our application n = log |Σ|, and we choose to
set δ = O(1/k). Alice first compares s1 with tk. If
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s1 > tk, she then compares s1 with tk−1, and continues
until she finds a j for which s1 ≤ tj . Then she compares
s2 with tj , and continues until she find a j′ for which
s2 ≤ tj′ . This process repeats until Bob learns the entire
sorted list. Clearly the number of invocations of LT is
O(k), and so by a union bound, Bob obtains the correct
sorted list with probability at least 2/3. Thus, R1/3(LIS-
length) = O(k(log k + log log |Σ|)).

Now suppose |Σ| < k. Then Alice has p1 ≤ p2 ≤
· · · ≤ p|Σ| and Bob has q1 ≥ q2 ≥ · · · ≥ q|Σ|, and they
want to compute LIS-length(a◦b) = max1≤i≤|Σ|(pi +qi).
The idea again is to use an efficient LT sub-protocol.
Alice sends p1 to Bob, who computes p1 + q1. Then
Alice computes x2 = p2 − p1 ≥ 0 and Bob computes
y2 = q1 − q2 ≥ 0. Clearly, p2 + q2 > p1 + q1 iff x2 > y2.
Alice and Bob run LT (y2, x2) to do the comparison. If
p2+q2 ≤ p1+q1, they then compute x3 = p3−p1 ≥ 0 and
y3 = q1 − q3 ≥ 0, and repeat. Otherwise, they record
that p2 + q2 > p1 + q1 (without actually computing this
sum), and then compute x3 = p3 − p2 ≥ 0 and y3 =
q2− q3 ≥ 0, and repeat. At the end, assuming all of the
comparisons were correct, they determine the index i for
which pi + qi is maximum. Then Alice sends pi to Bob
who announces the sum. There are O(|Σ|) comparisons
of log k bit numbers, so setting δ = O(1/|Σ|) gives
R1/3(LIS-length) = O(|Σ|(log |Σ|+ log log k) + log k).

9 Appendix: LIS-length-ε-apx and LIS-ε-apx

We assume that 1
ε , k = O(|Σ|). The section can easily

be modified if either of these conditions does not hold.

9.1 Upper Bounds We start with an upper bound
for LIS-length-ε-apx. Recall that Alice is given a ∈ Σn

and Bob b ∈ Σn. Let k =LIS-length(a ◦ b). The goal is
to output a number x with (1− ε)k ≤ x ≤ k.

We start with the following 1-round deterministic
protocol. Alice computes k′ =LIS-length(a). She
partitions [k′] into intervals

(0, εk′], (εk′, 2εk′], (2εk′, 3εk′], . . . , ((k′ − 1)εk′, k′].

For each interval I, she finds the smallest integer
x(I) for which there exists an LIS in a of length in I
which ends in x(I). If no such LIS exists, this interval
is ignored. For all I she transmits x(I) to Bob. She also
transmits k′.

Bob uses b to extend each of the x(I) into an
increasing subsequence of (a◦b). Bob also computes the
LIS of b. Suppose he finds that extending x(I), for I =
(iεk′, (i+1)εk′], gives a longest such subsequence. Then
Bob will output iεk′ plus the length of his extension in b.
If the LIS of b is longest he will just output this length.

Fix an LIS s. If s occurs entirely in b, Bob outputs
k. Otherwise split s into sa ◦ sb, where sa is the part

of s in a. Suppose |sa| ∈ I. Then Alice will send some
x(I) to Bob. It follows that x(I) is less than the last
element of sa, and that Bob can extend the increasing
subsequence ending in x(I) with sb. Thus his output is
at least |sa| − εk′ + |sb| ≥ (1− ε)k.

For the communication, there are at most d1/εe
intervals. The x(I) are non-decreasing with increasing
I. Our usual encoding trick yields communication

O

(
log

(
d1/εe+ |Σ| − 1

d 1
ε e

))
= O

(
1
ε

log (ε|Σ|)
)

.

Now, observe that instead of Alice transmitting x(I) to
Bob for each I, Alice can transmit an LIS in a of length
in I which ends in x(I) to Bob. This gives an upper
bound for LIS-ε-apx of O

(
k
ε log(|Σ|/k)

)
.

9.2 Lower Bounds Let t = Θ(1/ε). For LIS-length-
ε-apx, the idea is to reduce from ORDt. Suppose
x1, . . . , xt is Alice’s input and y1, . . . , yt is Bob’s input.
Alice first creates a stream a of length t in the same
way as before, that is, she sets aj = 2m(j − 1) + 2xj

for j = 1, . . . , t. Next, she creates a stream a′ of length
k by replacing each element aj in a with a block of k/t
copies of aj . Bob first creates a stream b of length t by
setting bj = 2m(j−1)+2yj−1 for j = 1, . . . , t. Then he
creates a stream b′ of length k by replacing each element
bj in b with a block of k/t copies of bj . It is easy to see
LIS-length(a′ ◦ b′) = k + Θ(ε)kORDt(x, y).

As any streaming algorithm cfor LIS-length-ε-apx
can distinguish between a stream of length k + Θ(ε)k
and a stream of length k (for an appropriate constant in
the Θ(·)), it follows that its space complexity (for O(1)-
pass algorithms) must be at least the communication
complexity of ORDt. Thus by the previous sections
(note that we use m = Θ(ε|Σ|) in the ORDt definition):
D(LIS-length-ε-apx)= Ω

(
1
ε log(ε|Σ|)

)
and R1−way

1/3 (LIS-

length-ε-apx) = Ω
(

1
ε log(ε|Σ|)

)
.

To get the lower bound for LIS-ε-apx, we can adapt
the lower bound technique in Section 3. The rough idea
is to create t = Θ(1/ε) different ai, and then set the
stream a = at ◦ at−1 ◦ · · · ◦ a1, where every element
in ai is greater than any element in aj for j < i.
The difference now is that at has length k − 1, at−1

length k − 1 − k−2
t , at−2 length k − 1 − 2(k−2)

t , etc.
The adversary then chooses b to extend exactly one
of these sequences. We omit the details, but simply
state that for large enough |Σ|, this gives the bound
R1−way

1/3 (LIS− ε− apx) = Ω
(

k
ε log |Σ|

k

)
.

For R1/3(LIS-length-ε-apx) (and thus R1/3(LIS-ε-
apx)), we reduce from DIS on inputs of size Θ( 1

ε ). We
create the corresponding streams as in the reduction of
Section 4, and we duplicate each element Θ(εk) times.
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