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Abstract

We develop a framework for obtaining polynomial time approximation schemes (PTAS) for a
class of stochastic dynamic programs. Using our framework, we obtain the first PTAS for the
following stochastic combinatorial optimization problems:

1. Probemax [20]: We are given a set of n items, each item i ∈ [n] has a value Xi which is
an independent random variable with a known (discrete) distribution πi. We can probe a
subset P ⊆ [n] of items sequentially. Each time after probing an item i, we observe its value
realization, which follows the distribution πi. We can adaptively probe at most m items and
each item can be probed at most once. The reward is the maximum among the m realized
values. Our goal is to design an adaptive probing policy such that the expected value of the
reward is maximized. To the best of our knowledge, the best known approximation ratio is
1−1/e, due to Asadpour et al. [2]. We also obtain PTAS for some generalizations and variants
of the problem.

2. Committed Pandora’s Box [25, 23]: We are given a set of n boxes. For each box i ∈ [n], the
cost ci is deterministic and the value Xi is an independent random variable with a known
(discrete) distribution πi. Opening a box i incurs a cost of ci. We can adaptively choose to
open the boxes (and observe their values) or stop. We want to maximize the expectation of
the realized value of the last opened box minus the total opening cost.

3. Stochastic Target [16]: Given a predetermined target T and n items, we can adaptively insert
the items into a knapsack and insert at most m items. Each item i has a value Xi which is an
independent random variable with a known (discrete) distribution. Our goal is to design an
adaptive policy such that the probability of the total values of all items inserted being larger
than or equal to T is maximized. We provide the first bi-criteria PTAS for the problem.

4. Stochastic Blackjack Knapsack [17]: We are given a knapsack of capacity C and probability
distributions of n independent random variables Xi. Each item i ∈ [n] has a size Xi and a
profit pi. We can adaptively insert the items into a knapsack, as long as the capacity constraint
is not violated. We want to maximize the expected total profit of all inserted items. If the
capacity constraint is violated, we lose all the profit. We provide the first bi-criteria PTAS
for the problem.
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1 Introduction

Consider an online stochastic optimization problem with a finite number of rounds. There are a set
of tasks (or items, boxes, jobs or actions). In each round, we can choose a task and each task can be
chosen at most once. We have an initial “state” of the system (called the value of the system). At each
time period, we can select a task. Finishing the task generates some (possibly stochastic) feedback,
including changing the value of the system and providing some profit for the round. Our goal is to
design a strategy to maximize our total (expected) profit.

The above problem can be modeled as a class of stochastic dynamic programs which was introduced
by Bellman [3]. There are many problems in stochastic combinatorial optimization which fit in this
model, e.g., the stochastic knapsack problem [9], the Probemax problem [20]. Formally, the problem
is specified by a 5-tuple (V,A, f, g, h, T ). Here, V is the set of all possible values of the system. A is
a finite set of items or tasks which can be selected and each item can be chosen at most once. This
model proceeds for at most T rounds. At each round t ∈ [T ], we use It ∈ V to denote the current
value of the system and At ⊆ A the set of remaining available items. If we select an item at ∈ At, the
value of the system changes to f(It, at). Here f may be stochastic and is assumed to be independent
for each item at ∈ A. Using the terminology from Markov decision processes, the state at time t is
st = (It,At) ∈ V × 2A. 1 Hence, if we select an item at ∈ At, the evolution of the state is determined
by the state transition function f :

st+1 = (It+1,At+1) = (f(It, at),At \ at) t = 1, . . . , T. (1.1)

Meanwhile the system yields a random profit g(It, at). The function h(IT+1) is the terminal profit
function at the end of the process.

We begin with the initial state s1 = (I1,A). We choose an item a1 ∈ A. Then the system yields
a profit g(I1, a1), and moves to the next state s2 = (I2,A2) where I2 follows the distribution f(I1, a1)
and A2 = A \ a1. This process is iterated yielding a random sequence

s1, a1, s2, a2, s3, . . . , aT , sT+1.

The profits are accumulated over T steps. 2 The goal is to find a policy that maximizes the expectation
of the total profits E

[∑T
t=1 g(It, at) + h(IT+1)

]
. Formally, we want to determine:

DP∗(s1) = max
{a1,...,aT }⊆A

E
[ T∑
t=1

g(It, at) + h(IT+1)
]

(DP)

subject to: It+1 = f(It, at), t = 1, . . . , T.

By Bellman’s equation [3], for every initial state s1 = (I1,A), the optimal value DP∗(s1) is given by
DP1(I1,A). Here DP1 is the function defined by DPT+1(IT+1) = h(IT+1) together with the recursion:

DPt(It,At) = max
at∈At

E
[
DPt+1(f(It, at),At \ at) + g(It, at)

]
, t = 1, . . . , T. (1.2)

When the value and the item spaces are finite, and the expectations can be computed, this recursion
yields an algorithm to compute the optimal value. However, since the state space S = V × 2A is
exponentially large, this exact algorithm requires exponential time. Since this model can capture several
stochastic optimization problems which are known (or believed) be #P-hard or even PSPACE-hard,
we are interested in obtaining polynomial-time approximation algorithms with provable performance
guarantees.

1This is why we do not call It the state of the system.
2If less than T steps, we can use some special items to fill which satisfy that f(I, a) = I and g(I, a) = 0 for any value

I ∈ V.
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1.1 Our Results

In order to obtain a polynomial time approximation scheme (PTAS) for the stochastic dynamic pro-
gram, we need the following assumptions.

Assumption 1. In this paper, we make the following assumptions.

1. The value space V is discrete and ordered, and its size |V| is a constant. W.l.o.g., we assume
V = (0, 1, . . . , |V| − 1).

2. The function f satisfies that f(It, at) ≥ It, which means the value is nondecreasing.

3. The function h : V → R≥0 is a nonnegative function. The expected profit E[g(It, at)] is nonnega-
tive (although the function g(It, at) may be negative with nonzero probability).

Assumption (1) seems to be quite restrictive. However, for several concrete problems where the
value space is not of constant size (e.g., Probemax in Section 1.2), we can discretize the value space
and reduce its size to a constant, without losing much profit. Assumption (2) and (3) are quite natural
for many problems. Now, we state our main result.

Theorem 1.1. For any fixed ε > 0, if Assumption 1 holds, we can find an adaptive policy in polynomial
time n2O(ε−3) with expected profit at least OPT−O(ε) ·MAX where MAX = maxI∈V DP1(I,A) and OPT
denotes the expected profit of the optimal adaptive policy.

Our Approach: For the stochastic dynamic program, an optimal adaptive policy σ can be represented
as a decision tree T (see Section 2 for more details). The decision tree corresponding to the optimal
policy may be exponentially large and arbitrarily complicated. Hence, it is unlikely that one can even
represent an optimal decision for the stochastic dynamic program in polynomial space. In order to
reduce the space, we focus a special class of policies, called block adaptive policy. The idea of block
adaptive policy was first introduced by Bhalgatet al. [6] and further generalized in [18] to the context
of the stochastic knapsack. To the best of our knowledge, the idea has not been extended to other
applications. In this paper, we make use of the notion of block adaptive policy as well, but we target
at the development of a general framework. For this sake we provide a general model of block policy
(see Section 3). Since we need to work with the more abstract dynamic program, our construction of
block adaptive policy is somewhat different from that in [6, 18].

Roughly speaking, in a block adaptive policy, we take a batch of items simultaneously instead of
a single one each time. This can significantly reduce the size of the decision tree. Moreover, we show
that there exists a block-adaptive policy that approximates the optimal adaptive policy and has only
a constant number of blocks on the decision tree (the constant depends on ε). Since the decision tree
corresponding to a block adaptive policy has a constant number of nodes, the number of all topologies
of the block decision tree is a constant. Fixing the topology of the decision tree corresponding to
the block adaptive policy, we still need to decide the subset of items to place in each block. Again,
there is exponential number of possible choices. For each block, we can define a signature for it,
which allows us to represent a block using polynomially many possible signatures. The signatures
are so defined such that two subsets with the same signature have approximately the same reward
distribution. Finally, we show that we can enumerate the signatures of all blocks in polynomial time
using dynamic programming and find a nearly optimal block-adaptive policy. The high level idea is
somewhat similar to that in [18], but the details are again quite different.

1.2 Applications

Our framework can be used to obtain the first PTAS for the following problems.
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1.2.1 The Probemax Problem

In the Probemax problem, we are given a set of n items. Each item i ∈ [n] has a value Xi which is
an independent random variable following a known (discrete) distribution πi. We can probe a subset
P ⊆ [n] of items sequentially. Each time after probing an item i, we observe its value realization, which
is an independent sample from the distribution πi. We can adaptively probe at most m items and each
item can be probed at most once. The reward is the maximum among the m realized values. Our goal
is to design an adaptive probing policy such that the expected value of the reward is maximized.

Despite being a very basic stochastic optimization problem, we still do not have a complete under-
standing of the approximability of the Probemax problem. It is not even known whether it is intractable
to obtain the optimal policy. For the non-adaptive Probemax problem (i.e., the probed set P is just
a priori fixed set), it is easy to obtain a 1− 1/e approximation by noticing that f(P ) = E[maxi∈P Xi]
is a submodular function (see e.g., Chen et al. [8]). Chen et al. [8] obtained the first PTAS. When
considering the adaptive policies, Munagala [20] provided a 1

8 -approximation ratio algorithm by LP
relaxation. His policy is essentially a non-adaptive policy (it is related to the contention resolution
schemes [24, 11]). They also showed that the adaptivity gap (the gap between the optimal adaptive
policy and optimal non-adaptive policy) is at most 3. For the Probemax problem, the best-known
approximation ratio is 1− 1

e . Indeed, this can be obtained using the algorithm for stochastic monotone
submodular maximization in Asadpour et al. [2]. This is also a non-adaptive policy, which implies the
adaptivity gap is at most e

e−1 . In this paper, we provide the first PTAS, among all adaptive policies.
Note that our policy is indeed adaptive.

Theorem 1.2. There exists a PTAS for the Probemax problem. In other words, for any fixed constant
ε > 0, there is a polynomial-time approximation algorithm for the Probemax problem that finds a policy
with the expected profit at least (1 − ε)OPT, where OPT denotes the expected profit of the optimal
adaptive policy.

Let the value It be the maximum among the realized values of the probed items at the time period
t. Using our framework, we have the following system dynamics for Probemax:

It+1 = f(It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (1.3)

t = 1, 2, . . . , T . Clearly, Assumption 1 (2) and (3) are satisfied. But Assumption 1 (1) is not satisfied
because the value space V is not of constant size. Hence, we need to discretize the value space and
reduce its size to a constant. See Section 4 for more details. If the reward is the summation of top-k
values (k = O(1)) among the m realized values, we obtain the ProbeTop-k problem. Our techniques
also allow us to derive the following result.

Theorem 1.3. For the ProbeTop-k problem where k is a constant, there is a polynomial time algorithm
that finds an adaptive policy with the expected profit at least (1−ε)OPT, where OPT denotes the expected
profit of the optimal adaptive policy.

1.2.2 Committed ProbeTop-k Problem

We are given a set of n items. Each item i ∈ [n] has a value Xi which is an independent random
variable with a known (discrete) distribution πi. We can adaptively probe at most m items and choose
k values in the committed model, where k is a constant. In the committed model, once we probe an
item and observe its value realization, we must make an irrevocable decision whether to choose it or
not, i.e., we must either add it to the final chosen set C immediately or discard it forever. 3 If we add
the item to the final chosen set C, the realized profit is collected. Otherwise, no profit is collected and
we are going the probe the next item. Our goal is to design an adaptive probing policy such that the
expected value E[

∑
i∈C Xi] is maximized, where C is the final chosen set.

3In [11, 12], it is called the online decision model.
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Theorem 1.4. There is a polynomial time algorithm that finds a committed policy with the expected
profit at least (1−ε)OPT for the committed ProbeTop-k problem, where OPT is the expected total profit
obtained by the optimal policy.

Let bθi represent the action that we probe item i with the threshold θ (i.e., we choose item i if
Xi realizes to a value s such that s ≥ θ). Let It be the the number of items that have been chosen
at the period time t. Using our framework, we have following transition dynamics for the ProbeTop-
k problem.

It+1 = f(It, b
θ
i ) =

{
It + 1 if Xi ≥ θ, It < k,
It otherwise; g(It, b

θ
i ) =

{
Xi if Xi ≥ θ, It < k,
0 otherwise; (1.4)

for t = 1, 2, . . . , T , and h(IT+1) = 0. Since k is a constant, Assumption 1 is immediately satisfied.
There is one extra requirement for the problem: in any realization path, we can choose at most one
action bθi from the set Bi = {bθi }θ. See Section 5 for more details.

1.2.3 Committed Pandora’s Box Problem

For Weitzman’s “Pandora’s box” problem [25], we are given n boxes. For each box i ∈ [n], the
probing cost ci is deterministic and the value Xi is an independent random variable with a known
(discrete) distribution πi. Opening a box i incurs a cost of ci. When we open the box i, its value is
realized, which is a sample from the distribution πi. The goal is to adaptively open a subset P ⊆ [n]
to maximize the expected profit: E

[
maxi∈P {Xi} −

∑
i∈P ci

]
. Weitzman provided an elegant optimal

adaptive strategy, which can be computed in polynomial time. Recently, Singla [23] generalized this
model to other combinatorial optimization problems such as matching, set cover and so on.

In this paper, we focus on the committed model, which is mentioned in Section 1.2.2. Again,
we can adaptively open the boxes and choose at most k values in the committed way, where k is a
constant. Our goal is to design an adaptive policy such that the expected value E

[∑
i∈C Xi −

∑
i∈P ci

]
is maximized, where C ⊆ P is the final chosen set and P is the set of opened boxes. Although the
problem looks like a slight variant of Weitzman’s original problem, it is quite unlikely that we can adapt
Weitzman’s argument (or any argument at all) to obtain an optimal policy in polynomial time. When
k = O(1), we provide the first PTAS for this problem. Note that a PTAS is not known previously even
for k = 1.

Theorem 1.5. When k = O(1), there is a polynomial time algorithm that finds a committed policy
with the expected value at least (1− ε)OPT for the committed Pandora’s Box problem.

Similar to the committed ProbeTop-k problem, let bθi represent the action that we open the box i
with threshold θ. Let It be the number of boxes that have been chosen at the time period t. Using
our framework, we have following system dynamics for the committed Pandora’s Box problem:

It+1 = f(It, b
θ
i ) =

{
It + 1 if Xi ≥ θ, It < k,
It otherwise; g(It, b

θ
i ) =

{
Xi − ci if Xi ≥ θ, It < k,
−ci otherwise; (1.5)

for t = 1, 2, · · · , T , and h(IT+1) = 0. Notice that we never take an action bθi for a value It < k if
E[g(It, b

θ
i )] = Pr[Xt ≥ θ] · E[Xi |Xi ≥ θ] − ci < 0. Then Assumption 1 is immediately satisfied. See

Section 6 for more details.

1.2.4 Stochastic Target Problem

İlhan et al. [16] introduced the following stochastic target problem. 4 In this problem, we are given a
predetermined target T and a set of n items. Each item i ∈ [n] has a value Xi which is an independent

4[16] called the problem the adaptive stochastic knapsack instead. However, their problem is quite different from the
stochastic knapsack problem studied in the theoretical computer science literature. So we use a different name.
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random variable with a known (discrete) distribution πi. Once we decide to insert an item i into a
knapsack, we observe a reward realization Xi which follows the distribution πi. We can insert at most
m items into the knapsack and our goal is to design an adaptive policy such that Pr[

∑
i∈P Xi ≥ T]

is maximized, where P ⊆ [n] is the set of inserted items. For the stochastic target problem, İlhan
et al. [16] provided some heuristic based on dynamic programming for the special case where the
random profit of each item follows a known normal distribution. In this paper, we provide an additive
PTAS for the stochastic target problem when the target is relaxed to (1− ε)T.

Theorem 1.6. There exists an additive PTAS for stochastic target problem if we relax the target to
(1 − ε)T. In other words, for any given constant ε > 0, there is a polynomial-time approximation
algorithm that finds a policy such that the probability of the total rewards exceeding (1− ε)T is at least
OPT− ε, where OPT is the resulting probability of an optimal adaptive policy.

Let the value It be the total profits of the items in the knapsack at time period t. Using our
framework, we have following system dynamics for the stochastic target problem:

It+1 = f(It, i) = It +Xi, g(It, i) = 0, and h(IT+1) =

{
1 if IT+1 ≥ T,
0 otherwise; (1.6)

for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But Assumption 1 (1) is not
satisfied for that the value space V is not of constant size. Hence, we need to discretize the value space
and reduce its size to a constant. See Section 7 for more details.

1.2.5 Stochastic Blackjack Knapsack

Levin et al. [17] introduced the stochastic blackjack knapsack. In this problem, we are given a capacity
C and a set of n items, each item i ∈ [n] has a size Xi which is an independent random variable
with a known distribution πi and a profit pi. We can adaptively insert the items into a knapsack, as
long as the capacity constraint is not violated. Our goal is to design an adaptive policy such that the
expected total profits of all items inserted is maximized. The key feature here different from classic
stochastic knapsack is that we gain zero if overflow, i.e., we will lose the profits of all items inserted
already if the total size is larger than the capacity. This extra restriction might induce us to take more
conservative policies. Levin et al. [17] presented a non-adaptive policy with expected value that is at
least (

√
2 − 1)2/2 ≈ 1/11.66 times the expected value of the optimal adaptive policy. Chen et al. [7]

assumed each size Xi follows a known exponential distribution and gave an optimal policy for n = 2
based on dynamic programming. In this paper, we provide the first bi-criteria PTAS for the problem.

Theorem 1.7. For any fixed constant ε > 0, there is a polynomial-time approximation algorithm for
stochastic blackjack knapsack that finds a policy with the expected profit at least (1− ε)OPT, when the
capacity is relaxed to (1 + ε)C, where OPT is the expected profit of the optimal adaptive policy.

Denote It = (It,1, It,2) and let It,1, It,2 be the total sizes and total profits of the items in the knapsack
at the time period t respectively. When we insert an item i into the knapsack and observe its size
realization, say si, we define the system dynamics function to be

It+1 = f(It, i) = (It,1 + si, It,2 + pi), h(IT+1) =

{
IT+1,2 if IT+1,1 ≤ C,

0 otherwise; (1.7)

and g(It, i) = 0 for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But Assumption
1 (1) is not satisfied for that the value space V is not of constant size. Hence, we need to discretize
the value space and reduce its size to a constant. See Section 8 for more details.

For the case without relaxing the capacity, we can improve the result of 11.66 in [17].

Theorem 1.8. For any ε ≥ 0, there is a polynomial time algorithm that finds a (1
8 − ε)-approximate

adaptive policy for SBK.
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1.3 Related Work

Stochastic dynamic program has been widely studied in computer science and operation research (see,
for example, [4, 21]) and has many applications in different fields. It is a natural model for decision
making under uncertainty. In 1950s, Richard Bellman [3] introduced the “principle of optimality” which
leads to dynamic programming algorithms for solving sequential stochastic optimization problems.
However, Bellman’s principle does not immediate lead to efficient algorithms for many problems due
to “curse of dimensionality” and the large state space.

There are some constructive frameworks that provide approximation schemes for certain classes of
stochastic dynamic programs. Shmoys et al. [22] dealt with stochastic linear programs. Halman et al.
[13, 14, 15] studies stochastic discrete DPs with scalar state and action spaces and designed an FPTAS
for their framework. As one of the applications, they used it to solve the stochastic ordered adaptive
knapsack problem. As a comparison, in our model, the state space S = V × 2A is exponentially large
and hence cannot be solved by previous framework.

Stochastic knapsack problem SKP is one of the most well-studied stochastic combinatorial opti-
mization problem. We are given a knapsack of capacity C. Each item i ∈ [n] has a random value Xi

with a known distribution πi and a profit pi. We can adaptively insert the items to the knapsack, as
long as the capacity constraint is not violated. The goal is to maximize the expected total profit of all
items inserted. For SKP, Dean et al. [9] first provide a constant factor approximation algorithm. Later,
Bhalgat et al. [6] improved that ratio to 3

8 − ε and gave an algorithm with ratio of (1− ε) by using ε
extra budget for any given constant ε ≥ 0. In that paper, the authors first introduced the notion of
block adaptive policies, which is crucial for this paper. The best known single-criterion approximation
factor is 2 [5, 18, 19].

The Probemax problem and ProbeTop-k problem are special cases of the general stochastic probing
framework formulated by Gupta et al. [12]. They showed that the adaptivity gap of any stochastic
probing problem where the outer constraint is prefix-closed and the inner constraint is an intersection
of p matroids is at most O(p3 log(np)), where n is the number of items. The Bernoulli version of
stochastic probing was introduced in [11], where each item i ∈ U has a fixed value wi and is “active”
with an independent probability pi. Gupta et al. [11] presented a framework which yields a 1

4(kin+kout)
-

approximation algorithm for the case when Iin and Iout are respectively an intersection of kin and kout

matroids. This ratio was improved to 1
(kin+kout)

by Adamczyk et al. [1] using the iterative randomized
rounding approach. Weitzman’s Pandora’s Box is a classical example in which the goal is to find out
a single random variable to maximize the utility minus the probing cost. Singla [23] generalized this
model to other combinatorial optimization problems such as matching, set cover, facility location, and
obtained approximation algorithms.

2 Policies and Decision Trees

An instance of stochastic dynamic program is given by J = (V,A, f, g, h, T ). For each item a ∈ A and
values I, J ∈ V, we denote Φa(I, J) := Pr[f(I, a) = J ] and Ga(I) := E[g(I, a)]. The process of applying
a feasible adaptive policy σ can be represented as a decision tree Tσ. Each node v on Tσ is labeled
by a unique item av ∈ A. Before selecting the item av, we denote the corresponding time index, the
current value and the set of the remaining available items by tv, Iv and A(v) respectively. Each node
has several children, each corresponding to a different value realization (one possible f(Iv, av)). Let
e = (v, u) be the s-th edge emanating from s ∈ V where s is the realized value. We call u the s-child
of v. Thus e has probability πe := πv,s = Φav(Iv, s) and weight we := s.

We use P(σ) to denote the expected profit that the policy σ can obtain. For each node v on Tσ,
we define Gv := Gav(Iv). In order to clearly illustrate the tree structure, we add a dummy node at the
end of each root-to-leaf path and set Gv = h(Iv) if v is a dummy node. Then, we recursively define the

7



expected profit of the subtree Tv rooted at v to be

P(v) = Gv +
∑

e=(v,u)

πe · P(u), (2.1)

if v is an internal node and P(v) = Gv = h(Iv) if v is a leaf (i.e., the dummy node). The expected
profit P(σ) of the policy σ is simply P(the root of Tσ). Then, according to Equation (1.2), we have

P(v) ≤ DPtv(Iv,A(v)) ≤ DP1(Iv,A) ≤ max
I∈V

DP1(I,A) = MAX

for each node v. For a node v, we say the path from the root to it on Tσ as the realization path of
v, and denote it by R(v). We denote the probability of reaching v as Φ(v) = Φ(R(v)) =

∏
e∈R(v) πe.

Then, we have
P(σ) =

∑
v∈Tσ

Φ(v) · Gv. (2.2)

We use OPT to denote the expected profit of the optimal adaptive policy. For each node v on the tree
Tσ, by Assumption 1 (2) that f(Iv, av) ≥ Iv, we define µv := Pr[f(Iv, av) > Iv] = 1− Φav(Iv, Iv). For
a set of nodes P , we define µ(P ) :=

∑
v∈P µv.

Lemma 2.1. Given an policy σ, there is a policy σ′ with profit at least OPT − O(ε) · MAX which
satisfies that for any realization path R, µ(R) ≤ O(1/ε), where MAX = maxI∈V DP1(I,A).

Proof. Consider a random realization path R = (v1, v2, . . . , vT+1) generated by σ. Recall in As-
sumption 1 (1), the value space is V = {0, 1, · · · , |V| − 1}. For each node v on the tree, we define
yv := E[f(Iv, av)]− Iv, which is larger than

Iv · Pr[f(Ia, av) = Iv] + (Iv + 1) · Pr[f(Iv, av) > Iv]− Iv = Pr[f(Iv, av) > Iv] = µv.

We now define a sequence of random variables {Yt}t∈[T+1]:

Yt = It −
t−1∑
i=1

yvi .

This sequence {Yi} is a martinale: conditioning on current value Yt, we have

E[Yt+1 | Yt] = E

[
It+1 −

t∑
i=1

yvi

∣∣∣ Yt]

= E

[(
It −

t−1∑
v=1

yvi

)
+ It+1 − It − yvt

∣∣∣ Yt]
= Yt + E[It+1 | Yt]− It − yvt = Yt.

The last equation is due to the definition of yvt . By the martingale property, we have E[YT+1] =
E[Yt] = Y1 = 0 for any t ∈ [T ]. Thus, we have

|V| ≥ E[IT+1] = E

[
T∑
i=1

yvi

]
= E

[∑
v∈R

yv

]
≥ E [µ(R)] .

Let E be the set of realization paths r on the tree for which µ(r) ≥ 1/ε. Then, we have E[µ(R)] ≥∑
r∈E

[
Φ(r) · 1

ε

]
which implies that

∑
r∈E Φ(r) ≤ ε · E[µ(R)] ≤ O(ε), where Φ(r) is the probability of

passing the path r. For each path r ∈ E, let vr be the first node on the path such that µ(R(vr)) ≥ 1/ε,
where R(vr) is the path from the root to the node vr. Let F be the set of such nodes. For the policy
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σ, we have a truncation on the node vr when we reach the node vr, i.e., we do not select items (include
vr) any more in the new policy σ′. The total profit loss is at most∑

v∈F
[Φ(v) · P(v)] ≤ MAX ·

∑
r∈E

Φ(r) ≤ O(ε) ·MAX,

where MAX = maxI∈V DP1(I,A).

W.l.o.g, we assume that all (optimal or near optimal) policies σ considered in this paper satisfy
that for any realization R, µ(R) ≤ O(1/ε).

3 Block Adaptive Policies

The decision tree corresponding to the optimal policy may be exponentially large and arbitrarily
complicated. Now we consider a restrict class of policies, called block-adaptive policy. The concept
was first introduced by Bhalgat et al. [6] in the context of stochastic knapsack. Our construction is
somewhat different from that in [6, 18]. Here, we need to define an order for each block and introduce
the notion of approximate block policy.

Formally, a block-adaptive policy σ̂ can be thought as a decision tree Tσ̂. Each node on the tree
is labeled by a block which is a set of items. For a block M , we choose an arbitrary order ϕ for the
items in the block. According to the order ϕ, we take the items one by one, until we get a bigger value
or all items in the block are taken but the value does not change (recall from Assumption 1 that the
value is nondecreasing). Then we visit the child block which corresponds to the realized value. We
use IM to denote the current value right before taking the items in the block M . Then for each edge
e = (M,N), it has probability

πϕe =
∑
a∈M

[( ∏
ϕb<ϕa

Φb(IM , IM )

)
· Φa(IM , IN )

]

if IN > IM and πϕe =
∏
a∈M Φa(IM , IM ) if IN = IM .

Similar to Equation (2.1), for each block M and an arbitrary order ϕ for M , we recursively define
the expected profit of the subtree TM rooted at M to be

P(M) = GϕM +
∑

e=(M,N)

πϕe · P(N) (3.1)

if M is an internal block and P(M) = h(IM ) if M is a leaf (i.e., the dummy node). Here GϕM is the
expected profit we can get from the block which is equal to

GϕM =
∑
a∈M

[( ∏
ϕb<ϕa

Φb(IM , IM )

)
· Ga(IM )

]
.

Since the profit GϕM and the probability πϕe are dependent on the order ϕ and thus difficult to deal
with, we define the approximate block profit and the approximate probability which do not depend on
the choice of the specific order ϕ:

G̃M =
∑
a∈M
Ga(IM ) and π̃e =

∑
a∈M

 ∏
b∈M\a

Φb(IM , IM )

 · Φa(IM , IN )

 (3.2)

if IN > IM and π̃e =
∏
a∈M Φa(IM , IM ) if IN = IM . Then we recursicely define the approximate profit

P̃(M) = G̃M +
∑

e=(M,N)

π̃e · P̃(N), (3.3)

9



if M is an internal block and P̃(M) = P(M) = h(IM ) if M is a leaf. For each block M , we define
µ(M) :=

∑
a∈M [1− Φa(IM , IM )]. Lemma 3.1 below can be used to bound the gap between the

approximate profit and the original profit if the policy satisfies the following property. Then it suffices
to consider the approximate profit for a block adaptive policy σ̂ in this paper.

(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.

Lemma 3.1. For any block-adaptive policy σ̂ satisfying Property (P1), we have(
1 +O(ε2)

)
· P̃(σ̂) ≥ P(σ̂) ≥

(
1− ε2

)
· P̃(σ̂).

Proof. The right hand of this lemma can be proved by induction: for each block M on the decision
tree, we have

P(M) ≥ (1− ε2) · P̃(M). (3.4)

If M is a leaf, we have P(M) = P̃(M) which implies that Equation (3.4) holds. For an internal block
M , by Property (P1), we have

GϕM ≥

[∏
b∈M

Φb(IM , IM )

]
·
∑
a∈M
Ga(IM ) ≥

[
1−

∑
b∈M

(
1− Φb(IM , IM )

)]
· G̃M ≥ (1− ε2) · G̃M

if M has more than one item and GϕM = G̃M if M has only one item. For each edge e = (M,N), we
have πϕe ≥ π̃e. Then, by induction, we have

P(M) = GϕM +
∑

e=(M,N)

πϕe · P(N)

≥ (1− ε2) · G̃M +
∑

e=(M,N)

π̃e ·
[
(1− ε2) · P̃(N)

]
= (1− ε2) · P̃(M).

To prove the left hand of the lemma, we use Equation (2.2):

P(σ̂) =
∑
M∈Tσ̂

Φ(M) · GϕM

where Φ(M) is the probability of reaching the block M . For each edge e = (M,N), if IM = IN or M
has only one item, we have π̃e = πϕe . Otherwise, we have

π̃e ≥

[∏
b∈M

Φb(IM , IM )

]
·
∑
a∈M

Φa(IM , IN ) ≥ (1− ε2) ·
∑
a∈M

Φa(IM , IN ) ≥ (1− ε2) · πϕe .

Then, for each block M and its realization path R(M) = (M0,M1, . . . ,Mm = M), we have

Φ̃(M)

Φ(M)
=

m−1∏
i=0

π̃(Mi,Mi+1)

πϕ(Mi,Mi+1)

=
∏

i : IMi<IMi+1

π̃(Mi,Mi+1)

πϕ(Mi,Mi+1)

≥ (1− ε2)|V| = 1−O(ε2),

where the last inequality holds because the value is nondecreasing and |V| = O(1). Thus we have

P̃(σ̂) =
∑
M∈Tσ̂

Φ̃M · G̃M ≥
∑
M∈Tσ̂

[(
1−O(ε2)

)
· Φ(M)

]
· GM ≥

(
1−O(ε2)

)
· P(σ̂).

10



Figure 1: Decision tree and block policy

3.1 Constructing a Block Adaptive Policy

In this section, we show that there exists a block-adaptive policy that approximates the optimal
adaptive policy. In order to prove this, from an optimal (or nearly optimal) adaptive policy σ, we
construct a block adaptive policy σ̂ which satisfies certain nice properties and can obtain almost as
much profit as σ does. Thus it is sufficient to restrict our search to the block-adaptive policies. The
construction is similar to that in [18].

Lemma 3.2. An optimal policy σ can be transformed into a block adaptive policy σ̂ with approximate
expected profit P̃(σ̂) at least OPT−O(ε) ·MAX. Moreover, the block-adaptive policy σ̂ satisfies Property
(P1) and (P2):

(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.

(P2) There are at most O(ε−3) blocks on any root-to-leaf path on the decision tree.

Proof. For a node v on the decision tree Tσ and a value s ∈ V, we use vs to denote the s-child of v,
which is the child of v corresponding to the realized value s. We say an edge ev,u is non-increasing if
Iv = Iu and define the leftmost path of v to be the realization path which starts at v, ends at a leaf,
and consists of only the non-increasing edges.

We say a node v is a starting node if v is the root or v corresponds to an increasing value of its
parent v′ (i.e., Iv > Iv′). For each staring node v, we greedily partition the leftmost path of v into
several segments such that for any two nodes u,w in the same segment M and for any value s ∈ V, we
have

|P(us)− P(ws)| ≤ ε2 ·MAX and µ(M) ≤ ε2. (3.5)

Since µ(R) is at most O(1/ε) for each root-to-leaf path R by Lemma 2.1, the second inequality in (3.5)
can yield at most O(ε−3) blocks. Now focus on the first inequality in (3.5). Fix a particular leftmost
path Rv = (v0, v1, . . . , vm) from a starting node v(v = v0) on Tσ. For each value s ∈ V, we have

MAX ≥ DP1(s,A) ≥ P(v0
s) ≥ P(v1

s) ≥ · · · ≥ P(vms ) ≥ 0.

Otherwise, replacing the subtree Tvis with T
vjs

increases the profit of the policy σ for some i < j ≤ m

if P(vis) < P(vjs). Thus, for each particular size s ∈ V, we could cut the path Rv at most ε−2 times.
Since |V| = O(1), we have at most O(ε−2) segments on the leftmost path Rv. Now, fix a particular
root-to-leaf path. Since the value is nondecreasing by Assumption 1 (2), there are at most |V| = O(1)
starting nodes on the path. Thus the first inequality in (3.5) can yield at most O(ε−2) segments on the
root-to-leaf path. In total, there are at most O(ε−3) segments on any root-to-leaf path on the decision
tree.

Now, we are ready to describe the algorithm, which takes a policy σ as input and outputs a block
adaptive policy σ̂. For each node v, we denote its segment seg(v) and use l(v) to denote the last
node in seg(v). In Algorithm 1, we can see that the set of items which the policy σ̂ attempts to take

11



Algorithm 1 A policy σ̂
Input: A policy σ.
1: We start at the root of Tσ.
2: repeat
3: Suppose we are at node v on Tσ. Take the items in seg(v) one by one in the original order (the

order of items in policy σ) until some node u makes a transition to an increasing value, say s.
4: Visit the node l(v)s, the s-child of l(v) (i.e., the last node of seg(v)).
5: If all items in seg(v) have be taken and the value does not change, visit l(v)Iv .
6: until A leaf on Tσ is reached.

always corresponds to some realization path in the original policy σ. Property (P1) and (P2) hold
immediately following from the partition argument. Now we show that the expected profit P(σ̂) that
the new policy σ̂ can obtain is at least OPT−O(ε2) ·MAX.

Our algorithm deviates the policy σ when the first time a node u in the segment seg(v) which makes
a transition to an increasing value, say s. In this case, σ would visit us, the s-child of u and follows
Tus from then on. But our algorithm visits l(v)s, the s-child of l(v) (i.e., the last node of seg(v)), and
follows Tl(v)s . The expected profit gap in each such event can be bounded by

P(us)− P(l(v)s) ≤ ε2 ·MAX,

due to the first inequality in Equation (3.5). Suppose σ pays such a profit loss, and switches to visit
l(v)s. Then, σ and our algorithm always stay at the same node. Note that there are at most |V| = O(1)
starting nodes on any root-to-leaf path. Thus σ pays at most O(1) times in any realization. Therefore,
the total profit loss is at most O(ε2) ·MAX. By Lemma 3.1, we have

P̃(σ̂) ≥
(
1−O(ε2)

)
· P(σ̂) ≥

(
1−O(ε2)

)
·
(
OPT−O(ε2) ·MAX

)
≥ OPT−O(ε) ·MAX.

3.2 Enumerating Signatures

To search for the (nearly) optimal block-adaptive policy, we want to enumerate all possible structures
of the block decision tree. Fixing the topology of the decision tree, we need to decide the subset of
items to place in each block. To do this, we define the signature such that two subsets with the same
signature have approximately the same profit distribution. Then, we can enumerate the signatures of
all blocks in polynomial time and find a nearly optimal block-adaptive policy. Formally, for an item
a ∈ A and a value I ∈ V = (0, 1, . . . , |V| − 1), we define the signature of a on I to be the following
vector

SgI(a) =
(
Φ̄a(I, 0), Φ̄a(I, 1), . . . , Φ̄a(I, |V| − 1), Ḡa(I)

)
,

where

Φ̄a(I, J) =
⌊
Φa(I, J) · n

ε4

⌋
· ε

4

n
and Ḡa(I) =

⌊
Ga(I) · n

ε4MAX

⌋
· ε

4MAX

n

for any J ∈ V. 5 For a block M of items, we define the signature of M on I to be

SgI(M) =
∑
a∈M

SgI(a).

Lemma 3.3. Consider two decision trees T1, T2 corresponding to block-adaptive policies with the same
topology (i.e., T1 and T2 are isomorphic) and the two block adaptive policies satisfiy Property (P1)
and (P2). If for each block M1 on T1, the block M2 at the corresponding position on T2 satisfies that
SgI(M1) = SgI(M2) where I = IM1 = IM2, then |P̃(T1)− P̃(T2)| ≤ O(ε) ·MAX.

5If MAX = maxI∈V DP1(I,A) is unknown, for some several concrete problems (e.g., Probemax), we can get a constant
approximation result for MAX, which is sufficient for our purpose. In general, we can guess a constant approximation
result for MAX using binary search.
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Proof. We focus on the case when M has more than one item. Recall that for each e = (M,N), we
have

π̃e =
∑
a∈M

 ∏
b∈M\a

Φb(IM , IM )

 · Φa(IM , IN )


if IN > IM and π̃e =

∏
a∈M Φa(IM , IM ) if IN = IM . For simplicity, we use (I, J) to replace (IM , IN )

if the context is clear, and write π̃e as πIM if J = I and πJM if J > I.
Fixing a block M , for each item a ∈ M , we define µa := Pr [f(I, a) > I]. By Property (P1) that

µ(M) =
∑

a∈M [1− Φa(I, I)] =
∑

a∈M µa ≤ ε2, we have

πIM =
∏
a∈M

(1− µa) ≤
(

1−
∑

a∈M µa

|M |

)|M |
≤ exp

(
− µ(M)

)
≤ 1− µ(M) + µ(M)2 ≤ 1− µ(M) + ε4

and πIM =
∏
a∈M (1 − µa) ≥ 1 −

∑
a∈M µa = 1 − µ(M). Since

∑
a∈M Φa(I, J) ≤

∑
a∈M µa for any

J > I, we have

πJM =

[∏
b∈M

Φb(I, I)

]
·

[∑
a∈M

Φa(I, J)

Φa(I, I)

]
≥ (1− ε2) ·

∑
a∈M

Φa(I, J) ≥
∑
a∈M

Φa(I, J)− ε4.

It is straightforward to verify the following property when M has only one item:

πIM = 1− µ(M) and πJM =
∑
a∈M

Φa(I, J) for any J > I.

Let M1,M2 be the root blocks of T1, T2 respectively. Since SgI(M1) = SgI(M2), we have that∣∣∣∣∣∣
∑
a∈M1

Φa(I, J)−
∑
a∈M2

Φa(I, J)

∣∣∣∣∣∣ ≤ ε4,

for any J ∈ V. Then, we have

πIM1
− πIM2

≤ 1− µ(M1) + ε4 − (1− µ(M2)) = (µ(M2)− µ(M1)) + ε4 = O(ε4).

and for any J > I

πJM1
− πJM2

≤
∑
a∈M1

Φa(I, J)−
∑
a∈M2

Φa(I, J) + ε4 = O(ε4).

On the tree T1, we replace M1 with M2. For each s ∈ V, we use Ms to denote the s-child of block M1

on T1. Then we have

P̃(M1)− P̃(M2) =
(
G̃M1 − G̃M2

)
+
∑
s∈V

P̃(Ms) ·
(
πsM1
− πsM2

)
≤ ε4 ·MAX +O(ε4) ·MAX

= O(ε4) ·MAX.

We replace all the blocks on T1 by the corresponding blocks on T2 one by one from the root to leaf. The
total profit loss is at most

∑
M∈T2

[
Φ(M) ·O(ε4) ·MAX

]
≤ O(ε)MAX, where Φ(M) is the probability

of reaching M . The inequality holds because the depth of T2 is at most O(ε−3) by Property (P2),
which implies that

∑
M∈T2 Φ(M) ≤ O(ε−3).

Since |V | = O(1), the number of possible signatures for a block is O
(
(n/ε4)|V|

)
= nO(1), which is a

polynomial of n. By Lemma 3.2, for any block decision tree T , there are at most (|V|)O(ε−3) = 2O(ε−3)

blocks on the tree which is a constant.
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3.3 Finding a Nearly Optimal Block-adaptive Policy

In this section, we find a nearly optimal block-adaptive policy and prove Theorem 1.1. To do this, we
enumerate over all topologies of the decision trees along with all possible signatures for each block.
This can be done by a standard dynamic programming.

Consider a given tree topology T . A configuration C is a set of signatures each corresponding
to a block. Let t1 and t2 be the number of paths and blocks on T respectively. We define a vector
CA = (u1, u2, . . . , ut1) where uj is the upper bound of the number of items on the jth path. For each
given i ∈ [n],C and CA, let M(i,C,CA) = 1 indicate that we can reach the configuration C using a
subset of items {a1, . . . , ai} such that the total number of items on each path j is no more than uj and
0 otherwise. SetM(0,0,0) = 1 and we computeM(i,C,CA) in an lexicographically increasing order
of (i,C,CA) as follows:

M(i,C,CA) = max
{
M(i− 1,C,CA),M(i− 1,C′,CA′)

}
(3.6)

Now, we explain the above recursion as follows. In each step, we should decide how to place the item
ai on the tree T . Notice that there are at most t2 = (|V|)O(ε−3) = 2O(ε−3) blocks and therefore at most
2t2 possible placements of item ai and each placement is called feasible if there are no two blocks on
which we place the item ai have an ancestor-descendant relation. For a feasible placement of ai, we
subtract Sg(ai) from each entry in C corresponding to the block we place ai and subtract 1 from CA
on each entry corresponding to a path including ai, and in this way we get the resultant configuration
C′ and CA′ respectively. Hence, the max is over all possible such C′,CA′.

We have shown that the total number of all possible configurations on T is nt2 . The total number
of vectors CA is T t1 ≤ nt1 ≤ nt2 = nt2 where T is the number of rounds. For each given (i,C,CA),
the computation takes a constant time O(2t2). Thus we claim for a given tree topology, finding the
optimal configuration can be done within O(n2O(ε−3)

) time .

The proof of Theorem 1.1. Suppose σ∗ is the optimal policy with expected profit P(σ∗) = OPT. We
use the above dynamic programming to find a nearly optimal block adaptive policy σ. By Lemma 3.2,
there exists a block adaptive policy σ̂ such that

P̃(σ̂) ≥ OPT−O(ε)MAX.

Since the configuration of σ̂ is enumerated at some step of the algorithm, our dynamic programming
is able to find a block adaptive policy σ with the same configuration (the same tree topology and the
same signatures for corresponding blocks). By Lemma 3.3, we have

P̃(σ) ≥ P̃(σ̂)−O(ε)MAX ≥ OPT−O(ε)MAX.

By Lemma 3.1, we have P(σ) ≥
(
1− ε2

)
· P̃(σ) ≥ OPT− O(ε)MAX. Hence, the proof of Theorem 1.1

is completed.

4 Probemax Problem

In this section, we demonstrate the application of our framework to the Probemax problem. Define
the value set S =

⋃
i∈[n] Si where Si is the support of the random variable Xi and the item set

A = {1, 2, . . . , n}. Let the value It be the maximum among the realized values of the probed items at
the time period t. Thus, we begin with the initial value I1 = 0. Since we can probe at most m items,
we set the number of rounds to be T = m. When we probe an item i and observe its value realization,
say Xi, we have the system dynamic functions

It+1 = f(It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (4.1)

for It ∈ S and t = 1, 2, . . . , T . Assumption 1 (2,3) is immediately satisfied. But Assumption 1 (1) is
not satisfied because the value space S is not of constant size. Hence, we need discretization.
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4.1 Discretization

Now, we need to discretize the value space, using parameter ε. We start with a constant factor
approximate solution ÕPT for the Probemax problem with OPT ≥ ÕPT ≥ (1 − 1/e)2OPT (this can
be obtained by a simple greedy algorithm See e.g., Appendix C of [8]). Let X be a discrete random
variable with a support S = (s1, s2, . . . , sl) and psi = Pr[X = si]. Let θ = ÕPT

ε be a threshold. For

“large” size si, i.e., si ≥ θ, set DX(si) = θ. For “small” size si, i.e., si < θ, set DX(si) =
⌊

si
εÕPT

⌋
εÕPT.

We use V = {0, εÕPT, . . . , ÕPT/ε} to denote the discretized support. Now, we describe the discretized
random variable X̃ with the support V. For “large” size, we set

p̃θ = Pr[X̃ = θ] = Pr[X ≥ θ] · E[X | X ≥ θ]
θ

. (4.2)

Under the constraint that the sum of probabilities remains 1, for “small” size d ∈ V \ {θ}, we scale
down the probability by setting

p̃d = Pr[X̃ = d] =
1− Pr[X̃ = θ]

Pr[X < θ]
·

 ∑
s∈S,DX(s)=d

Pr[X = s]

 ≤ ∑
s∈S,DX(s)=d

Pr[X = s]. (4.3)

Although the above discretization is quite natural, there are some technical details. We know how
to solve the problem for the discretized random variables supported on V but the realized values are in
S. Hence, we need to introduce the notion of canonical policys (the notion was introduced in Bhalgat et
al. [6] for stochastic knapsack). The policy makes decisions based on the discretized sizes of variables,
not their true size. More precisely, when the canonical policy σ̃ probes an item X which realizes to
s ∈ S, the policy makes decisions based on discretized size DX(s). In this following lemma, we show
it suffices to only consider canonical policies. We use P(σ, π) to denote the expected profit that the
policy σ can obtain with the given distribution π.

Lemma 4.1. Let π = {πi} be the set of distributions of random variables and π̃ be the discretized
version of π. Then, we have:

1. For any policy σ, there exists a (canonical) policy σ̃ such that

P(σ̃, π̃) ≥ (1−O(ε))P(σ, π)−O(ε)OPT;

2. For any canonical policy σ̃,
P(σ̃, π) ≥ P(σ̃, π̃).

The proof of the lemma can be found in Appendix A.

The proof of Theorem 1.2. Suppose σ∗ is the optimal policy with expected profit P(σ∗, π) = OPT.
Given an instance π, we compute the discretized distribution π̃. By Lemma 4.1 (1), there exists a
canonical policy σ̃∗ such that

P(σ̃∗, π̃) ≥ (1−O(ε)) · P(σ∗, π)−O(ε)OPT = (1−O(ε))OPT.

Now, we present a stochastic dynamic program for the Probemax problem with the discretized distri-
bution π̃. Define the value set V = {0, εÕPT, . . . , ÕPT/ε} and the item set A = {1, 2, . . . , n}, and set
T = m and I1 = 0. When we probe an item i to observe its value realization, say Xi, we define the
system dynamic functions to be

It+1 = f(It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (4.4)
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for It ∈ V and t = 1, 2, . . . , T . Then Assumption 1 is immediately satisfied. By Theorem 1.1, we can
find a policy σ with profit at least

OPTd −O(ε2) ·MAX,

where OPTd denotes the expected profit of the optimal policy for the discretized version π̃ and MAX =

maxI∈V DP1(I,A) = DP1(ÕPT/ε,A) = ÕPT/ε. We can see that OPTd ≥ P(σ̃∗, π̃) ≥ (1−O(ε))OPT.
Thus, by Lemma 4.1 (2), we have

P(σ, π) ≥ P(σ, π̃) ≥ OPTd −O(ε2)MAX ≥ (1−O(ε))OPT−O(ε)OPT = (1−O(ε))OPT,

which completes the proof.

4.2 ProbeTop-k Problem

In this section, we consider the ProbeTop-k problem where the reward is the summation of top-k values
and k is a constant.

Theorem 4.2. There exists a PTAS for the ProbeTop-k problem. In other words, for any fixed constant
ε > 0, there is a polynomial-time approximation algorithm for the ProbeTop-k problem that finds a
policy with the expected value at least (1− ε)OPT.

In this case, It is a vector of the top-k values among the realizes value of the probed items at the
time period t. Thus, we begin with the initial vector I1 = {0}k. When we probe an item i and observe
its value realization Xi, we update the vector by

It+1 = {It +Xi} \min{It, Xi}.

We set g(It, i) = 0 and h(IT+1) = sum(IT+1). Assumption 1 (2,3) is immediately satisfied. Then We
also need the discretization to satisfy the Assumption 1 (1). For Lemma 4.1, we make a small change
as shown in Lemma 4.3. The proof of the lemma can be found in Appendix B. Thus, we can prove
Theorem 4.2 which is essentially the same as the proof of Theorem 1.2 and we omit it here.

Lemma 4.3. Let π = {πi} be the set of distributions of random variables and π̃ be the discretized
version of π. Then, we have:

1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃) ≥ (1−O(ε))P(σ, π)−O(ε)OPT;

2. For any canonical policy σ̃,
P(σ̃, π) ≥ P(σ̃, π̃)−O(ε)OPT.

5 Committed ProbeTop-k Problem

In this section, we prove Theorem 1.4, i.e., obtaining a PTAS for the committed ProbeTop-k. In
the committed model, once we probe an item and observe its value realization, we are committed to
making an irrevocable decision immediately whether to choose it or not. If we add the item to the
final chosen set C, the realized profit is collected. Otherwise, no profit is collected and we are going to
probe the next item.

Let σ∗ be the optimal committed policy. Suppose σ∗ is going to probe the item i and choose the
item i if Xi realizes to a value θ ∈ Si, where Si is the support of the random variable Xi. Then σ∗

would choose the item i if Xi realizes to a larger value s ≥ θ. We call θ threshold for the item i.
Thus the committed policy σ∗ for the committed ProbeTop-k problem can be represented as a decision
tree Tσ∗ . Every node v is labeled by an unique item av and a threshold θ(v), which means the policy
chooses the item av if Xv realizes to a size s ≥ θ(v), and otherwise rejects it.
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Now, we present a stochastic dynamic program for this problem. For each item i, we create a set
of actions Bi = {bθi }θ, where bθi represents the action that we probe item i with the threshold θ. Since
we assume discrete distribution (given explicitly as the input), there are at most a polynomial number
of thresholds. Hence the set of action A = ∪i∈[n]Bi is bounded by a polynomial. The only requirement
is that at most one action from Bi can be selected.

Let It be the the number of items that have been chosen at the period time t. Then we set
V = {0, 1, . . . , k}, I1 = 0. Since we can probe at most m items, we set T = m. When we select an
action bθi to probe the item i and observe its value realization, say Xi, we define the system dynamic
functions to be

It+1 = f(It, b
θ
i ) =

{
It + 1 if Xi ≥ θ, It < k,
It otherwise; g(It, b

θ
i ) =

{
Xi if Xi ≥ θ, It < k,
0 otherwise; (5.1)

for It ∈ V and t = 1, 2, . . . , T , and h(IT+1) = 0. Since k is a constant, Assumption 1 is immediately
satisfied. However, in this case, we cannot directly use Theorem 1.1, due to the extra requirement
that at most one action from each Bi can be selected. In this case, we need to slightly modify the
dynamic program in Section 3.3 to satisfy the requirement. To computeM(i,C,CA), once we decide
the position of the item i, we need to choose a threshold for the item. Since there are at most a
polynomial number of thresholds, it can be computed at polynomial time. Hence, again, we can find
a policy σ with profit at least

OPT−O(ε) ·MAX = (1−O(ε))OPT,

where OPT denotes the expected profit of the optimal policy and MAX = maxI∈V DP1(I,A) =
DP1(0,V) = OPT.

6 Committed Pandora’s Box Problem

In this section, we obtain a PTAS for the committed Pandora’s Box problem. This can be proved
by an analogous argument to Theorem 1.4 in Section 5. Similarly, for each box i, we create a set
of actions Bi = {bθi }, where bθi represents the action that we open the box i with threshold θ. Let
It be the number of boxes that have been chosen at the time period t. Then we set A = ∪i∈[n]Bi,
V = {0, 1, . . . , k}, T = n and I1 = 0. When we select an action bθi to open the box i and observe its
value realization, say Xi, we define the system dynamic functions to be

It+1 = f(It, b
θ
i ) =

{
It + 1 if Xi ≥ θ, It < k,
It otherwise; g(It, b

θ
i ) =

{
Xi − ci if Xi ≥ θ, It < k,
−ci otherwise; (6.1)

for It ∈ V and t = 1, 2, · · · , T , and h(IT+1) = 0. Notice that we never take an action bθi for a value
It < k if E[g(It, b

θ
i )] = Pr[Xt ≥ θ] · E[Xi |Xi ≥ θ] − ci < 0. Then Assumption 1 is immediately

satisfied. Similar to the Committed ProbeTop-k Problem, we can choose at most one action from
each Bi. This can be handled in the same way. So again we can find a policy σ with profit at least
OPT − O(ε) ·MAX = (1−O(ε))OPT, where OPT denotes the expected profit of the optimal policy
and MAX = maxI∈V DP1(I,A) = DP1(0,A) = OPT.

7 Stochastic Target

In this section, we consider the stochastic target problem and prove Theorem 1.6. Define the item set
A = {1, 2, . . . , n}. Let the value It be the total profits of the items in the knapsack at time period t.
Then we set T = m and I1 = 0. When we insert an item i into the knapsack and observe its profit
realization, say Xi, we define the system dynamic functions to be

It+1 = f(It, i) = It +Xi, g(It, i) = 0, and h(IT+1) =

{
1 if IT+1 ≥ T,
0 otherwise; (7.1)
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for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But Assumption 1 (1) is not
satisfied for that the value space V is not of constant size. Hence, we need discretization.

We use the same discretization technique as in [18] for the Expected Utility Maximization. The
main idea is as follows. Without loss of generality, we set T = 1. For an item b, we say Xb is a big
realization if Xb > ε4 and small otherwise. For a big realization of Xb, we simple define the discretized
version of X̃b as bXb

ε5
cε5. For a small realization of Xb, we define X̃b = 0 if Xb < d and X̃b = ε4 if

d ≤ Xb ≤ ε4, where d is a threshold such that Pr[Xb ≥ d |Xb ≤ ε4]ε4 = E[Xb |Xb ≤ ε4]. For more
details, please refer to [18].

Let P(σ, π, 1) be the expected objective value of the policy σ for the instance (π, 1), where π = {πi}
denotes the set of reward distributions and 1 denotes the target. Let π̃ be the discretized version of π.
Then, we have following lemmas.

Lemma 7.1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃, (1− 2ε)) ≥ P(σ, π, 1)−O(ε).

Lemma 7.2. For any canonical policy σ̃,

P(σ̃, π, (1− 2ε)) ≥ P(σ̃, π̃, 1)−O(ε).

The proof of the lemma can be found in Appendix C.

The Proof of Theorem 1.6. Suppose σ∗ is the optimal policy with expected value OPT = P(σ∗, π, 1).
Given an instance π, we compute the discretized distribution π̃. By Lemma 7.1, there exists a policy
σ̃∗ such that

P(σ̃∗, π̃, (1− 2ε)) ≥ P(σ∗, π, 1)−O(ε) = OPT−O(ε).

Now, we present a stochastic dynamic program for the instance (π̃, 1 − 2ε). Define the value set
V = {0, ε5, 2ε5, . . . , 1}, the item set A = {1, 2, . . . , n}, T = m and I1 = 0. When we insert an item i
into the knapsack and observe its profit realization, say Xi, we define the system dynamic functions
to be

It+1 = f(It, i) = min{1, It +Xi}, g(It, i) = 0, and h(IT+1) =

{
1 if IT+1 ≥ 1− 2ε,
0 otherwise; (7.2)

for It ∈ V and t = 1, 2, . . . , T . Then Assumption 1 is immediately satisfied. By Theorem 1.1, we can
find a policy σ with value P(σ, π̃, 1− 2ε) at least

OPTd −O(ε) ·MAX ≥ P(σ̃∗, π̃, (1− 2ε))−O(ε) = OPT−O(ε),

where OPTd denotes the expected value of the optimal policy for instance (π̃, 1 − 2ε) and MAX =
maxI∈V DP1(I,A) = DP1(1,A) = 1. By Lemma 7.2, we have

P(σ, π, (1− 4ε)) ≥ P(σ, π̃, (1− 2ε))−O(ε) ≥ OPT−O(ε),

which completes the proof.

8 Stochastic Blackjack Knapsack

In this section, we consider the stochastic blackjack knapsack and prove Theorem 1.7. Define the item
set A = {1, 2, . . . , n}. Denote It = (It,1, It,2) and let It,1, It,2 be the total sizes and total profits of the
items in the knapsack at the time period t respectively. We set T = n and I1 = (0, 0). When we insert
an item i into the knapsack and observe its size realization, say si, we define the system dynamics
function to be

It+1 = f(It, i) = (It,1 + si, It,2 + pi), g(It, i) = 0, and h(IT+1) =

{
IT+1,2 if IT+1,1 ≤ C,

0 otherwise; (8.1)

18



for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But Assumption 1 (1) is not
satisfied for that the value space V is not of constant size. Hence, we need discretization. Unlike the
stochastic traget problem, we need to discretize the sizes and profits simultaneously.

Consider a given adaptive policy σ. For each node v ∈ Tσ, we have P (v) =
∑

i∈R(v) pi where R(v)
is the realization path from root to v. Define D = {v ∈ LF : W (v) ≤ C} where LF is the set of leaves
on Tσ. Then we have

P(σ) =
∑
v∈D

Φ(v) · P (v). (8.2)

Without loss of generality, we assume C = 1 and Xi ∈ [0, 1] for any i ∈ [n]. Let P(σ, π, 1) be
the expected profit of the policy σ for the instance (π, 1), where π = {πi} denotes the set of size
distributions and 1 denotes the capacity.

8.1 Discretization

Next, we show that item profits can be assumed to be bounded θ2 = OPT/ε2. We set θ1 = OPT/ε
and θ3 = OPT/ε3. Now, we define an item to be a huge profit item if it has profit greater that or equal
to θ2. We use the same discretization technique as in [6] for the stochastic knapsack. For a huge item
bi with size Xi and profit pi, we define a new size X̂i and profit p̂i as follows: for ∀s ≤ 1

Pr[X̂i = s] = Pr[X̂i = s] · pi
θ2
, Pr[X̂i = 1 + 4ε] = 1−

∑
s≤1

Pr[X̂i = s] (8.3)

and p̂i = θ2. In Lemma 8.2, we show that this transformation can be performed with only an O(ε)
loss in the optimal profit. Before to prove the lemma, we need following useful lemma.

Lemma 8.1. For any policy σ on instance (π,C), there exists a policy σ′ such that P(σ′, π,C) =
(1−O(ε))P(σ, π,C) and in any realization path, the sum of profit of items except the last item that σ′

inserts is less than θ1.

Proof. We interrupt the process of the policy σ on a node v when the first time that P (v) ≥ θ1 to
get a new policy σ′, i.e., , we have a truncation on the node v and do not add items (include v) any
more in the new policy σ′. Let F be the set of the nodes on which we have truncation. Then we have∑

v∈F Φ(v) ≤ ε. Thus, the total profit loss is equal to
∑

v∈F Φ(v)OPT ≤ εOPT.

W.l.o.g, we assume that all (optimal or near optimal) policies σ considered in this section satisfy
the following property.

(P3) In any realization path, the sum of profit of items except the last item that σ inserts is less than
θ1.

Lemma 8.2. Let π be the distribution of size and profit for items and π̂ be the scaled version of π by
Equation (8.3). Then, the following statement holds:

1. For any policy σ, there exists a policy σ̂ such that

P(σ̂, π̂,C) = (1−O(ε))P(σ, π,C).

2. For any policy σ,
P(σ, π,C) = (1−O(ε))P(σ, π̂,C).

Proof of Lemma 8.2. For the first result, by Lemma 8.1, there exists a policy σ̂ such that P(σ̂, π,C) =
(1−O(ε))P(σ, π,C) and in any realization path, there are at most one huge profit item and always at
the end of the policy. For huge profit item v, the expected profit contributed by the realization path
from root to v to P(σ̂, π,C) is

Φ(v) · Pr[Xv ≤ C−W (v)] · (P (v) + pv).

19



In P(σ̂, π̂,C) with scaled distributions on huge profit items, the expected profit contributed by the
realization path from the root to v is

Φ(v) · Pr[X̂v ≤ C−W (v)] · (P (v) + θ2)

= Φ(v) ·
(

Pr[Xv ≤ C−W (v)] · pv
θ2

)
· (P (v) + θ2).

Since v is a huge profit item, we have pv ≥ θ2, which implies pv
θ2
· (P (v) + θ2) ≥ P (v) + pv. This

completes the proof of the first part.
Now, we prove the second part. By Property (P3), for a huge item v, we have P (v) ≤ OPT/ε.

Then we have

pv
θ2
· (P (v) + θ2) = pv ·

(
1 +

P (v)

θ2

)
≤ pv · (1 + ε) ≤ (1 + ε)(pv + P (v)).

This completes the proof of the second part.

In order to discretize the profit, we define the approximate profit P̃(σ, π̂) =
∑

v∈D Φ(v) · P̃ (v) where

P̃ (v) = θ3 ·

1−
∏

i∈R(v)

(
1− pi

θ3

) (8.4)

Lemma 8.3 below can be used to bound the gap between the approximate profit and the original profit.

Lemma 8.3. For any adaptive policy σ for the scaled distribution π̂, we have

P(σ, π̂,C) ≥ P̃(σ, π̂,C) ≥ (1−O(ε))P(σ, π̂,C).

Proof. Fix a node v on the tree Tσ. For the left side, we have

P̃ (v) = θ3 ·

1−
∏

i∈R(v)

(
1− pi

θ3

) ≤ θ3 ·

1−

1−
∑
i∈R(v)

pi
θ3

 =
∑
i∈R(v)

pi = P (v).

For the right size, we have

P̃ (v) = θ3 − θ3 ·

 ∏
i∈R(v)

(
1− pi

θ3

)
≥ θ3 − θ3 ·

1−
∑
i∈R(v)

pi
θ3

+

 ∑
i∈R(v)

pi
θ3

2
=

 ∑
i∈R(v)

pi

 · [1−
∑

i∈R(v) pi

θ3

]
≥ (1−O(ε))P (v),

where the last inequality holds by Property (P3) that P (v) ≤ θ1 + θ2.

Now, we choose the same discretization technique to discretize the sizes with parameter ε3 which
is used in Section 7. For an item b, we say Xb is a big realization if Xb > ε4×3 and small otherwise.
For a big realization of Xb, we simple define the discretized version of X̃b as b Xbε5×3 cε5×3. For a small
realization of Xb, we define X̃b = 0 if Xb < d and X̃b = ε4×3 if d ≤ Xb ≤ ε4×3, where d is a threshold
such that Pr[Xb ≥ d |Xb ≤ ε4×3]ε4×3 = E[Xb |Xb ≤ ε4×3]. For more details, please refer to [18].
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Lemma 8.4. Let π̂ be the distribution of size and profit for items and be π̃ be the discretized version
of π̂. Then, the following statements holds:

1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃, (1 + 2ε)) ≥ (1−O(ε))P(σ, π̂, 1).

2. For any canonical policy σ̃,

P(σ̃, π̂, (1 + 2ε)) ≥ (1−O(ε))P(σ̃, π̃, 1).

8.2 Proof of Theorem 1.7

Now, we ready to prove Theorem 1.7.

The proof of Theorem 1.7. Suppose σ∗ is the optimal policy with expected profit OPT = P(σ∗, π, 1).
Given an instance π, we compute the scaled distribution π̂ and discretized distribution π̃. By Lemma
8.3, Lemma 8.4 (1) and Lemma 8.2 (1), there exist a policy σ̃∗ such that

P̃(σ̃∗, π̃, (1 + 2ε))

≥ (1−O(ε))P(σ̃∗, π̃, (1 + 2ε)) [Lemma 8.3]
≥ (1−O(ε))P(σ∗, π̂, 1) [Lemma 8.4 (1)]
≥ (1−O(ε))P(σ∗, π, 1) [Lemma 8.2 (1)]
= (1−O(ε))OPT.

Now, we present a stochastic dynamic program for the instance (π̃, 1 + 2ε). Define the value set
V = {0, ε5×3, 2ε5×3, . . . , 1 + 3ε} × {0, 1} and the item set A = {1, 2, . . . , n}. We set T = n and I1 = 0.
When we insert an item i into the knapsack, we observe its size realization si and toss a coin to get a
value p̃i with Pr[p̃i = 1] = p̂i

θ3
and Pr[p̃i = 0] = 1− p̂i

θ3
. Then we define the system dynamics function

to be
It+1 = f(It, i) = (It+1,1, It+1,2) = (min{1 + 3ε, It,1 + si},max{It,2, p̃i}) (8.5)

and g(It, i) = 0 for It ∈ V and t = 1, 2, · · · , T . The terminal function is

h(IT+1) =

{
θ3 · IT+1,2 if IT+1 ≤ 1 + 2ε,

0 otherwise; (8.6)

Then Assumption 1 is immediately satisfied. By Theorem 1.1, we can find a policy σ with profit
P̃(σ, π̃, 1 + 2ε) at least

OPTd −O(ε4) ·MAX ≥ P̃(σ̃∗, π̃, (1 + 2ε))−O(ε)OPT = (1−O(ε))OPT,

where OPTd denotes the expected approximate profit of the optimal policy for instance (π̃, 1 + 2ε) and
MAX = maxI∈V DP1(I,A) = DP1((0, 1),A) = θ3 = OPT

ε3
. By Lemma 8.3, Lemma 8.4 (2) and Lemma

8.2 (2), we have

P(σ, π, (1 + 4ε))

≥ (1−O(ε))P(σ, π̂, (1 + 4ε)) [Lemma 8.2 (2)]
≥ (1−O(ε))P(σ, π̃, (1 + 2ε)) [Lemma 8.4 (2)]

≥ (1−O(ε))P̃(σ, π̃, (1 + 2ε)) [Lemma 8.3]
≥ (1−O(ε))OPT,

which completes the proof.
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8.3 Without Relaxing the Capacity

Before design a policy for SBK without relaxing the capacity C, we establish a connection between
adaptive policies for SKP and SBK. For a particular stochastic knapsack instance J , we use OPTSKP(J )
to denote the expected profit of an optimal policy for stochastic knapsack. Similarly, we denote
OPTSBK(J ) for stochastic blackjack knapsack. Note that a policy for SBK is also a policy for SKP.

Lemma 8.5. For any policy σ for SKP on instance J = (π,C), there exists a policy σ′ for SBK such
that

PSBK(σ′, π,C) ≥ 1

4
· PSKP(σ, π,C). (8.7)

Proof. W.l.o.g, we assume that for any node v ∈ Tσ, we have P(v) ≤ PSKP(σ, π,C). Otherwise, we use
the subtree Tv to instead Tσ for SKP. Set θ = PSKP(σ, π,C)/2. We interrupt the process of the policy
σ on a node v when the first time that the summation of is larger than or equal to θ to get a new
policy σ′, i.e., we have a truncation on the node v and do not insert the item (include v) any more in
the new policy σ′. Let F be the set of the nodes on which we have a truncation. Let F̄ = LF \F be
the set of rest leaves, where LF is the set of leaves of the tree Tσ′ . Then we have

2θ =
∑
v∈F̄

Φ(v) · P (v) +
∑
v∈F

Φ(v) · [P (v) + P(v)]

≤ θ ·
∑
v∈F̄

Φ(v) +
∑
v∈F

Φ(v)[P (v) + 2θ]

= θ +
∑
v∈F

Φ(v)[P (v) + θ]

≤ θ + 2
∑
v∈F

Φ(v)P (v).

Thus the expect profit of the policy σ′ for SBK is equal to∑
v∈F

Φ(v)P (v) ≥ 1

2
· θ =

1

4
· PSKP(σ, π,C).

Lemma 8.6. For any stochastic knapsack instance J , we have

OPTSKP(J ) ≥ OPTSBK(J ) ≥ 1

4
OPTSKP(J ). (8.8)

For any fixed ε ≥ 0 and instance J , by the result of [5], there is a polynomial time algorithm to
compute a policy σ for SKP with expected profit (1

2 − ε)OPTSKP(J ). By Lemma 8.5, we can find a
policy σ′ for SBK expected profit at least

1

4
× (

1

2
− ε)OPTSKP(J ) ≥ (

1

8
− ε)OPTSBK(J ).

This completes the proof of Theorem 1.8.

9 Concluding Remarks

In the paper, we formally define a model based on stochastic dynamic programs. This is a generic
model. There are a number of stochastic optimization problems which fit in this model. We design a
polynomial time approximation schemes for this model.

We also study two important stochastic optimization problems, Probemax problem and stochastic
knapsack problem. Using the stochastic dynamic programs, we design a PTAS for Probemax problem,
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which improves the best known approximation ratio 1− 1/e. To improve the approximation ratio for
Probemax with a matroid constraint is still a open problem.

Next, we focus the variants of stochastic knapsack problem: stochastic blackjack knapsack and
stochastic target problem. Using the stochastic dynamic programs and discretization technique, we
design a PTAS for them if allowed to relax the capacity or target. To improve the ratio for stochastic
knapsack problem and variants without relaxing the capacity is still a open problem.
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A Proof of Lemma 4.1

Lemma 4.1. Let π = {πi} be the set of distributions of random variables and π̃ be the discretized
version of π. Then, we have:

1. For any policy σ, there exists a (canonical) policy σ̃ such that

P(σ̃, π̃) ≥ (1−O(ε))P(σ, π)−O(ε)OPT;

2. For any canonical policy σ̃,
P(σ̃, π) ≥ P(σ̃, π̃).
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Proof of Lemma 4.1. Recall that for each node v on the decision tree Tσ, the value Iv is the maximum
among the realized value of the probed items right before probing the item av. For a path R, we use
W (R) to the denote the value of the last node on the path. Let E be the set of all root-to-leaf paths
in Tσ. Then we have

P(σ, π) =
∑
r∈E

Φ(r) ·W (r). (A.1)

For the first result of Lemma 4.1, we prove that there is a randomized canonical policy σr such
that P(σr, π̃) ≥ (1−O(ε))P(σ, π)−O(ε)OPT. Thus such a deterministic policy σ̃ exists. Let θ = ÕPT

ε
be a threshold. We interrupt the process of the policy σ on a node v when the first time we probe an
item whose weight exceeds this threshold to get a new policy σ′ i.e., we have a truncation on the node
v and do not probe items (include v) any more in the new policy σ′. The total profit loss is equal to∑

v∈LF
Φ(v) · [P(v)− Iv] ≤

∑
v∈LF

Φ(v) · OPT = OPT×
∑
v∈LF

Φ(v) ≤ O(ε) · OPT,

where LF is the set of the nodes on which we have a truncation. The last inequality holds because
OPT ≥

∑
v∈LF Φ(v) · P(v) ≥ θ ·

∑
v∈LF Φ(v).

The randomized policy σr is derived from σ′ as follows. T (σr, π̃) has the same tree structure as
T (σ′, π). If σr probes an item X̃ and observes a discretized size d ∈ V, it chooses a random branch in
T (σr, π̃) among those sizes that are mapped to d, i.e., {we | DX(we) = d} according to the probability
distribution

Pr[branch e is chosen] =
Pr[X = we]∑

s |DX(s)=d Pr[X = s]
.

Then by Equation (4.3), if we < θ we have

p̃e = Pr[X̃ = d] · Pr[branch e is chosen] = pe ·
1− Pr[X̃ = θ]

Pr[X < θ]

and
w̃e =

⌊
we

εÕPT

⌋
· εÕPT ≥ we − εÕPT.

Fact. For any node v in the tree T (σ′, π) such that Iv < θ, we have

Φ̃(v) ≥ (1−O(ε))Φ(v). (A.2)

When we regard the path R(v) as a policy, the expected profit of the path R(v) can obtain is at
least

θ ·

1−
∏

i∈R(v)

(
1− Pr[X̃i = θ]

) ,
which is less than OPT, where R(v) is the path from the root to the node v. Then we have∏
i∈R(v)

(
1− Pr[X̃i = θ]

)
≥ 1−O(ε), which implies that

Φ̃(v) = Φ(v) ·
∏

i∈R(v)

1− Pr[X̃i = θ]

Pr[Xi ≤ θ]
≥ (1−O(ε))Φ(v).

Now we bound the profit that we can obtain from T (σr, π̃). Let E be the set of all root-to-leaf paths
in T (σ′, π). We split it into two parts E1 = {r ∈ E : W (r) < θ} and E2 = {r ∈ E : W (r) ≥ θ}. For
the first part, we have∑

r∈E1

Φ̃(r) · W̃ (r) ≥
∑
r∈E1

Φ̃(r) ·
[
W (r)−O(εÕPT)

]
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≥ (1−O(ε))

∑
r∈E1

Φ(r) ·W (r)

−O(εÕPT).

As mentioned before, for any path r ∈ E2, we interrupt the process of the policy σ when the first time
we probe an item whose weight exceeds this threshold θ. We use `r to denote the item for path r. By
Equation (4.2), we have Pr[X̃ = θ] · θ = Pr[X ≥ θ] · E[X | X ≥ θ]. Then, we have∑

r∈E2

Φ̃(r) · W̃ (r) =
∑
r∈E2

Φ̃(`r) · Pr[X̃`r = θ] · θ

=
∑
r∈E2

Φ̃(`r) · Pr[X`r ≥ θ] · E[X`r | X`r ≥ θ]

≥
∑
r∈E2

(1−O(ε))Φ(`r) · Pr[X`r ≥ θ] · E[X`r | X`r ≥ θ]

= (1−O(ε))
∑
r∈E2

Φ(r) ·W (r).

In summation, the expected profit P(σr, π̃) is equal to∑
r∈E

Φ̃(r) · W̃ (r) ≥ (1−O(ε))
∑
r∈E

Φ(r) ·W (r)−O(εÕPT)

= (1−O(ε))P(σ′, π)−O(ε)OPT

= (1−O(ε))P(σ, π)−O(ε)OPT.

Next, we prove the second result of Lemma 4.1. Recall that a canonical policy makes decisions
based on the discretized sizes. Then T (σ̃, π) has the same tree structure as T (σ̃, π̃), except that it
obtain the true profit rather than the discretized profit. By Equation (4.3), for an edge e with a weight
w̃e < θ on T (σ̃, π̃), we have

πe =
∑

s∈S:DX(s)=w̃e

Pr[X = s] ≥ π̃e.

Fact. For any node v in the tree T (σ̃, π̃) with Iv < θ, we have

Φ̃(v) ≤ Φ(v). (A.3)

Similarly, we split the root-to-leaf paths set E into two parts E1 = {r ∈ E : maxe∈r w̃e < θ} and
E2 = {r ∈ E : maxe∈r w̃e = θ}. Then, we have

P(σ̃, π̃) =
∑
r∈E1

Φ̃(r) · W̃ (r) +
∑
r∈E2

Φ̃(r) · W̃ (r)

=
∑
r∈E1

Φ̃(r) · W̃ (r) +
∑
r∈E2

Φ̃(`r) · Pr[X̃`r = θ] · θ

≤
∑
r∈E1

Φ(r) ·W (r) +
∑
r∈E2

Φ(`r) · Pr[X`r ≥ θ] · E[X`r | X`r ≥ θ]

=
∑
r∈E1

Φ(r) ·W (r) +
∑
r∈E2

Φ(r) ·W (r)

= P(σ̃, π)
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B Proof of Lemma 4.3

Lemma 4.3. Let π = {πi} be the set of distributions of random variables and π̃ be the discretized
version of π. Then, we have:

1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃) ≥ (1−O(ε))P(σ, π)−O(ε)OPT;

2. For any canonical policy σ̃,
P(σ̃, π) ≥ P(σ̃, π̃)−O(ε)OPT.

Proof. This can be proved by an analogous argument as Lemma 4.1. For the first result, we design a
randomized canonical policy σr as before. Here, W (r) is the summation of the top-k weights on the
path r. For a root-to-leaf path r, the profit we get is equal to

W (r) = max
C⊆r,|C|≤k

[∑
i∈C

Xi

]
. (B.1)

Now we bound the profit we can obtain from T (σr, π̃). recall that E1 = {r ∈ E : maxe∈r we < θ} and
E2 = {r ∈ E : maxe∈r we ≥ θ} where E is the set of all root-to-leaf paths. Then for any r ∈ E1, we
have

W̃ (r) ≤W (r)− k · εÕPT = W (r)−O(εÕPT).

For the first part, we have∑
r∈E1

Φ̃(r) · W̃ (r) ≥ (1−O(ε))
∑
r∈E1

[Φ(r) ·W (r)]−O(εÕPT).

For the second part, we have∑
r∈E2

Φ̃(r) · W̃ (r) =
∑
r∈E2

Φ̃(`r) · Pr[X̃`r = θ] · (θ + W̃ ′(`r))

≥
∑
r∈E2

Φ̃(`r) · Pr[X`r ≥ θ] ·
(
E[X`r |X`r ≥ θ] + W̃ ′(`r)

)
≥
∑
r∈E2

Φ̃(`r) · Pr[X`r ≥ θ] ·
(
E[X`r |X`r ≥ θ] +W ′(`r)−O(εÕPT)

)
≥ (1−O(ε))

∑
r∈E2

Φ(r) ·W (r)−O(εÕPT)

where W ′(r) is the summation of top k − 1 weights on the path r. In summation, the expected profit
P(σr, π̃) is equal to ∑

r∈E
Φ̃(r) · W̃ (r) ≥ (1−O(ε))P(σ, π)−O(ε)OPT.

Now, we prove the second result. Similarly, we have∑
r∈E1

Φ̃(r) · W̃ (r) ≤
∑
r∈E1

Φ(r) ·W (r)

and ∑
r∈E2

Φ̃(r) · W̃ (r) =
∑
r∈E2

Φ̃(`r) · Pr[X̃`r = θ] · (θ + W̃ ′(`r))

≤
∑
r∈E2

Φ(`r) · Pr[X`r ≥ θ] · E[X`r |X`r ≥ θ] +O(ε)OPT

≤
∑
r∈E2

Φ(r) ·W (r) +O(ε)OPT

where the first inequality holds since Pr[X̃ = θ] ≤ ε. Hence, the proof of the lemma is completed.
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C Proof of Lemma 7.1 and Lemma 7.2

Lemma 7.1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃, (1− 2ε)) ≥ P(σ, π, 1)−O(ε).

Lemma 7.2. For any canonical policy σ̃,

P(σ̃, π, (1− 2ε)) ≥ P(σ̃, π̃, 1)−O(ε).

Consider a given adaptive policy σ and for each v ∈ Tσ, let W (v) and W̃ (v) be the sum of rewards
on the path R(v) before and after discretization respectively. Recall that Φ(v) is the probability
associated with the path R(v). In the proof of Lemma 4.2 of [18], it shows that for any given set F
of nodes in Tσ which contains at most one node from each root-leaf path, our discretization has the
below property: ∑

v∈F :|W (v)−W̃ (v)|≥2ε

Φ(v) = O(ε). (C.1)

The Proof of Lemma 7.1. Consider a randomized canonical policy σ̃ which has the same structure as
σ. If σr inserts an item X̃ and observes a discretized size d ∈ V, it chooses a random branch in
T (σr, π̃) among those sizes that are mapped to d, i.e., {we | DX(we) = d} according to the probability
distribution

Pr[branch e is chosen] =
Pr[X = we]∑

s |DX(s)=d Pr[X = s]
.

Then, the probability of an edge on Tσr is the same as that of the corresponding edge on Tσ. The only
different is two edges are labels with different weight we on Tσ and w̃e on Tσr .

Notice that P(σ̃, π̃, (1−2ε)) is the sum of all paths R(v) with W̃ (v) ≥ 1−2ε. Define D = {v ∈ LF :

W (v) ≥ 1} and D̃ = {v ∈ LF : W̃ (v) ≥ 1 − 2ε}, where LF is the set of leaves on T (σ, π). Therefore
we have

P(σ, π, 1) =
∑
v∈D

Φ(v), P(σ̃, π̃, (1− 2ε)) =
∑
v∈D̃

Φ(v).

Consider the set ∆1 = D \ D̃. For each v ∈ ∆1, we have W (v) ≥ 1 and W̃ (v) < 1 − 2ε. Thus we
claim that |W (v) − W̃ (v)| > 2ε, implying that ∆1 ⊆ ∆

.
= {v ∈ LF : |W (v) − W̃ (v)| ≥ 2ε}. Thus we

have

P(σ̃, π̃, (1− 2ε)) ≥ P(σ, π, 1)−
∑
v∈∆1

Φ(v) ≥ P(σ, π, 1)−
∑
v∈∆

Φ(v) ≥ P(σ, π, 1)−O(ε).

The Proof of Lemma 7.2. In our case, we focus on the decision tree T (σ̃, π̃, 1) and assume all w̃e take
discretized value. T (σ̃, π̃, 1) has the same tree structure as T (σ̃, π, 1− 2ε).

Define ∆2 = {v ∈ LF,W (v) < 1 − 2ε, W̃ (v) ≥ 1}, where LF is the set of leaves in Tσ. Then
we see W̃ (v) −W (v) > 2ε, implying ∆2 ⊆ ∆ = {v ∈ LF : |W (v) − W̃ (v)| ≥ 2ε}. By the result of
Equation (C.1), we see ∑

v∈∆2

Φ(v) ≤
∑
v∈∆

Φ(v) = O(ε).

Therefore we claim that

P(σ̃, π, (1− 2ε)) ≥ P(σ̃, π̃, 1)−
∑
v∈∆2

Φ(v) ≥ P(σ̃, π̃, 1)−O(ε).
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D Proof of Lemma 8.4

Lemma 8.4. Let π̂ be the distribution of size and profit for items and be π̃ be the discretized version
of π̂. Then, the following statements hold:

1. For any policy σ, there exists a canonical policy σ̃ such that

P(σ̃, π̃, (1 + 2ε)) ≥ (1−O(ε))P(σ, π̂, 1).

2. For any canonical policy σ̃,

P(σ̃, π̂, (1 + 2ε)) ≥ (1−O(ε))P(σ̃, π̃, 1).

The proof of Lemma 8.4. For the first result, consider a randomized canonical policy σ̃ which has the
same structure as σ. If σr inserts an item X̃ and observes a discretized size d ∈ V, it chooses a random
branch in T (σr, π̃) among those sizes that are mapped to d, i.e., {we | DX(we) = d} according to the
probability distribution

Pr[branch e is chosen] =
Pr[X = we]∑

s |DX(s)=d Pr[X = s]
.

Then, the probability of an edge on Tσr is the same as that of the corresponding edge on Tσ. The only
different is two edges are labels with different weight we on Tσ and w̃e on Tσr .

We have P (v) =
∑

i∈R(v) pi which is less than O(OPT/ε) by Lemma 8.2. Define D = {v ∈ LF :

W (v) ≤ 1} and D̃ = {v ∈ LF : W̃ (v) ≤ 1 + 2ε}, where LF is the set of leaves on T (σ, π). Then we
have

P(σ, π̂, 1) =
∑
v∈D

Φ(v) · P (v), P(σ̃, π̃, 1 + 2ε) =
∑
v∈D̃

Φ(v) · P (v).

Define ∆ = {v ∈ LF : |W (v) − W̃ (v)| ≥ 2ε}. Then we have D \ D̃ ⊆ ∆. By the result of Equation
(C.1), we have ∑

v∈D\D̃

Φ(v) ≤
∑
v∈∆

Φ(v) = O(ε3).

By Property (P1), for any node v, we have P (v) ≤ θ1 + θ2.Then the gap P(σ, π, 1)− P(σ̃, π̃, (1 + 2ε) is
less than ∑

v∈D\D̃

Φ(v) · P (v) ≤
∑

v∈D\D̃

Φ(v) · 2OPT

ε2
= O(ε)OPT.

This completes the proof of the first part.
Now, we prove the second part. Since a canonical policy makes decisions based on the discretized,

T (σ̃, π̃, 1) has the same tree structure as T (σ̃, π̂, 1 + 2ε). Define D = {v ∈ LF : W (v) ≤ 1 + 2ε} and
D̃ = {v ∈ LF : W̃ (v) ≤ 1}, where LF is the set of leaves on T (σ̃, π̃, 1). Then we have

P(σ̃, π̂, 1 + 2ε) =
∑
v∈D

Φ(v) · P (v), P(σ̃, π̃, 1) =
∑
v∈D̃

Φ(v) · P (v).

Then the gap P(σ̃, π̃, 1)− P(σ̃, π̂, (1 + 2ε) is equal to∑
v∈D̃\D

Φ(v) · P (v) ≤
∑

v∈D̃\D

Φ(v) · 2OPT

ε2
= O(ε)OPT.
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