
Algorithmica (2011) 60: 110–151
DOI 10.1007/s00453-009-9344-x

Deterministic Sampling Algorithms for Network Design

Anke van Zuylen

Received: 17 November 2008 / Accepted: 13 July 2009 / Published online: 25 July 2009
© Springer Science+Business Media, LLC 2009

Abstract For several NP-hard network design problems, the best known approx-
imation algorithms are remarkably simple randomized algorithms called Sample-
Augment algorithms in Gupta et al. (J. ACM 54(3):11, 2007). The algorithms draw
a random sample from the input, solve a certain subproblem on the random sample,
and augment the solution for the subproblem to a solution for the original problem.
We give a general framework that allows us to derandomize most Sample-Augment
algorithms, i.e. to specify a specific sample for which the cost of the solution created
by the Sample-Augment algorithm is at most a constant factor away from optimal.
Our approach allows us to give deterministic versions of the Sample-Augment algo-
rithms for the connected facility location problem, in which the open facilities need
to be connected by either a tree or a tour, the virtual private network design problem,
2-stage rooted stochastic Steiner tree problem with independent decisions, the a priori
traveling salesman problem and the single sink buy-at-bulk problem. This partially
answers an open question posed in Gupta et al. (J. ACM 54(3):11, 2007).

Keywords Approximation algorithms · Derandomization · Network design

1 Introduction

For several NP-hard network design problems, the best known approximation algo-
rithms are remarkably simple randomized algorithms. The algorithms draw a random

A preliminary version of this paper [28] appeared in the Proceedings of the 16th European
Symposium on Algorithms, 2008.

This research was conducted while the author was at Cornell University and was supported in part by
NSF grant CCF-0514628, the National Natural Science Foundation of China Grant 60553001, and
the National Basic Research Program of China Grant 2007CB807900,2007CB807901.

A. van Zuylen (�)
Institute for Theoretical Computer Science, Tsinghua University, Beijing 100084, P.R. China
e-mail: anke@tsinghua.edu.cn

mailto:anke@tsinghua.edu.cn

Algorithmica (2011) 60: 110–151 111

sample from the input, solve a certain subproblem on the random sample, and aug-
ment the solution for the subproblem to a solution for the original problem. Follow-
ing [18], we will refer to this type of algorithm as a Sample-Augment algorithm. We
give a general framework that allows us to derandomize most Sample-Augment algo-
rithms, i.e. to specify a specific sample for which the cost of the solution created by
the Sample-Augment algorithm is at most a constant factor away from optimal. The
derandomization of the Sample-Augment algorithm for the single source rent-or-buy
problem in Williamson and Van Zuylen [29] is a special case of our approach, but our
approach also extends to the Sample-Augment algorithms for the connected facility
location problem, in which the open facilities need to be connected by either a tree or
a tour [5], the virtual private network design problem [3, 4, 15, 18], 2-stage stochastic
Steiner tree problem with independent decisions [16], the a priori traveling salesman
problem [24], and even the single sink buy-at-bulk problem [13, 15, 18], although for
this we need to further extend our framework.

Generally speaking, the problems we consider are network design problems: they
feature an underlying undirected graph G = (V ,E) with edge costs ce ≥ 0 that sat-
isfy the triangle inequality, and the algorithm needs to make decisions such as on
which edges to install how much capacity or at which vertices to open facilities. The
Sample-Augment algorithm proceeds by randomly marking a subset of the vertices,
solving some subproblem that is defined on the set of marked vertices, and then aug-
menting the solution for the subproblem to a solution for the original problem. We
defer definitions of the problems we consider to the relevant sections.

As an example, in the single source rent-or-buy problem, we are given a source
s ∈ V , a set of sinks t1, . . . , tk ∈ V and a parameter M > 1. An edge e can either be
rented for sink tj in which case we pay ce, or it can be bought and used by any sink,
in which case we pay Mce. The goal is to find a minimum cost set of edges to buy
and rent so that for each sink tj the bought edges plus the edges rented for tj contain
a path from tj to s. In the Sampling Step of the Sample-Augment algorithm in Gupta
et al. [15, 18] we mark each sink independently with probability 1

M
. Given the set of

marked sinks D, the Subproblem Step finds a Steiner tree on D ∪ {s} and buys the
edges of this tree. In the Augmentation Step, the subproblem’s solution is augmented
to a feasible solution for the single source rent-or-buy problem by renting edges for
each unmarked sink tj to the closest vertex in D ∪ {s}.

To give a deterministic version of the Sample-Augment algorithm, we want to find
a set D such that for this set D the cost of the Subproblem Step plus the Augmen-
tation Step is at most the expected cost of the Sample-Augment problem. A natural
approach is to try and use the method of conditional expectation [6] to achieve this.
However, in order to do this we would need to be able to compute the conditional ex-
pectation of the cost of the Sample-Augment problem, conditioned on including/not
including tj ∈ D. Unfortunately, we do not know how to do this for any of the prob-
lems for which good Sample-Augment algorithms exist.

We will see however that we can get around this problem by using a good upper
bound to provide an estimate of the conditional expectations required. We give more
details behind our approach in Sect. 1.2, but first discuss some related work.

112 Algorithmica (2011) 60: 110–151

1.1 Related Work

Sample-Augment algorithms were first introduced by Gupta, Kumar and Roughgar-
den [15]. They use the framework to give new approximation algorithms for the single
source rent-or-buy, virtual private network design and single sink buy-at-bulk prob-
lems. The main principle behind the analysis of the Sample-Augment algorithms is
that under the right sampling strategy (i) it is not too difficult to bound the expected
subproblem cost in terms of the optimal cost, and (ii) the expected augmentation cost
is bounded by the expected subproblem cost.

Gupta, Kumar, Pál and Roughgarden [18] extend this framework, and show how to
obtain an improved constant factor approximation algorithm for the multicommodity
rent-or-buy problem. The key new ingredient is the notion of cost shares. If D is the
set of marked vertices in the Sample-Augment algorithm, then a cost sharing method
gives a way of allocating the cost of the subproblem’s solution on D to the vertices
in D. By imposing a “strictness” requirement on the cost sharing method, they ensure
that the expected cost incurred for vertex j in the augmentation step is approximately
equal to j ’s expected cost share. It is again not difficult to bound the expected cost
of the subproblem in terms of the optimal cost, and hence the strictness of the cost
shares implies that we can also bound the expected augmentation cost.

The ideas of strict cost shares and sampling algorithms have since then been suc-
cessfully generalized and applied to give approximation algorithms for certain sto-
chastic optimization problems. The Boosted Sampling algorithm for two-stage sto-
chastic optimization problems was introduced by Gupta, Pál, Ravi and Sinha [16],
and it was extended to multi-stage stochastic optimization problems by the same au-
thors in [17].

As an example, consider the two-stage rooted stochastic Steiner tree problem, of
which we will consider a special case in Sect. 3.2. Given a graph G = (V ,E) with
edge costs ce ≥ 0, we are given a root s and terminals t1, . . . , tk and a parameter
σ > 1. A solution can be constructed in two stages. In the first stage we do not know
which terminals need to be connected to the root, and we can buy edges at cost ce. In
the second stage, we do know which terminals need to connect to the root (we will call
these active) and we can buy edges at cost σce. We assume the probability distribution
from which the set of active terminals is drawn is known, either explicitly or as a
black box from which we can sample. Examples of explicit probability distributions
that have been considered in the literature are the case when there is a polynomial
number of possible scenarios or the case when terminals are active independently
with known probabilities. The Boosted Sampling algorithm is very similar to the
Sample-Augment algorithms: we draw a random sample from the terminals, we buy
a Steiner tree on these vertices in the first stage, and then we augment the solution in
the second stage to connect the active terminals. However the sampling distribution
according to which we sample terminals is now determined by the given probability
distribution on the terminals.

In summary, the simple ideas underlying the Sample-Augment algorithms and
Boosted Sampling algorithms have given rise to the best approximation algorithms
for a great variety of problems. We refer the reader to the relevant sections below for
references for the best known sampling algorithms for the problems we consider.

Algorithmica (2011) 60: 110–151 113

The Sample-Augment algorithm for the single source rent-or-buy problem, the
connected facility location problem where the open facilities need to be connected by
a tree, and the a priori traveling salesman problem with independent decisions have
been derandomized prior to this work: Gupta, Srinivasan and Tardos [19] derandom-
ize the Sample-Augment algorithm for single source rent-or-buy using the following
idea. Rather than sampling the sinks independently at random, the sinks are sam-
pled with limited dependence. Gupta et al. show that under this sampling strategy,
the Sample-Augment algorithm is a 4.2-approximation algorithm. Then, since this
sampling strategy has a small sample space, the algorithm can be derandomized by
considering all points in the sample space. Williamson and Van Zuylen [29] give an
alternative derandomization of the Sample-Augment algorithm for single source rent-
or-buy which, in combination with the improved analysis of Eisenbrand, Grandoni,
Rothvoßand Schäfer [5], results in a deterministic 3.28-approximation algorithm.
Their approach is also used by Eisenbrand et al. [5] to derandomize the Sample-
Augment algorithm for connected facility location where the open facilities need to
be connected by a tree and by Shmoys and Talwar [24] for the a priori traveling sales-
man problem with independent decisions. The approach proposed by Williamson and
Van Zuylen [29] is in fact a special case of the derandomization method we describe
here.

For some of the problems we consider there exist deterministic algorithms that
are not based on derandomizations of Sample-Augment algorithms. Swamy and Ku-
mar [26] give a primal-dual 8.55-approximation algorithm for the connected facility
location problem. Their analysis was recently refined to give a slightly better approx-
imation guarantee of 6.55 [20]. Talwar [27] gives a constructive proof that a linear
programming relaxation of the single sink buy-at-bulk problem introduced by Garg,
Khandekar, Konjevod, Ravi, Salman and Sinha [9] has an integrality gap of at most
216.

Finally, Goyal, Gupta, Leonardi and Ravi [12] recently proposed a primal-dual 8-
approximation algorithm for the rooted stochastic Steiner tree problem with a poly-
nomial number of scenarios. However, in Sect. 3.2 we consider the version of the
problem with independent decisions, for which no deterministic constant factor ap-
proximation algorithm was known.

1.2 Our Results

We give deterministic versions of the Sample-Augment algorithms: in particular, we
show how to find a subset of the vertices D such that for this set D the cost of the
Subproblem Step plus the Augmentation Step is at most the expected cost of the
Sample-Augment problem.

Our approach is based on the method of conditional expectations [6]. We iterate
through the vertices and decide whether or not to include the vertex in D depending
on which choice gives a lower expected cost. Since we do not know how to compute
the conditional expectation of the cost of the Sample-Augment problem, conditioned
on including/not including the vertex in D, we need to use an estimate of these con-
ditional expectations. What we show is that we can find an upper bound on the cost
of the Subproblem Step plus Augmentation Step that can be efficiently computed. In

114 Algorithmica (2011) 60: 110–151

addition, we show that the expectation of the upper bound under the sampling strat-
egy of the randomized Sample-Augment algorithm is at most βOPT , where OPT is
the optimal value and β > 1 is some constant. Then we can use this upper bound and
the method of conditional expectation to find a set D such that the upper bound on
the cost of the Subproblem Step plus the Augmentation Step is not more than the
expected upper bound for the randomized Sample-Augment algorithm, and hence at
most βOPT as well.

Our upper bound on the cost of the Subproblem Step will be obtained from a par-
ticular feasible solution to a linear programming (LP) relaxation of the subproblem.
We then use well-known approximation algorithms to obtain a solution to the sub-
problem that comes within a constant factor of the subproblem LP. We do not need to
solve the LP relaxation of the subproblem: instead we show that the optimal solution
to an LP relaxation of the original problem defines a set of feasible solutions to the
subproblem’s LP relaxation. We note that for some of the problems we consider, for
example the virtual private network design problem, this requires us to “discover” a
new LP relaxation of the original problem.

Using this technique, we derive the best known deterministic approximation al-
gorithms for the single source rent-or-buy problem, 2-stage rooted stochastic Steiner
tree problem with independent decisions, the a priori traveling salesman problem with
independent decisions, the connected facility location problem in which the open fa-
cilities need to be connected by a Steiner tree or traveling salesman tour, the virtual
private network design problem and the single sink buy-at-bulk problem. We thus par-
tially answer an open question in Gupta et al. [18] (the only problem in [18] that we do
not give a deterministic algorithm for is the multicommodity rent-or-buy problem). In
addition, our analysis implies that the integrality gap of an (even) more natural LP re-
laxation than the one considered in [9, 27] for the single sink buy-at-bulk problem has
integrality gap at most 27.72. We summarize our results in Table 1. The table uses the
following abbreviations: SSRoB (single source rent-or-buy problem), 2-stage Steiner
(2-stage rooted stochastic Steiner tree problem with independent decisions), a pri-
ori TSP (a priori traveling salesman problem with independent decisions), CFL-tree
(connected facility location problem in which open facilities need to be connected by
a tree), CFL-tour (connected facility location problem in which open facilities need
to be connected by a tour), k-CFL-tree (connected facility location problem in which
at most k facilities can be opened and the facilities need to be connected by a tree),
CPND (virtual private network design problem) and SSBaB (single sink buy-at-bulk
problem). The first column contains the best known approximation guarantees for the
problems, which are obtained by randomized Sample-Augment algorithms. The sec-
ond column gives the previous best known approximation guarantee by a determinis-
tic algorithm. Entries marked with ∗ were obtained based on the work of Williamson
and Van Zuylen [29] that describes a special case of the approach in this paper. The
third column shows the approximation guarantees in this paper.

We remark that our method is related to the method of pessimistic estimators of
Raghavan [23]: Raghavan also uses an efficiently computable upper bound in com-
bination with the method of conditional expectation to derandomize a randomized
algorithm, where he first proves that the expected “cost” of the randomized algorithm
is small. (We note that in the problem he considers, the cost of the algorithm is either

Algorithmica (2011) 60: 110–151 115

Table 1 Summary of Best
Known Approximation
Guarantees

Problem Randomized Prev. best deterministic Our result

SSRoB 2.92 [5] 4.2 [19], 3.28∗ [5, 29] 3.28

2-stage Steiner 3.55 [16] logn [21] 8

A priori TSP 4 [24], O(1)[10] 8∗ [24] 6.5

CFL-tree 4 [5] 6.55 [20], 4.23∗ [5] 4.23

k-CFL-tree 6.85 [5] 6.98∗ [5] 6.98

CFL-tour 4.12 [5] – 4.12

VPND 3.55 [4] logn [7] 8.02

SSBaB 24.92 [13] 216 [27] 27.72

0 (the solution is “good”) or 1 (the solution is “bad”).) However, in Raghavan’s work
the probabilities in the randomized algorithm depend on a solution to a linear pro-
gram, but the upper bounds are obtained by a Chernoff-type bound. In our work, the
probabilities in the randomized algorithm are already known from previous works,
but we demonstrate upper bounds on the conditional expectations that depend on
linear programming relaxations.

In the next section, we will give a general description of a Sample-Augment algo-
rithm, and give a set of conditions under which we can give a deterministic variant of
a Sample-Augment algorithm. In Sect. 3.1 we illustrate our method using the single
source rent-or-buy problem as an example. In Sects. 3.2, 3.3, 3.4, and 3.5 we show
how to obtain deterministic versions of the Sample-Augment algorithms for the 2-
stage rooted stochastic Steiner tree with independent decisions, the a priori traveling
salesman problem, connected facility location problems and the virtual private net-
work design problem. In Sect. 4 we show how to extend the ideas from Sect. 2 to give
a deterministic algorithm for the single sink buy-at-bulk problem. We conclude with
a brief discussion of some future directions in Sect. 5.

2 General Framework

We give a high-level description of a class of algorithms first introduced by Gupta et
al. [15], which were called Sample-Augment algorithms in [18]. Given a (minimiza-
tion) problem P , a Sample-Augment problem is defined by

(i) a set of elements D = {1, . . . , n} and sampling probabilities p = (p1, . . . , pn),
(ii) a subproblem Psub(D) defined for any D ⊆ D, and
(ii) an augmentation problem Paug(D,SolSub(D)) defined for any D ⊆ D and so-

lution Solsub(D) to Psub(D).

The Sample-Augment algorithm samples from D independently according to the
sampling probabilities p, solves the subproblem and augmentation problem for the
random subset, and returns the union of the solutions given by the subproblem and
augmentation problem. We give a general statement of the Sample-Augment algo-
rithm in Fig. 1.

We remark that we will consider Sample-Augment algorithms in which the Aug-
mentation Step only depends on D, and not on Solsub(D).

116 Algorithmica (2011) 60: 110–151

P -Sample-Augment(D,p, Psub, Paug)

1. (Sampling Step) Mark each element j ∈ D independently with probability pj .
Let D be the set of marked elements.

2. (Subproblem Step) Solve Psub on D. Let Solsub(D) be the solution found.
3. (Augmentation Step) Solve Paug on D,Solsub(D). Let

Solaug(D,Solsub(D)) be the solution found.
4. Return Solsub(D) and Solaug(D,Solsub(D)).

Fig. 1 Sample-Augment algorithm

In the following, we let OPT denote the optimal cost of the problem we are con-
sidering. Let Csub(D) be the cost of Solsub(D), and let Caug(D) be the cost of
Solaug(D,Solsub(D)). Let CSA(D) = Csub(D) + Caug(D). We will use blackboard
bold characters to denote random sets. For a function C(D), let Ep[C(D)] be the ex-
pectation of C(D) if D is obtained by including each j ∈ D in D independently with
probability pj .

Note that, since the elements are included in D independently, the conditional
expectation of Ep[CSA(D)] given that j is included in D is Ep,pj ←1[CSA(D)], and
the conditional expectation, given that j is not included in D is Ep,pj ←0[CSA(D)].
By the method of conditional expectations [6], one of these conditional expectations
has value at most Ep[CSA(D)]. Hence if we could compute the expectations for dif-
ferent vectors of sampling probabilities, we could iterate through the elements and
transform p into a binary vector (corresponding to a deterministic set D) without
increasing Ep[CSA(D)].

Unfortunately, this is not very useful to us yet, since it is generally not the case
that we can compute Ep[CSA(D)]. However, as we will show, for many problems and
corresponding Sample-Augment algorithms, it is the case that Ep[Caug(D)] can be
efficiently computed for any vector of probabilities p, and does not depend on the
solution Solsub(D) for the subproblem, but only on the set D. The expected cost of
the subproblem’s solution is more difficult to compute. What we therefore do instead
is replace the cost of the subproblem by an upper bound on its cost: Suppose there
exists a function Usub : 2D → R such that Csub(D) ≤ Usub(D) for any D ⊆ D, and
suppose we can efficiently compute Ep[Usub(D)] and Ep[Caug(D)] for any vector p.
If there exists a known vector p̂ such that

Ep̂[Usub(D)] + Ep̂[Caug(D)] ≤ βOPT, (1)

then we can use the method of conditional expectation to find a set D such that
Usub(D) + Caug(D) ≤ βOPT , and hence also Csub(D) + Caug(D) ≤ βOPT .

In particular, the upper bounds that we will consider will all be given by solutions
to an LP relaxation of the subproblem.

Theorem 1 Given a minimization problem P and an algorithm P -Sample-Augment,
suppose the following four conditions hold:

(i) Ep[Caug(D)] depends only on D, not on Solsub(D), and can be efficiently com-
puted for any p.

Algorithmica (2011) 60: 110–151 117

(ii) There exists an LP relaxation Sub-LP(D) of Psub(D) and an algorithm for
Psub(D) that is guaranteed to output a solution to Psub(D) that costs at most a
factor α times the cost of any feasible solution to Sub-LP(D).

(iii) We can compute vectors b and r(j) for j = 1, . . . , n such that y(D) = b +∑
j∈D r(j) is a feasible solution to Sub-LP(D) for any D ⊆ D.

(iv) There exists a known vector p̂ such that

Ep̂[Caug(D)] + αEp̂[CLP(y(D))] ≤ βOPT,

where CLP(y(D)) is the objective value of y(D) for Sub-LP(D).

Then there exists a deterministic β-approximation algorithm for P .

Proof Let Usub(D) = αCLP(y(D)). If we use the algorithm from (ii) in the Sub-
problem Step of P -Sample-Augment, then by (ii), Csub(D) ≤ Usub(D). By (iii)
Ep[Usub(D)] can be efficiently computed for any p, and by (iv) (1) is satisfied.
Hence we can use the method of conditional expectation to find a set D such that
Csub(D) + Caug(D) ≤ Usub(D) + Caug(D) ≤ βOPT . �

In many cases, (i) is easily verified. In the problems we are considering here, the
subproblem looks for a Steiner tree or a traveling salesman tour. It was shown by Goe-
mans and Bertsimas [11] that the cost of the minimum cost spanning tree is at most
twice the optimal value of the Steiner tree LP relaxation, and hence the minimum
cost spanning tree costs at most twice the objective value of any feasible solution
to this LP. For the traveling salesman problem, it was shown by Wolsey [30], and
independently by Shmoys and Williamson [25], that the Christofides algorithm [2]
gives a solution that comes within a factor of 1.5 of the subtour elimination LP. The
solution y(D) = b + ∑

j∈D r(j) will be defined by using the optimal solution to an
LP relaxation of the original problem, so that for appropriately chosen probabilities
Ep̂[CLP(y(D))] is bounded by a constant factor times OPT . Using the analysis for
the randomized algorithm to bound Ep̂[Caug(D)], we can then show that (iv) holds.

2.1 Conditioning on the Size of D

In some cases, Psub and Paug are only defined for |D| ≥ k for some small k > 0. Dif-
ferent algorithms deal with this in different ways, but one possible approach to ensure
that |D| ≥ k is to redo the Sampling Step of the randomized Sample-Augment algo-
rithm until the set of marked elements has size at least k. We note that this does not
necessarily give algorithms that run in polynomial time, but that it has been shown
that such sampling strategies can be implemented efficiently (see for example [24]).
To derandomize these algorithms, we will use the following modified version of The-
orem 1.

Theorem 2 Given a minimization problem P , an algorithm P -Sample-Augment
which repeats the Sampling Step until it outputs D with |D| ≥ k for some constant k,
suppose condition (i) of Theorem 1 holds conditioned on |D| ≥ k, conditions (ii) and
(iii) of Theorem 1 hold for all |D| ≥ k and suppose we have a vector q such that

118 Algorithmica (2011) 60: 110–151

Eq [Caug(D) | |D| ≥ k] + αEq [CLP(y(D)) | |D| ≥ k] ≤ βOPT,

then there exists a deterministic β-approximation algorithm for P .

Proof We show that we can find in polynomial time a vector p̂ with |{j : p̂j = 1}| ≥ k

such that

Ep̂[Caug(D)] + αEp̂[CLP(y(D))] ≤ βOPT. (2)

We can then use the method of conditional expectation as before, and we will be
guaranteed that we only consider vectors p with |{j : pj = 1}| ≥ k, i.e. probability
distributions over sets D with |D| ≥ k.

For ease of notation, we let C(D) = Caug(D) + CLP(y(D)). Let f (D) be the k

elements in D with the smallest indices, and let F be the set of all subsets of D with
exactly k elements. Then

Eq [C(D) | |D| ≥ k] =
∑

F∈F

Eq [C(D) | |D| ≥ k,f (D) = F]P[f (D) = F].

Hence there exists some F such that Eq [C(D) | |D| ≥ k,f (D) = F] ≤ Eq [C(D) |
|D| ≥ k]. Now, let p̂j = 1 if j ∈ F , p̂j = 0 if j
∈ F and there exists i ∈ F with
i < j and p̂j = qj otherwise. Then Eq [C(D) | |D| ≥ k,f (D) = F] = Ep̂[C(D)] and
p̂ satisfies (2).

We can find the right set F by trying all sets in F and computing Ep̂[C(D)] for
the corresponding vector p̂. By our assumptions, we can compute these expectations
efficiently, and the vector p̂ which gives the smallest expectation satisfies (2). �

3 Derandomization of Sample-Augment Algorithms

In this section, we show how Theorems 1 and 2 give the results in Table 1. We will
use the following notation. Given an undirected graph G = (V ,E) with edge costs
ce ≥ 0 for e ∈ E, we denote by �(u, v) the length of the shortest path from u ∈ V to
v ∈ V with respect to costs c. For S ⊆ V we let �(u,S) = minv∈S �(u, v). For T ⊆ E,
we will use the short hand notation c(T) for

∑
e∈T ce for T ⊆ E. Finally, for a subset

S ⊂ V , we let δ(S) = {{i, j} ∈ E : i ∈ S, j ∈ V \S}.
3.1 Single Source Rent-or-Buy

We illustrate Theorem 1 by showing how it can be used to give a deterministic algo-
rithm for the single source rent-or-buy problem. We note that this was already done
in [29]; however, we repeat this here because this is arguably the simplest application
of Theorem 1 and hence provides a nice illustration of the more general approach.

In the single source rent-or-buy problem, we are given an undirected graph G =
(V ,E), edge costs ce ≥ 0 for e ∈ E, a source s ∈ V and a set of sinks t1, . . . , tk ∈ V ,
and a parameter M > 1. A solution is a set of edges B to buy, and for each sink tj
a set of edges Rj to rent, so that B ∪ Rj contains a path from s to tj . The cost of
renting an edge e is ce and the cost of buying e is Mce . We want to find a solution
(B,R1, . . . ,Rk) that minimizes Mc(B) + ∑k

j=1 c(Rj).

Algorithmica (2011) 60: 110–151 119

SSRoB-Sample-Augment(G = (V ,E), c, s, {t1, . . . , tk},p)

1. (Sampling Step) Mark each sink tj with probability pj . Let D be the set of
marked sinks.

2. (Subproblem Step) Construct a Steiner tree on D ∪ {s} and buy the edges of the
tree.

3. (Augmentation Step) Rent the shortest path from each unmarked sink to the
closest terminal in D ∪ {s}.

Fig. 2 Sample-Augment algorithm for single source rent-or-buy

Gupta et al. [15] propose the random sampling algorithm given in Fig. 2, where
they set pj = 1

M
for all j = 1, . . . , k.

Note that the expected cost of the Augmentation Step of SSRoB-Sample-Augment
does not depend on the tree bought in the Subproblem Step. Gupta et al. [15] show
that if each sink is marked independently with probability 1

M
then the expected cost

of the Augmentation Step can be bounded by 2OPT .

Lemma 3 [15] If pj = 1
M

for j = 1, . . . , k, then E[Caug(D)] ≤ 2OPT .

Theorem 4 [29] There exists a deterministic 4-approximation algorithm for SSRoB.

Proof We verify that the four conditions of Theorem 1 hold. We begin by show-
ing that Ep[Caug(D)], the expected cost incurred in the Augmentation Step, can be
computed for any vector of sampling probabilities p. Fix a sink t ∈ {t1, . . . , tk}. We
label the terminals in {s, t1, . . . , tk} as r0, . . . , rk such that �(t, r0) ≤ �(t, r1) ≤ · · · ≤
�(t, rk). If we define ps = 1, then the expected cost incurred for t in the Augmenta-
tion Step is

k∑

i=0

�(t, ri)pri

∏

j<i

(1 − prj),

and Ep[Caug(D)] is the sum over these values for each t ∈ {t1, . . . , tk}.
Now consider the subproblem on a given subset D of {t1, . . . , tk}. From Goemans

and Bertsimas [11] we know that we can efficiently find a Steiner tree on D ∪ {s} of
cost at most twice the optimal value (and hence the objective value of any feasible
solution) of the following Sub-LP:

min
∑

e∈E

Mceye

(Sub-LP(D)) s.t.
∑

e∈δ(S)

ye ≥ 1 ∀S ⊂ V : s
∈ S,D ∩ S
= ∅,

ye ≥ 0 ∀e ∈ E.

We now want to define a feasible solution y(D) to Sub-LP(D) for any D ⊂ D, such
that y(D) can be written as b+∑

tj ∈D r(j), since this form will allow us to efficiently

120 Algorithmica (2011) 60: 110–151

compute Ep[CLP(y(D))]. To do this, we use an LP relaxation of the single source
rent-or-buy problem. Let be be a variable that indicates whether we buy edge e, and
let r

j
e indicate whether we rent edge e for sink tj .

min
∑

e∈E

Mcebe +
∑

e∈E

k∑

j=1

cer
j
e

(SSRoB-LP) s.t.
∑

e∈δ(S)

(be + r
j
e) ≥ 1 ∀S ⊂ V : tj ∈ S, s
∈ S,

be, r
j
e ≥ 0 ∀e ∈ E,j = 1, . . . , k.

SSRoB-LP is a relaxation of the single source rent-or-buy problem, since the optimal
solution to the single source rent-or-buy problem is feasible for SSRoB-LP and has
objective value OPT . Let b̂, r̂ be an optimal solution to SSRoB-LP. For a given set
D ⊆ D and edge e ∈ E we let

ye(D) = b̂e +
∑

tj ∈D

r̂
j
e .

Clearly, y(D) is a feasible solution to Sub-LP(D) for any D.
Finally, we show that 2Ep̂[CLP(y(D))] + Ep̂[Caug(D)] ≤ 4OPT if we let p̂j = 1

M
for every tj ∈ D: by Lemma 3, the expected cost of the Augmentation Step is at most
2OPT , and 2Ep̂[CLP(y(D))] is

2
∑

e∈E

Mce

(

b̂e +
k∑

j=1

1

M
r̂
j
e

)

≤ 2OPT.

Hence, applying Theorem 1, we get that there exists a 4-approximation algorithm for
the single sink rent-or-buy problem. �

As was shown by [5, 29], a better deterministic approximation algorithm can be
obtained by using the improved analysis of the randomized algorithm given by Eisen-
brand, Grandoni, Rothvoß and Schäfer [5], which allows us to more carefully balance
the charge against the optimal renting and the optimal buying costs. For a given opti-
mal solution, let B∗ be the buying cost and R∗ the renting cost. We need the following
lemma from Eisenbrand et al. [5].

Lemma 5 [5] If pj = a
M

for j = 1, . . . , k then Ep[Caug(D)] ≤ 0.807
a

B∗ + 2R∗.

Note that if we mark each tj with probability a
M

, then Ep[CLP(y(D))] =
∑

e∈E Mceb̂e + a
∑

e∈E

∑k
j=1 cer̂

j
e . We would like to claim that this is at most

B∗ + aR∗, but this is not necessarily the case. However, it is true if we replace
the objective of SSROB-LP by

min
∑

e∈E

Mcebe + a
∑

e∈E

k∑

j=1

cer
j
e .

Algorithmica (2011) 60: 110–151 121

Hence if we use the optimal solution to SSROB-LP with the modified objective to
define y(D), then for p̂ = a

M
, we get that

Ep̂[Caug(D)] + 2Ep̂[CLP(y(D))] ≤ 0.807

a
B∗ + 2R∗ + 2B∗ + 2aR∗

=
(

0.807

a
+ 2

)

B∗ + (2 + 2a)R∗.

Choosing a = 0.636, we get the following result.

Theorem 6 [5, 29] There exists a deterministic 3.28-approximation algorithm for
Single Source Rent-or-Buy.

3.2 2-Stage Stochastic Steiner Tree with Independent Decisions

The input of the 2-stage rooted stochastic Steiner tree problem with independent de-
cisions consists of a graph G = (V ,E) with edge costs ce ≥ 0, a root s and terminals
t1, . . . , tk with activation probabilities q1, . . . , qk and a parameter σ > 1. A solution
can be constructed in two stages. In the first stage we do not know which terminals
need to be connected to the root, and we can install edges at cost ce. In the second
stage, we do know which terminals need to connect to the root (we will call these
active) and we can install edges at cost σce. Each terminal tj is active independently
with probability qj .

The Boosted Sampling algorithm proposed in [16] is very similar to the SSRoB-
Sample-Augment algorithm. We first sample from the terminals, where terminal tj
is chosen independently with probability min{1, σqj }. Let D be the set of terminals
selected. The first stage solution is a Steiner tree on D ∪ {s}. In the second stage, we
augment the first stage solution by adding shortest paths from each active terminal
to the closest terminal in D ∪ {s}. We are interested in the expected cost of the algo-
rithm’s solution, and hence we can replace the Augmentation Step by adding shortest
path from each terminal tj to the closest terminal in D ∪{s} with edge costs σqj ce as
this gives the same expected cost. Hence the Boosted Sampling algorithm for 2-stage
rooted stochastic Steiner tree problem with independent decisions is the same as the
SSRoB-Sample-Augment algorithm with M = 1, except that in the Augmentation
Step, the renting cost for renting edge e for terminal j is σqj ce.

We begin by repeating bounds on the first stage and second stage costs of this
algorithm that follow from Theorem 6.2 in [16] and the Prim cost shares in Example
2.8 of [18].

Lemma 7 [16, 18] If pj = min{1, σqj } for j = 1, . . . , k and if we were able to
find a minimum cost solution to the subproblem, then Ep[Csub(D)] ≤ OPT , and
Ep[Caug(D)] ≤ 2OPT .

We derandomize this algorithm using Theorem 1. It is clear that condition (i) of
Theorem 1 is again met. For condition (ii) we can use the same Sub-LP as in the
previous section (with M = 1), and we again have α = 2. Now, we need a good LP

122 Algorithmica (2011) 60: 110–151

relaxation to define the solutions y(D) to the Sub-LP. We claim that the optimal value
of the following LP is at most OPT :

min
1

3

∑

e∈E

(

cebe +
k∑

j=1

σqj cer
j
e

)

(2-stage-LP) s.t.
∑

e∈δ(S)

(be + r
j
e) ≥ 1 ∀S ⊂ V : s
∈ S, tj ∈ S,

be, r
j
e ≥ 0 ∀e ∈ E,j = 1, . . . , k.

To see that this is indeed a relaxation of the problem, suppose we could find the
optimal Steiner tree on D ∪ {s} in the Subproblem Step of the Boosted Sampling
algorithm. Then it follows from Lemma 7 that the expected cost of the solution con-
structed by the Boosted Sampling algorithm is at most 3OPT . Hence there exists
some sample D such that the cost of the optimal Steiner tree on D ∪ {s} plus the
cost of the Augmentation Step is at most 3OPT . Letting be = 1 for the first stage
edges in this solution, and r

j
e = 1 for the second stage edges, thus gives a solution to

2-stage-LP of cost at most OPT .
Given an optimal solution b̂, r̂ to 2-stage-LP, we define ye(D) = b̂e + ∑

tj ∈D r̂
j
e

as before, and taking p̂j = min{1, qjσ }, we find that

2Ep̂[CLP(y(D))] ≤ 2
∑

e∈E

(

ceb̂e +
k∑

j=1

σqj cer̂
j
e

)

≤ 6OPT.

Combining this with the bound on the second stage cost from Lemma 7, Theorem 1
allows us to get the following result.

Theorem 8 There exists a deterministic 8-approximation algorithm for the 2-stage
rooted stochastic Steiner tree problem with independent decisions.

3.3 A Priori Traveling Salesman with Independent Decisions

In the a priori traveling salesman problem with independent decisions, we are given
a graph G = (V ,E) with edge costs ce ≥ 0 and a set of terminals t1, . . . , tk , where
terminal tj is active independently of the other terminals with probability qj . The goal
is to find a so-called master tour on the set of all terminals, such that the expected
cost of shortcutting the master tour to the set of active terminals is minimized.

Shmoys and Talwar [24] recently showed that a Sample-Augment type algorithm
for this problem is a 4-approximation algorithm. In the Sampling Step, they randomly
mark the terminals, where each terminal tj is marked independently with probability
pj = qj . If fewer than 2 terminals are marked, we redo the marking step, until we
have a set of marked terminals of size at least 2. We note that Shmoys and Talwar [24]
show how to implement this sampling strategy in polynomial time; however, since we
will just be concerned with derandomizing the algorithm, we omit the details of this
here. In the Subproblem Step they find a tour on the marked terminals and finally, in

Algorithmica (2011) 60: 110–151 123

APTSP-Sample-Augment(G = (V ,E), c,Q, q̃, s, {t1, . . . , tk},p)

1. (Sampling Step) Mark each terminal tj with probability pj . Let D be the set of
marked terminals. If |D| < 2 then remove all markings and repeat the Sampling
Step.

2. (Subproblem Step) Construct a traveling salesman tour on D, and incur cost
Qce for each edge on the tour.

3. (Augmentation Step) Add two copies of the shortest path from each unmarked
terminal tj to the closest terminal in D and incur cost q̃j ce for each edge.

Fig. 3 Sample-Augment algorithm for the a priori traveling salesman problem

the Augmentation Step they add two copies of the shortest path from each unmarked
terminal to the closest marked terminal.

It is not hard to see that the Sample-Augment algorithm finds an Euler tour on the
terminals, and we can shortcut the Euler tour to give the traveling salesman tour that
will be the master tour.

To evaluate the expected cost of the shortcut tour on a set of active terminals A,
Shmoys and Talwar upper bound the cost of shortcutting the master tour on A by
assuming that for any A of size at least 2 we always traverse the edges found in the
Subproblem Step, and we traverse the edges found in the Augmentation Step only for
the active terminals. If |A| < 2, then the cost of the shortcut master tour is 0.

Since we are interested in upper bounding the expected cost of the shortcut tour,
we can just consider the expectation of this upper bound. Let Q be the probability that
at least 2 terminals are active, and let q̃j be the probability that tj is active conditioned

on the fact that at least 2 terminals are active, i.e.
qj (1−∏

i
=j (1−qi))

Q
. The expected cost

for an edge e in the tour constructed by the Subproblem Step is Qce and the expected
cost for an edge e that is added for terminal j in the Augmentation Step is q̃j ce. Hence
we can instead analyze the algorithm APTSP-Sample-Augment given in Fig. 3.

We will use the following bounds on the expected cost of the algorithm that follow
from Shmoys and Talwar [24].

Lemma 9 [24] If pj = qj for every terminal, and if we were able to find a min-
imum cost solution to the subproblem, then Eq [Csub(D) | |D| ≥ 2] ≤ OPT , and
Eq [Caug(D) | |D| ≥ 2] ≤ 2OPT .

We note that the bound on Eq [Csub(D) | |D| ≥ 2] in Lemma 9 does not occur in this
form in Shmoys and Talwar [24]: they show that Eq [2MST(D) | |D| ≥ 2] ≤ 2OPT
but it is straightforward to adapt their analysis to show that the expected cost of the
optimal TSP tour on D, conditioned on |D| ≥ 2, is at most OPT .

Lemma 9 implies that there is some non-empty set D∗ such that Csub(D
∗) +

Caug(D
∗) ≤ 3OPT . Let t∗ be one of the terminals in D∗, and set be = 1 for each

of the edges in the (minimum cost) subproblem’s solution on D∗, and let r
j
e = 1 for

the edges added for terminal j in the Augmentation Step. Then b, r defines a feasible
solution to the following LP with objective value at most OPT and hence APTSP-LP

124 Algorithmica (2011) 60: 110–151

is an LP relaxation of the a priori Traveling Salesman Problem:

min
1

3

∑

e∈E

(

Qcebe +
k∑

j=1

q̃j cer
j
e

)

(APTSP-LP) s.t.
∑

e∈δ(S)

(be + r
j
e) ≥ 2 ∀S ⊂ V : t∗
∈ S, tj ∈ S,

be, r
j
e ≥ 0 ∀e ∈ E,j = 1, . . . , k.

Note that we do not know t∗, but we can solve APTSP-LP for any t∗ ∈ {t1, . . . , tk}
and use the LP with the smallest objective value. Let b̂, r̂ be an optimal solution to
that LP.

We let the Sub-LP on D be

min
∑

e∈E

Qceye

(Sub-LP(D)) s.t.
∑

e∈δ(S)

ye ≥ 2 ∀S ⊂ V : D\S
= ∅,D ∩ S
= ∅,

ye ≥ 0 ∀e ∈ E.

Note that this satisfies condition (ii) in Theorem 2 with α = 1.5 by [25, 30]. To define
solutions y(D) to Sub-LP(D), we let ye(D) = b̂e + ∑

tj ∈D r̂
j
e .

We now consider the expectation of Eq [CLP(y(D)) | |D| ≥ 2] and Eq [Caug(D) |
|D| ≥ 2]. From Lemma 9 we know that the second term is at most 2OPT . Also, since
the probability that tj is in D conditioned on D having at least 2 elements is q̃j , we
get

1.5Eq [CLP(y(D)) | |D| ≥ 2] = 1.5

(
∑

e∈E

Qceb̂e +
k∑

j=1

Qq̃j cer̂
j
e

)

= 1.5
∑

e∈E

(

Qceb̂e +
k∑

j=1

qj

(

1 −
∏

i
=j

(1 − qi)

)

cer̂
j
e

)

≤ 1.5
∑

e∈E

(

Qceb̂e +
k∑

j=1

qj cer̂
j
e

)

≤ 4.5OPT, (3)

where the last inequality holds since we showed that APTSP-LP is a relaxation of
the a priori Traveling Salesman Problem. Hence we find that 1.5Eq [CLP(y(D)) |
|D| ≥ 2]+Eq [Caug(D) | |D| ≥ 2] ≤ 6.5OPT Hence the conditions of Theorem 2 hold
with β = 6.5 and we get the following result.

Theorem 10 There exists a deterministic 6.5-approximation algorithm for a priori
Traveling Salesman Problem.

Algorithmica (2011) 60: 110–151 125

Remark 11 The deterministic 8-approximation algorithm obtained by Shmoys and
Talwar [24] uses similar techniques but uses the Steiner tree LP as the Sub-LP. Since
we can get a traveling salesman tour of cost at most twice the cost of a Steiner tree,
α = 4. They show that for the Steiner Sub-LP Eq [CLP(y(D)) | |D| ≥ 2] ≤ 1.5OPT .
Hence αEq [CLP(y(D)) | |D| ≥ 2] ≤ 6OPT instead of what we find in (3).

3.4 Connected Facility Location Problems

The connected facility location problems that we consider have the following form.
We are given an undirected graph G = (V ,E) with edge costs ce ≥ 0 for e ∈ E,
a set of clients D ⊆ V with demands dj for j ∈ D, a set of potential facilities
F ⊆ V , with opening cost fi ≥ 0 for i ∈ F , a connectivity requirement CR ∈
{Tour,SteinerTree}, a parameter M > 1, and a parameter k > 1. We assume
that the edge costs satisfy the triangle inequality. The goal is to find a subset of facil-
ities F ⊆ F to open and a set of edges T such that |F | ≤ k (k may be ∞) and T is a
CR on F that minimizes

∑

i∈F

fi + Mc(T) +
∑

j∈D
�(j,F).

We will say that we buy the edges of the set T that connect the open facilities, and
that we rent the edges connecting each client to its closest open facility.

For ease of exposition we assume that dj = 1 for all j ∈ D. It is not hard to
adapt the analysis to the general case, as was shown in [15]. We will make a re-
mark about this at the end of this section. In the following, we denote by ρcr = 1
if CR = SteinerTree and ρcr = 2 if CR = Tour, which basically indicates the
requirement that any two open facilities need to be connected by ρcr edge-disjoint
paths.

To determine which facilities to open, the Sample-Augment algorithm of Eisen-
brand et al. [5] first uses an approximation algorithm to determine a good solution to
the facility location problem in which we drop the requirement that the facilities need
to be connected. They then mark each client j ∈ D independently with probability
pj and open the facilities that the marked clients are assigned to in the solution to
the unconnected facility location problem. Of course, any feasible solution must have
at least 1 open facility, hence we need to mark at least one client. To achieve this,
Eisenbrand et al. first mark one client chosen uniformly at random.

To connect the open facilities by bought edges, the algorithm buys a CR on the
marked clients, and extends this to a CR on the open facilities by adding ρcr copies of
the shortest path from each facility to the marked client that caused it to be opened.
Finally, we need to rent edges to connect the other clients to their closest open facility.

Let j∗ be the client marked by choosing one client uniformly at random. To make
the algorithm fit into our framework, we let j∗ be part of the input. In addition, we re-
order the steps, so that the Subproblem Step only finds the CR on the marked clients,
and the Augmentation Step contains all the other steps of the algorithm. We give our
variant of the Sample-Augment algorithm from Eisenbrand et al. [5] in Fig. 4.

To show that we can derandomize the CFL-Sample-Augment algorithm, we first
fix the input variable j∗ to be an arbitrary client and we will show that conditions

126 Algorithmica (2011) 60: 110–151

CFL-Sample-Augment(G = (V ,E), c, D, F , f, k,CR,p, j∗)

1. (Sampling Step) Mark every client j in D independently at random with prob-
ability pj . Let D be the set of marked clients.

2. (Subproblem Step) Construct a CR solution on the set D ∪ {j∗}. Buy the edges
of this solution.

3. (Augmentation Step)
Compute an (approximately optimal) solution to the corresponding uncon-
nected k-facility location problem. Let FU be the facilities opened, and for
j ∈ D let σU(j) be the facility j is assigned to. Let F = ⋃

j∈D∪{j∗} σU(j), and
open the facilities in F .
Rent the edges from each client j ∈ D to their closest open facility, and, in ad-
dition to the edges bought in Step 2, buy ρcr copies of the edges on the shortest
path from each client j in D ∪ {j∗} to its closest facility in F .

Fig. 4 Sample-Augment algorithm for connected facility location

(i), (ii) and (iii) of Theorem 1 are satisfied. We then show that we can efficiently
find a choice for j∗ so that condition (iv) for the required approximation factor is
satisfied.

It is not hard to verify that condition (i) of Theorem 1 is satisfied for any sampling
probabilities p: in the Augmentation Step the set of facilities we open depends only
on the set D ∪ {j∗}, and hence the cost of renting edges between each client and its
closest open facility, and the cost of buying edges between the clients in D ∪{j∗} and
their closest open facility all do not depend on the Steiner tree on D ∪ {j∗}.

We define Sub-LP(D) as

min
∑

e∈E

Mceye

(Sub-LP(D)) s.t.
∑

e∈δ(S)

ye ≥ ρcr ∀S ⊂ V : D ∪ {j∗}
⊆ S, (D ∪ {j∗}) ∩ S
= ∅,

ye ≥ 0 ∀e ∈ E.

Condition (ii) of Theorem 1 is satisfied with α = 2 if CR = SteinerTree [11], or
1.5 if CR = Tour [25, 30].

Let γ = M
|D| , and let a be a parameter to be determined later. We assume we know

some facility i∗ that is open in the optimal solution. (We can drop this assumption by
taking i∗ to be the facility for which the following LP gives the lowest optimal value.)
We use the following LP to define the Sub-LP solutions. We note that this is almost
an LP relaxation of the connected facility location problem, except for the weighting
of the renting cost by (a + γ)ρcr

min
∑

e∈E

Mcebe + (a + γ)ρcr

∑

j∈D

∑

e∈E

cer
j
e

Algorithmica (2011) 60: 110–151 127

(CFL-LP) s.t.
∑

e∈δ(S)

(be + ρcrr
j
e) ≥ ρcr ∀S ⊂ V, i∗
∈ S, j ∈ D ∩ S,

r
j
e , be ≥ 0 ∀e ∈ E,j ∈ D.

Let b̂, r̂ be an optimal solution to CFL-LP. Given an optimal solution to the original
problem, let B∗,R∗ be the total buying and renting cost. We also define O∗ as the
facility opening cost in the optimal solution. It is easily verified that the optimal
value of CFL-LP is at most B∗ + (a + γ)ρcrR

∗. We define ye(D) = b̂e + ρcr r̂
j∗
e +

ρcr
∑

j∈D r̂
j
e , which satisfies condition (iii).

To show that there exists j∗ and p̂ such that condition (iv) holds, let Ẽp[Caug(D)]
denote the expectation of Ep[Caug(D)] if we run CFL-Sample-Augment with the
input client j∗ chosen uniformly at random and similarly define Ẽp[CLP(y(D))].
We claim that if we can find p̂ such that Ẽp̂[Caug(D)] + αẼp̂[CLP(y(D))] ≤ βOPT ,
then this implies that we can construct a deterministic β-approximation algorithm:
By definition of Ẽp̂[·] there exists some j∗ for which condition (iv) of Theorem 1
holds with the same p̂ and β . Since we can compute Ep̂[Caug(D)]+αEp̂[CLP(y(D))]
efficiently for any choice of j∗, it remains to choose as j∗ the client for which this
value is smallest, and then we can use Theorem 1 to derandomize the CFL-Sample-
Augment algorithm.

We now show that Ẽp̂[Caug(D)] + αẼp̂[CLP(y(D))] ≤ βOPT for appropriately

chosen p̂ and β . Let p̂j = a
M

for every j ∈ D, then the probability that we add ρcr r̂
j
e

to ye(D) = b̂e + ρcr r̂
j∗
e + ρcr

∑
j∈D

r̂
j
e is the probability that j ∈ D ∪ {j∗} which

is at most a
M

+ 1
|D| . Hence Ẽp̂[CLP(y(D))] ≤ B∗ + (a + γ)ρcrR

∗. Depending on
whether the connectivity requirement is a tour or a tree, and whether k is finite or
infinite, Eisenbrand et al. [5] give different lemmas bounding Ẽp̂[Caug(D)] in terms
of B∗,R∗ and O∗. We will state these bounds below in Lemmas 12, 14 and 16.
Combining these bounds with Ẽp̂[CLP(y(D))] ≤ B∗ + (a + γ)ρcrR

∗, we can obtain

bounds on Ẽp̂[Caug(D)] + αẼp̂[CLP(y(D))] in terms of OPT = B∗ + R∗ + O∗.
Before we proceed to give the results we can thus obtain, we note that we can

assume that γ is very small: Eisenbrand et al. [5] show that if 1
γ

= |D|
M

< C for
some constant C, then there exists a (deterministic) polynomial-time approximation
scheme (PTAS) for the connected facility location problem. Hence we can choose a
small constant 1/C and use the PTAS for values of γ that are larger than 1/C.

For the first result (which was also shown by Eisenbrand et al. [5]) we need the
following lemma.

Lemma 12 [5] Let k = ∞ and CR = SteinerTree. In the Augmentation Step of
CFL-Sample-Augment, use a bifactor approximation algorithm [22] that returns a
solution such that

∑
i∈FU

fi + ∑
j∈D �(j, σU (j)) ≤ (1.11 + ln δ)O∗ + (1 + 0.78

δ
)R∗.

Then

Ẽp̂[Caug(D)] ≤ 2R∗+ 0.807

a
B∗+(1+a+γ)

(

(1.11 + ln δ)O∗ +
(

1 + 0.78

δ

)

R∗
)

.

128 Algorithmica (2011) 60: 110–151

Theorem 13 [5] There exists a deterministic 4.23-approximation algorithm for k-
connected facility location with k = ∞ and CR = SteinerTree.

Proof By Lemma 12, and because α = 2, ρSteinerTree = 1 in this case, we get that

Ẽp̂[Caug(D)] + αẼp̂[CLP(y(D))]

≤ (1 + a + γ)

(

3 + 0.78

δ

)

R∗ +
(

2 + 0.807

a

)

B∗

+ (1 + a + γ)(1.11 + ln δ)O∗.

By taking a = 0.361885, δ = 7.359457 and γ sufficiently small, we find that this is
at most 4.23OPT and by the discussion above, this means that there exists a deter-
ministic 4.23-approximation algorithm. �

The second result was also shown by Eisenbrand et al. [5]. To derive it using our
framework, we need the following lemma.

Lemma 14 [5] Let k < ∞ and CR = SteinerTree, and suppose we use a ρkf l-
approximation algorithm to find a solution to the unconnected k-facility location
problem in the Augmentation Step of CFL-Sample-Augment, then

Ẽp̂[Caug(D)] ≤ 2R∗ + 0.807

a
B∗ + (1 + a + γ)ρkf l(R

∗ + O∗).

Theorem 15 [5] There exists a deterministic 6.98-approximation algorithm for k-
connected facility location with k < ∞ and CR = SteinerTree.

Proof By Lemma 14, and because α = 2, ρSteinerTree = 1, we get that

Ẽp̂[Caug(D)] + αẼp̂[CLP(y(D))]

≤ (1 + a + γ)(2 + ρkf l)R
∗ +

(

2 + 0.807

a

)

B∗ + (1 + a + γ)ρkf lO
∗.

Using a 4-approximation algorithm for the (unconnected) k-facility location problem
[1] in the Augmentation Step, we have ρkf l = 4. Taking a = 0.1623 and γ sufficiently
small, we find that Ẽp̂[Caug(D)] + αẼp̂[CLP(y(D))] ≤ 6.98OPT . �

Eisenbrand et al. [5] do not give a deterministic algorithm for connected facility
location where the facilities need to be connected by a tour. Using the following
lemma and our analysis, the existence of a deterministic algorithm readily follows.

Lemma 16 [5] Let k = ∞ and CR = Tour. In the Augmentation Step of CFL-
Sample-Augment, use a bifactor approximation algorithm [22] that returns a solution
such that

∑
i∈FU

fi + ∑
j∈D �(j, σU (j)) ≤ (1.11 + ln δ)O∗ + (1 + 0.78

δ
)R∗. Then

Ẽp̂[Caug(D)] ≤ 2R∗+ 1

2a
B∗+(1+2(a+γ))

(

(1.11 + ln δ)O∗ +
(

1 + 0.78

δ

)

R∗
)

.

Algorithmica (2011) 60: 110–151 129

Theorem 17 There exists a deterministic 4.12-approximation algorithm for k-
connected facility location with k = ∞ and CR = Tour.

Proof By Lemma 16, and the fact that α = 1.5 and ρTour = 2, we get that

Ẽp̂[Caug(D)] + αẼp̂[CLP(y(D))]

≤
(

0.5 + (1 + 2(a + γ))

(

2.5 + 0.78

δ

))

R∗

+
(

1.5 + 1

2a

)

B∗ + (1 + 2(a + γ))(1.11 + ln δ)O∗.

Taking a = 0.19084, δ = 6.5004 and γ sufficiently small, we find that Ẽp̂[Caug(D)]+
αẼp̂[CLP(y(D))] ≤ 4.12OPT . �

Finally, we mention that the results given above can easily be extended to the case
when the demands are not necessarily all equal to 1. We now let γ = M∑

j ′∈D dj ′ . It is

again the case that there exists a PTAS for the connected facility location problem
if γ > 1

C
for some constant C and hence we can assume γ is very small [5]. Now,

the first client that is chosen is client j with probability
dj∑

j ′∈D dj ′ , and we initialize

the vector of sampling probabilities by p̂j = a
M

dj for all j ∈ D. Then Lemmas 12,
14 and 16 again hold. The objective of CFL-LP can be changed to

∑
e∈E Mcebe +

(a + γ)ρcr
∑

j∈D dj

∑
e∈E cer

j
e , and we will again have that for an optimal so-

lution b̂, r̂ to CFL-LP we have
∑

e∈E Mceb̂e + (a + γ)ρcr
∑

j∈D dj

∑
e∈E cer̂

j
e ≤

B∗ + (a + γ)ρcrR
∗. Therefore the same definition of ye(D) as above will ensure that

Ẽp̂[CLP(y(D))] ≤ B∗ + (a +γ)ρcrR
∗, and hence we have the exact same inequalities

that we needed to prove Theorems 13, 15, and 17.

3.5 Virtual Private Network Design

In the virtual private network design problem, we are given a graph G = (V ,E) with
edge costs ce ≥ 0, and a set of demands D ⊆ V . Each demand j ∈ D has thresholds
bin(j), bout(j) on the amount of traffic that can enter and leave j .

A feasible solution is a set of paths Pij for every ordered pair i, j ∈ D and capacity
ue on the edges so that there is sufficient capacity for any traffic pattern {fij }i,j∈D :
For any {fij }i,j∈D such that

∑
i fij ≤ bin(j) and

∑
i fji ≤ bout(j) for every j ∈ D we

need to have sufficient capacity on the paths, i.e.
∑

ij :e∈Pij
fij ≤ ue for every e ∈ E.

The objective is to find a solution that minimizes the cost
∑

e∈E ceue of installing
capacity.

Gupta et al. [15] proposed a random sampling algorithm for the virtual private
network design problem that is very similar to the algorithm for single source rent-
or-buy. The algorithm and analysis were improved by Eisenbrand and Grandoni [3]
and Eisenbrand, Grandoni, Oriolo and Skutella [4]. We will show how Theorem 1
can be used to derandomize the improved algorithm in [4].

130 Algorithmica (2011) 60: 110–151

VPN-Sample-Augment(G = (V ,E), c, J , I,p)

1. (Sampling Step) Mark each receiver j independently with probability pj . Let
D be the set of marked receivers. If |D| = 0 then repeat the Sampling Step.

2. (Subproblem Step) For each sender i ∈ I , construct a Steiner tree T (i) on D ∪
{i} and add one unit of capacity to each edge of T (i).

3. (Augmentation Step) Install one unit of capacity on the shortest path from each
receiver j ∈ J to the closest receiver in D.

Fig. 5 Sample-Augment algorithm for virtual private network design

As was shown by Gupta et al. [15], we assume without loss of generality that
each j ∈ D is either a sender (bin(j) = 0, bout(j) = 1) or a receiver (bin(j) = 1,
bout(j) = 0). Let J be the set of receivers, and I be the set of senders. By symmetry,
we assume without loss of generality that |I| ≤ |J |.

The algorithm as described by Eisenbrand et al. [4] partitions J into I groups,
by assigning each receiver to a randomly chosen sender, and chooses one non-empty
group, say D, at random. In the Subproblem Step, we add one unit of capacity on a
Steiner tree spanning {i} ∪D for each sender i, and finally, in the Augmentation Step
we install one unit of capacity on the shortest path from each receiver j to the closest
receiver in D.

For our derandomization, our starting point is a slightly different algorithm which
marks each receiver independently with some probability pj and repeats the Sam-
pling Step if the resulting set D is empty. If we set pj = 1

|I| , then the outcome of
our algorithm has the same probability distribution as the algorithm described by
Eisenbrand et al. [4].

The VPN-Sample-Augment algorithm is described in Fig. 5. The algorithm in-
stalls capacities and outputs the Steiner trees found in the Subproblem Step. The
Steiner trees are used to determine the paths Pij : if j ′ is the receiver in D that is
closest to j , then Pij is obtained by concatenating the unique path from j ′ to i in
T (i) and the shortest path from j to j ′.

The following lemma follows from Lemmas 5 and 6 in [4].

Lemma 18 [4] If pj = 1
|I| for every terminal, and if we were able to find a minimum

cost solution to the subproblem, then Ep[Csub(D) | |D| ≥ 1] ≤ 1
1−e−|J |/|I| OPT , and

Ep[Caug(D) | |D| ≥ 1] ≤ 2
1−e−|J |/|I| OPT .

Eisenbrand et al. [4] also show that there exists a (deterministic) (1 + |J |
|I|)-

approximation algorithm. This gives an 8-approximation algorithm for |J | ≤ 7|I|.
Using Theorem 2 we can show that if |J | ≥ 7|I|, then there exists a deterministic
8.02-approximation algorithm.

Theorem 19 There exists a deterministic 8.02-approximation algorithm for virtual
private network design.

Algorithmica (2011) 60: 110–151 131

Proof It is easily verified that condition (i) of Theorem 2 holds for all p with pj = 1
for some j . The Sub-LP for condition (ii) is the sum of |I| different Steiner tree LPs,
and has α = 2 [11]:

min
∑

e∈E

ce

∑

i∈I
yi
e

Sub-LP(D) s.t.
∑

e∈δ(S)

yi
e ≥ 1 ∀i ∈ I,∀S ⊂ V : i ∈ S,D ∩ S
= ∅,

yi
e ≥ 0 ∀i ∈ I, e ∈ E.

Let κ = 1 − e
− |J |

|I| . It follows from Lemma 18 that the following LP is a relaxation of
the virtual private network design problem.

min
κ

3

∑

e∈E

ce

(∑

i∈I
bi
e +

∑

j∈J
r
j
e

)

(VPN-LP) s.t.
∑

e∈δ(S)

(bi
e + r

j
e) ≥ 1 ∀S ⊆ V : i ∈ S ∩ I, j ∈ J \S,

r
j
e , bi

e ≥ 0 ∀e ∈ E,j ∈ J , i ∈ I.

Let r̂ , b̂ be an optimal solution to VPN-LP. We let yi
e(D) = b̂i

e + ∑
j∈D r̂

j
e , which

gives a feasible solution to Sub-LP(D).
If we include each j ∈ J in D independently with probability p̂j = 1

|I| , then P[j ∈
D | |D| ≥ 1] = p̂j /(1−∏

k(1− p̂k)) = p̂j /(1− (1− 1
|I|)

|J |) ≤ p̂j /(1− e−|J |/|I|) =
1

|I|
1
κ

. Hence

Ep̂[CLP(y(D)) | |D| ≥ 1] =
∑

e∈E

ce

∑

i∈I

(

b̂i
e +

∑

j∈J
P[j ∈ D | |D| ≥ 1]r̂ j

e

)

≤
∑

e∈E

ce

∑

i∈I

⎛

⎝b̂i
e +

∑

j∈J

1

κ|I| r̂
j
e

⎞

⎠

=
∑

e∈E

ce

⎛

⎝
∑

i∈I
b̂i
e + 1

κ

∑

j∈J
r̂
j
e

⎞

⎠

≤ 1

κ

∑

e∈E

ce

⎛

⎝
∑

i∈I
b̂i
e +

∑

j∈J
r̂
j
e

⎞

⎠

≤ 3

κ2
OPT.

132 Algorithmica (2011) 60: 110–151

Also, we know from Lemma 18 that

Ep̂[Caug(D) | |D| ≥ 1] ≤ 2

κ
OPT.

Therefore

Ep̂[Caug(D) | |D| ≥ 1] + 2Ep̂[CLP(y(D)) | |D| ≥ 1] ≤ 2 + 2 × 3/κ

κ
OPT.

Hence we have shown that if p̂j = 1
|I| for all j ∈ J , then

Ep̂[Caug(D) | |D| ≥ 1] + 2Ep̂[CLP(y(D)) | |D| ≥ 1] ≤ 2 + 6/κ

κ
OPT.

Recall that there exists a (deterministic) (1 + |J |
|I|)-approximation algorithm, hence

to prove the theorem we only need to consider |J |
|I| ≥ 7. Since κ = 1 − e

− |J |
|I| , we

get that 2+6/κ
κ

≤ 8.02. Therefore by Theorem 2 there exists a deterministic 8.02-
approximation algorithm. �

4 Single-Sink Buy-at-Bulk Network Design

Sampling algorithms have been successfully used for various multi-stage stochastic
optimization problems. In a multi-stage sampling algorithm, we mark a subset of the
vertices and solve a subproblem on the marked vertices in each stage of the algorithm.
Clearly, a difficulty in derandomizing such an algorithm using our approach is that
the cost incurred by the algorithm in future stages often depends on the decisions
made in the current stage, and are hence difficult to get a handle on.

One multi-stage sampling algorithm where it is possible to use the techniques
from Sect. 2 is the Sample-Augment algorithm for the single sink buy-at-bulk prob-
lem [18]. The single sink buy-at-bulk problem is similar to the single source rent-
or-buy problem, but instead of just having the option of either renting or buying an
edge, we now have a choice of K different cable types, where each cable type has a
certain capacity and price per unit length. This algorithm has stages corresponding to
the cable types, and in stage k we install cables of type k and k + 1 only. The cables
installed in the current stage are then used to (randomly) redistribute the demands in
the network, which means that the input to the next stage is not deterministic.

There are three key properties that allow us to derandomize this algorithm. First of
all, it turns out that the Sampling Step of each stage does not influence the expected
cost of the future stages (although it does influence its distribution). Hence we can
almost directly use the techniques from Sect. 2 to derandomize the Sampling Step.
Secondly, as we will see, the random redistributing of the demands has only a small
sample space, so we can enumerate all possible outcomes. Thirdly, we can give an
efficiently computable upper bound for the cost of future stages, hence allowing us
to choose a good outcome among these possible outcomes. We will show that we can

Algorithmica (2011) 60: 110–151 133

thus obtain a deterministic 27.72-approximation algorithm for the single-sink buy-at-
bulk problem.

We note that our approximation guarantee is obtained with respect to an LP-
relaxation of the single-sink buy-at-bulk problem. Hence we also show that this LP
relaxation has integrality gap of at most 27.72. To the best of the author’s knowledge,
no previous result was known about the integrality gap of this LP relaxation. In [27]
it was shown that a different LP relaxation, that was first proposed in [9], has an
integrality gap of at most 216.

In Sect. 4.1 we describe the Sample-Augment algorithm of Gupta, Kumar, Pál and
Roughgarden [18] and explain how to derandomize this algorithm to obtain a deter-
ministic 80-approximation algorithm. We will suppress some of the proofs, which we
will give in Sect. 4.2. Finally, in Sect. 4.3, we discuss an improved Sample-Augment
algorithm for the single-sink buy-at-bulk network design problem by Grandoni and
Italiano [13], and show how this can be derandomized to give a deterministic 27.72-
approximation algorithm.

4.1 Derandomization of the Sample-Augment Algorithm for Single-Sink
Buy-at-Bulk

The single sink buy-at-bulk problem is a generalization of the single source rent-or-
buy problem. We are given an undirected graph G = (V ,E), edge costs ce ≥ 0 for e ∈
E, a sink t ∈ V and a set of sources s1, . . . , sn ∈ V with weight wj > 0 for source sj .
We denote {s1, . . . , sn} = S . In addition, there are K cable types, where the k-th
cable type has capacity uk and cost σk per unit length. The goal is to install sufficient
capacity at minimum cost so that we can send wj units from sj to t for j = 1, . . . , n

simultaneously. We assume without loss of generality that u1 < u2 < · · · < uK and
that σ1 < σ2 < · · · < σK , since if uk ≤ u� and σk ≥ σ�, then we can replace each
cable of type k by a cable of type � without increasing the cost of the solution [18].
Note that the single source rent-or-buy problem is the special case where K = 2 and
u1 = 1, u2 = ∞ and σ1 = 1, σ2 = M .

After a preprocessing step, the Sample-Augment algorithm proposed by Gupta et
al. [18] proceeds in stages, where in the k-th stage, it will install cables of type k

and k + 1. At the beginning of stage k, enough capacity has already been installed
to move the weights through the cables and gather the weights into a subset of the
sources, so that each source has weight either 0 or uk . We thus think of the weights
at the beginning of stage k as being concentrated in Sk ⊆ S , where each s ∈ Sk has
weight uk . The final step installs cables of type K from SK to the sink t .

As in [18], we first round the parameters so that each parameter uk,σk is a factor
of 2. It was shown by Guha, Meyerson and Munagala [14] that we can round each
uk down to the nearest power of 2, and each σk up to the nearest power of 2, and
increase the value of the optimal solution by at most a factor 4. Note that we may
assume without loss of generality that the rounded parameters satisfy that σk+1

uk+1
<

σk

uk
,

since we may otherwise replace each cable of type k +1 by uk+1
uk

cables of type k. We

are guaranteed that uk+1
uk

is integer because numerator and denominator are powers
of 2.

134 Algorithmica (2011) 60: 110–151

w′ = Redistribute(T ,w,U)

Let wv = �wv

U
�U and w

frac
v = wv − wv for every v ∈ T .

Double the edges of T and find an Euler tour on the edges. Number the vertices
v1, v2, . . . , vn according to their first appearance on the Euler tour started from an
arbitrarily chosen vertex v1.
Let Wj = ∑i

k=1 w
frac
vk

for j = 1, . . . , n. Choose Y ∈ (0,U] uniformly at random.

Let w′
vj

=
{

wvj
+ U if Y ∈ (Wi−1 − �Wi−1

U
�U,Wi − �Wi−1

U
�U]

wvj
otherwise.

Fig. 6 The redistribute subroutine

Following [18], we also rescale the parameters so that u1 = σ1 = 1. Note however
that after rescaling the capacities, we are not guaranteed that the weights wj are
integer. Gupta et al. [18] therefore use a subroutine to redistribute the weights. The
subroutine takes a tree with weights wv on the vertices v ∈ T , and a parameter U

and redistributes the weights along the edges of the tree, so that vertex v’s weight
becomes either �wv

U
�U or �wv

U
�U .

In the following, we will use bold lower case letters to indicate (vectors of) random
variables (and we continue to use blackboard bold capitalized letters to indicate ran-
dom sets). Our description of the subroutine is given in Fig. 6. The following lemma
is a reformulation of Lemma 5.1 in [18].

Lemma 20 [18] Given a tree T , a parameter U > 0 and weights wv ≥ 0 for every
v ∈ T , such that

∑
v∈T wv is a multiple of U , let wv = �wv

U
�U . The subroutine

Redistribute(T ,w,U) outputs weights w′
v for v ∈ T so that:

(i) P[w′
v = wv + U] = wv−wv

U
, and P[w′

v = wv] = 1 − wv−wv

U
.

(ii) With probability 1, there exists a flow on T such that the net flow into v ∈ T is
w′

v − wv and the flow on each edge of T is at most U .

In the preprocessing step, Gupta et al. [18] find a Steiner tree T0 on S ∪{t}, install a
cable of type 1 on each edge of T0 and let w′ = Redistribute(T0,w,1). We let S0 = S
and S1 = {sj ∈ S0 : w′

j > 0}, where we note that S1 is a random set, since w′ is a
vector of random variables. For ease of exposition, we assume that wj ≤ 1 for each
sj ∈ S , so that after redistributing each source in S1 has weight 1. This assumption is
not necessary, as was noted in [18]. In addition, we assume that

∑
sj ∈S wj is a power

of 2 and is at least uK . This assumption can be made without loss of generality, as we
can add a dummy source located at the sink, with weight uK − ∑

sj ∈S wj (see [18]).
For ease of notation, we will refer to the preprocessing step as stage 0, the interme-

diate stages as stages 1, . . . ,K − 1 and the final stage as stage K . At the beginning
of stage k, for k ≥ 1, there is sufficient capacity installed in the previous stages to
move the weights from S0 to some subset Sk ⊂ S0 in such a way that each source in
Sk gets exactly uk weight. We will say that “the weights are located at Sk at the start
of stage k”. In the k-th stage of the algorithm, we will install capacity to move the
weights from Sk to some subset Sk+1 ⊂ Sk : First we obtain a sample Dk from Sk . For

Algorithmica (2011) 60: 110–151 135

SSBaB-Sample-Augment(G = (V ,E), c, t, S, u1, . . . , uK,σ1, . . . , σK)

(Rounding Step)
Round down all capacities uk and round up all prices σk to the nearest power of 2.
Remove cable type k if σk

uk
≥ σk−1

uk−1
. Let K be the remaining number of cable types.

(Preprocessing Step)
Find a Steiner tree T0 on S ∪ {t}, install a cable of type 1 on each edge of T0. Let
w′ = Redistribute(T0,w,1). Let S1 = {sj ∈ S : w′

j > 0}.
(Intermediate Stages)
For k = 1, . . . ,K − 1

p̂k
j = σk

σk+1
for sj ∈ Sk,

Sk+1 = SSBaB-Stage-k(G, c, t, Sk, uk, uk+1, p̂
k).

(Final Stage)
For every s ∈ SK , install cables of type K on the shortest path from s to t .

Fig. 7 Sample-Augment algorithm for single-sink buy-at-bulk

each source s ∈ Sk , let f (s) be the closest node in Dk ∪ {t}. We install type k cables
from s ∈ Sk to f (s) and we install type k + 1 cables on a Steiner tree on Dk ∪ {t}.
Since each source in Sk has weight uk , we can route the weights to Dk ∪{t} along the
type k cables. We can then use the Redistribute-subroutine to redistribute the weights
along the Steiner tree so that the weight w′

v at each node v in Dk ∪ {t} is an integer
multiple of uk+1. Finally, we need to route the weights back to a subset of the sources

in Sk . For each vertex in v ∈ Dk ∪ {t}, we divide the weight at v into w′
v

uk+1
packets of

size uk+1. We then choose a subset S′(v) of size w′
v

uk+1
at random from the sources in Sk

that previously sent their weight to v, i.e. {s ∈ Sk : f (s) = v}. We install type k+1 ca-
bles on the shortest paths from v to S′(v) and send uk+1 weight to each node in S′(v).
If k < K then the next stage has the weights located at Sk+1 = ∑

v∈Dk∪{t} S′(v). We
give a complete description of the Sample-Augment algorithm from Gupta et al. [18]
in Figs. 7 and 8. Note that we have structured the description in Fig. 8 so that if we
consider only a single stage, the three steps fit the framework in Theorem 1.

We begin by showing that we can replace the costs incurred by the algorithm by
certain upper bounds. We will see that these upper bounds allow us to bound the
expected cost incurred by the algorithm, and that they will have an easy form that
will help in derandomizing the algorithm. We will need several lemmas, but to keep
the flow of the arguments we defer some of the proofs to Sect. 4.2.

The following lemma is similar to Lemma 5.2 in [18] and will be useful throughout
this section.

Lemma 21 For any k = 1, . . . ,K − 1, let Sk be the (random) set of sources at which
the weights are located at the beginning of stage k. Given Sk ⊂ S and k < � ≤ K ,

P[s ∈ S�|Sk = Sk] =
{

uk

u�
if s ∈ Sk,

0 otherwise,

136 Algorithmica (2011) 60: 110–151

Sk+1 = SSBaB-stage-k(G, c, t, Sk, uk, uk+1,p
k)

1. (Sampling Step) Mark each source sj ∈ Sk independently with probability pk
j .

Let Dk be the set of marked sources.
2. (Subproblem Step) Construct a Steiner tree Tk on Dk ∪ {t} and install cables of

type k + 1 on the edges of Tk .
3. (Augmentation Step)

For each s ∈ Sk , let f (s) = arg minv∈Dk∪{t} �(s, v). Install cables of type k on
the shortest path from each s ∈ Sk to f (s).
For each v ∈ Dk ∪ {t}, let S(v) = {s ∈ Sk : f (s) = v} and let wv = ∑

s∈S(v) uk .
Let w′ = Redistribute(Tk,w,uk+1).

For each v ∈ Dk ∪ {t}, let S′(v) be a set of w′
v

uk+1
sources chosen uniformly at

random from S(v). Install a cable of type k + 1 on the shortest path from v to
each source in S′(v).
Return Sk+1 = ∑

v∈Dk∪{t} S′(v).

Fig. 8 The k-th stage of the Sample-Augment algorithm for single-sink buy-at-bulk

independent of the sampling probabilities in stage k.

Lemma 22 For any k = 0, . . . ,K , let Sk be the random set of terminals at which
the weight is located at the start of stage k (where S0 ≡ S). For any Sk ⊆ S , let
Ep̂k [Ck(Sk)|Sk = Sk] be the expected cost of the cables installed in stage k, given that
the weights are located in Sk at the start of stage k, and the sampling probabilities
in stage k are given by p̂k

j = σk

σk+1
if 1 ≤ k ≤ K − 1. There exist values Bk,Rk(j) for

j = 1, . . . , n such that

Ep̂k [Ck(Sk)|Sk = Sk] ≤ Bk +
∑

sj ∈Sk

Rk(j),

and

B0 +
∑

sj ∈S
R0(j) +

K∑

k=1

(

Bk +
∑

sj ∈S

wj

uk

Rk(j)

)

≤ 80OPT.

These two lemmas immediately show that the SSBaB-Sample-Augment algorithm
is a randomized 80-approximation algorithm. This guarantee is worse than the guar-
antee of 76.8 in Gupta et al. [18]. However, our analysis will be helpful in the deran-
domization of the algorithm.

Corollary 23 There exists a randomized 80-approximation algorithm for the single
sink buy-at-bulk problem.

Proof By Lemma 21 we know that P[sj ∈ Sk|S1 = S1] = u1
uk

= 1
uk

, if sj ∈ S1 and
P[sj ∈ Sk|S1 = S1] = 0 if sj
∈ S1, and by Lemma 20, we have that P[sj ∈ S1] =
wj , hence P[sj ∈ Sk] = wj

uk
. By linearity of expectation and Lemma 22, we can thus

Algorithmica (2011) 60: 110–151 137

upper bound the expected cost incurred in stage k by Bk + ∑
sj ∈S

wj

uk
Rk(j). Since

P[sj ∈ S0] = 1 for sj ∈ S we can upper bound the expected cost incurred in stage 0
by B0 + ∑

sj ∈S R0(j). Hence Lemma 22 implies that the randomized algorithm in
Figure 7 is an 80-approximation algorithm. �

Starting with our upper bound B0 +∑
sj ∈S R0(j)+∑K

k=1(Bk +∑
sj ∈S

wj

uk
Rk(j))

≤ 80OPT , we would now would like to iterate through the random decisions made
by the algorithm and turn them into deterministic decisions, without increasing the
overall upper bound on the (conditional) expected cost.

The first random decisions made are those in the preprocessing step, where the
Redistribute algorithm is called. These are easy to deal with because of the following
lemma.

Lemma 24 If n is the number of vertices in T , the Redistribute subroutine on T has
only 2n + 1 different possible outcomes.

Proof For each v ∈ T there is an interval (av, bv] such that w′
v = wv + U exactly

if the random variable Y is in this interval and otherwise w′
v = wv . If we think of

the values av, bv for all v ∈ T as points on a line [0,U] then each different outcome
corresponds to a segment between two consecutive points (including the endpoints 0
and U). �

By Lemma 24, we can consider all different outcomes of the Redistribute sub-
routine directly. Each outcome gives a set S1, and by Lemma 21 we can update the
upper bound on the cost as B0 + ∑

sj ∈S R0(j) + ∑K
k=1(Bk + ∑

sj ∈S1
1
uk

Rk(j)). By
properties of conditional expectation, if we choose the outcome S1 for which this
upper bound is smallest, we will maintain that B0 + ∑

sj ∈S R0(j) + ∑K
k=1(Bk +

∑
sj ∈S1

1
uk

Rk(j)) ≤ 80OPT .
The next random decisions of the SSBaB-Sample-Augment algorithm are made

when marking the sources in the Sampling Step of stage 1. Since by Lemma 21
the probability that s ∈ Sk is 1

uk
for k > 1 and does not depend on the sampling

probabilities in stage 1, we can modify the probabilities according to which we
sample, and we will not change the expected upper bound on the future stages∑K

k=2(Bk + ∑
sj ∈S1

1
uk

Rk(j)). We can thus consider only the current stage, and use
a similar approach to the derandomization of single-stage Sample-Augment algo-
rithms. We need the following lemma, which combined with Theorem 1 ensures that
we can derandomize the Sampling Step of stage 1, while maintaining that the ex-
pected total cost of the cables installed in stage 1 is at most B1 + ∑

sj ∈S1
R1(j).

Lemma 25 For any k = 1, . . . ,K − 1, let Bk,Rk(j), j = 1, . . . , n satisfy the condi-
tions in Lemma 22. For any Sk ⊂ S , the following holds for the k-stage of SSBaB-
Sample-Augment:

(i) The expected cost of the Augmentation Step depends only on Dk , and not on the
Subproblem Step, and can be efficiently computed for any pk .

138 Algorithmica (2011) 60: 110–151

(ii) There exists an LP relaxation Sub-LPk(Dk) for the minimum cost Steiner tree
problem on Dk ∪ {t} in the Subproblem Step and an algorithm for finding a
Steiner tree on Dk ∪ {t} that finds a solution that costs at most twice the cost of
any feasible solution to Sub-LPk(Dk).

(iii) We can compute vectors bk and rk(j) for j = 1, . . . , n such that yk(Dk) = bk +∑
sj ∈Dk

rk(j) is a feasible solution to Sub-LPk(Dk) for any Dk ⊂ Sk .

(iv) If p̂k
j = σk

σk+1
for all sj ∈ Sk , then the expectation of twice the objective value

of yk(Dk) to Sub-LPk(Dk) plus the expected cost of the cables installed in the
Augmentation Step is at most Bk + ∑

sj ∈Sk
Rk(j).

Once we have deterministic sample D1, the Augmentation Step of stage 1 still has
two random processes. The first one is the Redistribute subroutine. Since |D1 ∪{t}| ≤
n + 1, by Lemma 24 there are at most 2n + 3 different outcomes of the Redistribute
subroutine. Since D1 is fixed, we know f (s) for every s ∈ S1 and hence we also know
wv for every v ∈ D1 ∪ {t}. Each outcome of the Redistribute subroutine gives a vec-

tor w′. Since S′(v) is obtained by choosing w′
v

u2
sources uniformly at random from the

wv

u1
sources in S(v), we know that the probability that s will be in S2 is

w′
f (s)

wf (s)

u1
u2

. Hence

for each w′ we can compute the conditional expectation of the cost of the type 2 ca-
bles installed in the Augmentation Step as

∑
v∈D1∪{t}

∑
sj ∈S(v) P[sj ∈ S2|D1 = D1,

w′ = w′]σ2�(sj , v) = ∑
v∈D1∪{t}

∑
sj ∈S(v)

w′
f (sj)

wf (sj)

u1
u2

σ2�(sj , v) and we can compute

the expected upper bound on the cost of the remaining stages as

K∑

k=2

(

Bk +
∑

sj ∈S1

P[sj ∈ Sk|sj ∈ S2]P[sj ∈ S2|D1 = D1,w′ = w′]Rk(j)

)

=
K∑

k=2

(

Bk +
∑

sj ∈S1

u1

uk

w′
f (sj)

wf (sj)

Rk(j)

)

. (4)

We thus evaluate all 2n + 3 possible outcomes of w′ and choose the one that gives
the smallest value for the expectation of the Augmentation Step cost plus the upper
bound on the cost of the remaining stages.

Finally, we can deterministically choose S2, by iterating through the vertices s

in S1 and computing the conditional expectation of the Augmentation Step plus the
future stages conditioned on including/not including s in S2. For each v ∈ D1 ∪ {t},
we let Av ⊂ S(v) be the set of sources that we have already chosen to be included in
S′(v) and Bv ⊂ S(v) the sources that we have chosen not to include in S′(v). Initially,
Av = Bv = ∅ for all v ∈ D1 ∪ {t}. We iterate through the sources, and compute the
expected cost of the type k + 1 cables in the Augmentation Step plus the expected
upper bound on the cost of the remaining stages if we add s to Af (s) or Bf (s), and
add s to the set that gives the smaller expected total cost. By the definition of condi-
tional expectation, this does not increase the expected total cost. Since S(v) contains
wv

u1
sources and we choose w′

v

u2
of these for S′(v), we can compute the conditional

Algorithmica (2011) 60: 110–151 139

probability that s ∈ S2 if s
∈ Af (s) ∪ Bf (s) as

P[s ∈ S2|D1 = D1, {Av,Bv}v∈D1∪{t},w′ = w′] = w′
f (s)/u2 − |Af (s)|

wf (s)/u1 − |Af (s) ∪ Bf (s)| .

Hence the conditional expected cost of the future stages is

K∑

k=2

⎛

⎜
⎝Bk +

∑

sj ∈S1,sj ∈Af (sj)

u2

uk

Rk(j)

+
∑

sj ∈S1,sj
∈Af (sj)∪Bf (sj)

u2

uk

w′
f (sj)/u2 − |Af (sj)|

wf (sj)/u1 − |Af (sj) ∪ Bf (sj)|Rk(j)

⎞

⎟
⎠ ,

and the conditional expected cost of the type 2 cables installed in the Augmentation
Step is

∑

sj ∈S1,sj ∈Af (sj)

σ2�(sj , f (sj))

+
∑

sj ∈S1,sj
∈Af (sj)∪Bf (sj)

w′
f (sj)/u2 − |Af (sj)|

wf (sj)/u1 − |Af (sj) ∪ Bf (sj)|σ2�(sj , f (sj)).

We have shown how to derandomize the preprocessing step and the first stage of
SSBaB-Sample-Augment, without increasing the upper bound on the expected cost.
We can use the same approach to iterate through the stages 2, . . . ,K − 1. We thus
obtain the following result.

Theorem 26 There exists a deterministic 80-approximation algorithm for the single
sink buy-at-bulk problem.

4.2 Proofs of Lemmas 21, 22 and 25

Proof of Lemma 21 Similar to Lemma 5.2 in [18], we can prove this by induction. If
s
∈ Sk , then it is clear that s
∈ Sk+1, and hence s
∈ S� for any � > k.

Let s ∈ Sk , and suppose the set of marked terminals in the Sampling Step is Dk ,
and let f (s), wv , w′

v and S(v) be defined as in the description of the k-th stage of the

algorithm. Given w′
v = w′

v , the probability that s is in Sk+1 is w′
v/uk+1
wv/uk

= w′
v

wv

uk

uk+1
. By

Lemma 20, w′
v = wv + uk+1 with probability wv−wv

uk+1
and w′

v = wv otherwise. Hence

P[s ∈ Sk+1|Sk = Sk,Dk = Dk,f (s) = v]

= wv

wv

uk

uk+1
+

(
wv + uk+1

wv

uk

uk+1
− wv

wv

uk

uk+1

)
wv − wv

uk+1

= uk

uk+1
. (5)

140 Algorithmica (2011) 60: 110–151

Since the right hand side is the same for any Dk and f (s), it will also hold uncondi-
tionally that P[s ∈ Sk+1|Sk = Sk] = uk

uk+1
.

Now, let s ∈ Sk and suppose the lemma holds for some � > k. Note that P[s ∈
S�+1|Sk = Sk] = ∑

S�:s∈S�
P[s ∈ S�+1|S� = S�]P[S� = S�|Sk = Sk], since if s
∈ S�,

then P[s ∈ S�+1|S� = S�] = 0. Now, from the (base case of the) induction, we know
that P[s ∈ S�+1|S� = S�] = u�

u�+1
for all S� such that s ∈ S�. Hence

∑
S�:s∈S�

P[s ∈
S�+1|S� = S�]P[S� = S�|Sk = Sk] = u�

u�+1

∑
S�:s∈S�

P[S� = S�|Sk = Sk] = u�

u�+1
P[s ∈

S�|Sk = Sk]. Using the induction hypothesis, we have that P[s ∈ S�|Sk = Sk] = uk

u�
,

and hence P[s ∈ S�+1|Sk = Sk] = u�

u�+1

uk

u�
= uk

u�+1
. �

We note that the (joint) distribution of S� does indeed depend on the sampling
probabilities in stage k, but that by Lemma 21 the marginal probability P[s ∈ S�|
Sk = Sk] does not depend on it. Because of the special form of the upper bounds and
the linearity of expectation, we do not need to know the joint distribution in order to
compute the expectation of the upper bound.

We will now first give the proof of Lemma 25 and then give the proof of
Lemma 22.

Proof of Lemma 25 Given set Sk , and sampling probabilities pk , let Epk [�(s,Dk ∪
{t})] be the expectation of the distance from s ∈ Sk to the closest terminal in Dk ∪{t}.
By Lemma 21, the expected cost of the Augmentation Step of the k-th stage is

∑

s∈Sk

Epk [�(s,Dk ∪ {t})]
(

σk + σk+1
uk

uk+1

)

,

which does not depend on the outcome of the Subproblem Step and can be efficiently
computed for any sampling probabilities pk .

For k = 1, . . . ,K − 1, the Sub-LPk(Dk) is the linear programming relaxation of
the Steiner tree problem on Dk ∪ {t}:

min
∑

e∈E

σk+1ceye

Sub-LPk(Dk) s.t.
∑

e∈δ(S)

ye ≥ 1 for all S ⊂ V, t
∈ S,Dk ∩ S
= ∅,

ye ≥ 0 ∀e ∈ E.

By [11], we know that Sub-LPk(Dk) satisfies the second condition of the lemma.
Similar to our previous approach, we will use a linear programming relaxation of

the original problem, to show that the third condition of Lemma 25 is satisfied.
Let {uk}k=1,...,K, {σk}k=1,...,K be the rounded cable capacities and costs that we

obtain after executing the Rounding Step of SSBaB-Sample-Augment. Let zk
e indi-

cate whether we install a cable of type k on edge e. Let x
j,k
e indicate the amount of

Algorithmica (2011) 60: 110–151 141

flow sent from sj to t that passes through a cable of type k on edge e

min
1

4

∑

e∈E

K∑

k=1

σkcez
k
e

(SSBaB-LP) s.t.
∑

e∈δ(S)

K∑

k=1

x
j,k
e ≥ wj for all S ⊂ V, j = 1, . . . , n : sj ∈ S, t
∈ S,

n∑

j=1

x
j,k
e ≤ ukz

k
e for all e ∈ E,k = 1, . . . ,K,

x
j,k
e

wj

≤ zk
e for all e ∈ E,k = 1, . . . ,K, j = 1, . . . , n,

x
j,k
e ≥ 0, zk

e ≥ 0 for all e ∈ E,k = 1, . . . ,K, j = 1, . . . , n.

The first set of constraints enforces that sj sends wj units to t by enforcing that
at least wj units cross any cut that separates sj from t . The second and third sets
of constraints ensure that there is enough capacity installed to support the flow. In
particular, the second set of constraints ensures that we install a sufficient number of
cables of type k on edge e to support the flow sent on edge e on a type k cable jointly
by all sources. The third set of constraints is implied by the second set of constraints
if we constrain zk

e to be integer, but strengthens the LP relaxation by enforcing that if

source sj sends a x
j,k
e

wj
fraction of its flow on a cable of type k on edge e, then there

should be at least a x
j,k
e

wj
fraction of a type k cable installed on the edge.

To see that SSBaB-LP is a relaxation of the single sink buy-at-bulk problem, con-
sider an optimal solution to the single sink buy-at-bulk problem. We let x

j,k
e be the

amount of flow from sj to t that is routed on a cable of type k on edge e. Because we
rounded down the cable capacities to the nearest power of 2 to write SSBaB-LP, we
need to let zk

e = 2 for every cable of type k that is installed on edge e in this optimal
solution. Since we also rounded up the cable costs to the nearest power of 2, we get
that

∑
e∈E

∑K
k=1 σkcez

k
e ≤ 4OPT .

Let x̂, ẑ be an optimal solution to SSBaB-LP. Now, for any stage k = 1, . . . ,K − 1
we define

bk
e =

K∑

�=k+1

ẑ�
e, (6)

rk
e (j) =

k∑

�=1

x̂
j,�
e

wj

. (7)

We let yk
e (Dk) = bk

e + ∑
sj ∈Dk

rk
e (j) for any Dk ⊆ Sk . We need to show that yk(Dk)

is feasible for Sub-LPk(Dk) for k = 1, . . . ,K − 1.

142 Algorithmica (2011) 60: 110–151

Note that x̂
j,�
e

wj
≤ ẑ�

e , hence for any S ⊂ V such that t ∈ S, sj ∈ Dk\S, we have

that
∑

e∈δ(S) y
k
e (Dk) ≥ ∑

e∈δ(S)(
∑K

�=k+1 ẑ�
e + ∑k

�=1
x̂

j,�
e

wj
) ≥ ∑

e∈δ(S)

∑K
�=1

x̂
j,�
e

wj
≥ 1.

Hence yk(Dk) is a feasible solution to the Sub-LPk(Dk).
Finally, we will choose Bk,Rk(j) for j = 1, . . . , n so that condition (iv) is satis-

fied. We will then show in the proof of Lemma 22 that this choice will also satisfy
Lemma 22. Let CMST(Dk) be the cost (with respect to the edge costs ce) of a mini-
mum cost spanning tree on Dk ∪ {t}. Let Ep̂k [CMST(Dk)|Sk = Sk] be the expectation

of CMST(Dk) if the sampling probabilities are given by p̂k
j = σk

σk+1
for sj ∈ Sk , and

p̂k
j = 0 if sj
∈ Sk . Similarly let Ep̂k [∑e∈E cey

k
e (Dk)|Sk = Sk] be the expectation of

∑
e∈E cey

k
e (Dk). Since yk(Dk) is feasible for Sub-LPk(Dk), we know from Goemans

and Bertsimas [11] that CMST(Dk) ≤ 2
∑

e∈E cey
k
e (Dk) for every Dk ⊂ D.

It follows from Lemma 5.4 in [18] that for k = 1, . . . ,K − 1, the expected cost of
the type k cables installed in the Augmentation Step of stage k, given Sk and sampling
probabilities p̂k can be bounded by

(

1 − σk

σk+1

)

σk+1Ep̂k [CMST(Dk)|Sk = Sk].

Since Gupta et al. [18] do not derive the above bound explicitly, we give an ex-
plicit proof here. Let Xj(Dk) be the cost of connecting sj to the closest terminal in
Dk ∪ {t} using type k cables. For a given set Dk , consider the minimum cost span-
ning tree on Dk ∪ {t} rooted at t , and for sj ∈ Dk , let Yj (Dk) be the length of the
edge connecting sj to its parent in this tree, and let Yj (Dk) = 0 if sj
∈ Dk . Then
Ep̂k [∑sj ∈Sk

Yj (Dk)|Sk = Sk] = Ep̂k [CMST(Dk)|Sk = Sk]. Also

Ep̂k

[∑

sj ∈Sk

Xj (Dk)
∣
∣Sk = Sk

]

= σk

∑

sj ∈Sk

Ep̂k [�(sj ,Dk ∪ {t})|Sk = Sk] (8)

= σk

∑

sj ∈Sk

(1 − p̂k
j)Ep̂k [�(sj ,Dk ∪ {t})|Sk = Sk, sj
∈ Dk] (9)

= σk

∑

sj ∈Sk

(1 − p̂k
j)Ep̂k [�(sj ,Dk\{sj } ∪ {t})|Sk = Sk, sj ∈ Dk] (10)

≤ σk

∑

sj ∈Sk

(1 − p̂k
j)Ep̂k [Yj (Dk)|Sk = Sk, sj ∈ Dk] (11)

= σk

∑

sj ∈Sk

(1 − p̂k
j)

1

p̂k
j

Ep̂k [Yj (Dk)|Sk = Sk] (12)

=
(

1 − σk

σk+1

)

σk+1Ep̂k [CMST(Dk)|Sk = Sk]. (13)

Algorithmica (2011) 60: 110–151 143

Equation (8) follows from the definition of Xj(Dk), and (9) follows since Xj(Dk) =
0 if sj ∈ Dk . Equation (10) follows because the sources are marked independently,
so that for sj ∈ Sk , Ep̂k [�(sj ,Dk ∪ {t})|Sk = Sk, sj
∈ Dk] = Ep̂k [�(sj ,Dk\{sj } ∪
{t})|Sk = Sk, sj ∈ Dk]. Inequality (11) follows since by the definition Yj (Dk) ≥
�(sj ,Dk\{sj } ∪ {t}), and (12) follows since Yj (Dk) = 0 if sj
∈ Dk . Finally, (13) fol-
lows by substituting p̂k

j = σk

σk+1
and Ep̂k [∑sj ∈Sk

Yj (Dk)|Sk = Sk] = Ep̂k [CMST(Dk)|
Sk = Sk].

Also, by Lemma 21, each path on which type k cables are installed in the Augmen-
tation Step of stage k will also have type k + 1 cables installed in the Augmentation
Step with probability uk

uk+1
. Hence the expected cost of the type k + 1 cables installed

in the Augmentation Step is σk+1/uk+1
σk/uk

times the expected cost of the type k cables in-

stalled in the Augmentation Step. The total expected cost of the Augmentation Step
of stage k, given Sk and sampling probabilities p̂k can thus be bounded by

(

1 + σk+1/uk+1

σk/uk

)(

1 − σk

σk+1

)

σk+1Ep̂k [CMST(Dk)|Sk = Sk]. (14)

Now, since by our assumptions 1− σk

σk+1
≤ 1, σk+1/uk+1

σk/uk
≤ 1

2 , and because by Goemans

and Bertsimas [11] Ep̂k [CMST(Dk)|Sk = Sk] ≤ 2Ep̂k [∑e∈E cey
k
e (Dk)|Sk = Sk] we

get that the expected cost of the Augmentation Step of stage k, given Sk and sampling
probabilities p̂k is at most

3σk+1Ep̂k

[∑

e∈E

cey
k
e (Dk)

∣
∣Sk = Sk

]

. (15)

Because the cost of the solution created in the Subproblem Step on Dk is at most
2
∑

e∈E σk+1cey
k
e (Dk) for any Dk ⊆ D, we get that, given Sk = Sk , the total ex-

pected cost of stage k is at most 5σk+1Ep̂k [∑e∈E cey
k
e (Dk)|Sk = Sk]. Now, noting

that Ep̂k [yk
e (D)|Sk = Sk] = bk

e + ∑
sj ∈Sk

p̂k
j r

k
e (j) = bk

e + ∑
sj ∈Sk

σk

σk+1
rk
e (j), it fol-

lows that condition (iv) of Lemma 25 is satisfied for k = 1, . . . ,K − 1 if we let

Bk = 5
∑

e∈E

σk+1ceb
k
e , (16)

Rk(j) = 5
∑

e∈E

σkcer
k
e . (17)

�

Finally, we show that we can define B0,BK and R0(j),RK(j) for j = 1, . . . , n so
that these values combined with the values defined in (16, 17) satisfy the conditions
in Lemma 22.

Proof of Lemma 22 We already saw that Bk,Rk(j) as defined in (16, 17) satisfy the
first inequality in Lemma 22 for k = 1, . . . ,K − 1.

We now define b0
e , r

K
e (j) according to the definition in (6), (7) (where we note

that these definitions set bK
e = 0, r0

e (j) = 0). We claim that b0
e is a feasible solution

144 Algorithmica (2011) 60: 110–151

to the Steiner LP on S ∪ {t}. Indeed consider some sj ∈ S and take S ⊂ V such that

sj
∈ S, t ∈ S. By the third set of constraints of SSBaB-LP, b0
e = ∑K

�=1 ẑ�
e ≥ ∑K

�=1
x̂�
e

wj
.

Also, the first set of constraints ensures that
∑

e∈δ(S)

∑K
�=1

x̂�
e

wj
≥ 1. Hence by [11],

we know that we can find a tree T0 on S ∪ {t} and install cables of type 1, at cost at
most 2

∑
e∈E σ1ceb

0
e .

Hence we can define

B0 = 2
∑

e∈E

σ1ceb
0
e , and R0(j) = 0, j = 1, . . . , n. (18)

For the final stage, we need to give a bound on
∑

sj ∈SK
σK�(sj , t). From the

first set of constraints of SSBaB-LP, it is clear that
∑

e∈E ce

∑K
�=1

x̂
j,�
e

wj
is an upper

bound on the length of the shortest path from sj to t , hence
∑

sj ∈SK
σK�(sj , t) ≤

∑
sj ∈SK

σK

∑
e∈E ce

∑K
�=1

x̂
j,�
e

wj
= ∑

e∈E σKce

∑
sj ∈SK

rK
e (j). So we can define

BK = 0, and RK(j) =
∑

e∈E

σKcer
K
e (j), j = 1, . . . , n. (19)

Now, some algebra similar to that in Gupta et al. [18] shows that the second
inequality of the lemma holds. For ease of notation, we first write BK,B0 and
RK(j),R0(j) in the same form as Bk,Rk(j) for 1 ≤ k ≤ K − 1. To do this, we
define σ0 = 1

2σ1, u0 = 1, σK+1 = 2σK,uK+1 = uK , and increase our upper bounds
B0,R0(j),BK,RK(j) so that for every k ∈ {0, . . . ,K} and j ∈ {1, . . . , n}:

Bk = 5
∑

e∈E

σk+1ceb
k
e , and Rk(j) = 5

∑

e∈E

σkcer
k
e .

(Note that we could have chosen any finite values for σ0, σK+1, since bK
e and r0

e

are 0.)
Then for k = 1, . . . ,K ,

∑

sj ∈S

wj

uk

Rk(j) = 5
∑

e∈E

σkce

∑

sj ∈S

wj

uk

rk
e (j)

= 5
σk

uk

∑

e∈E

ce

∑

sj ∈S

k∑

�=1

x̂
j,�
e

≤ 5
σk

uk

∑

e∈E

ce

k∑

�=1

u�ẑ
�
e by the second set of constraints

of SSBaB-LP.

Also, note that R0(j) = 0, hence
∑

sj ∈S R0(j) = 0 ≤ 5 σ0
u0

∑
e∈E ce

∑0
�=1 u�ẑ

�
e .

Algorithmica (2011) 60: 110–151 145

Now, since Bk = 5
∑

e∈E σk+1ceb
k
e = 5

∑
e∈E σk+1ce

∑K
�=k+1 ẑ�

e for k = 0, . . . ,K ,
we get that

K∑

k=0

Bk +
∑

sj ∈S

(

R0(j) +
K∑

k=1

wj

uk

Rk(j)

)

≤ 5
K∑

k=0

∑

e∈E

ce

(
K∑

�=k+1

σk+1ẑ
�
e +

k∑

�=1

σk

u�

uk

ẑ�
e

)

= 5
K∑

�=1

∑

e∈E

ceẑ
�
e

(
K∑

k=�

σk

u�

uk

+
�−1∑

k=0

σk+1

)

= 5
K∑

�=1

∑

e∈E

σ�ceẑ
�
e

(
K∑

k=�

σk/uk

σ�/u�

+
�∑

k=1

σk

σ�

)

= 5
K∑

�=1

∑

e∈E

σ�ceẑ
�
e

(
K−�∑

k=0

σ�+k/u�+k

σ�/u�

+
�−1∑

k=0

σ�−k

σ�

)

≤ 20
K∑

�=1

∑

e∈E

σ�ceẑ
�
e

≤ 80OPT.

The second to last inequality follows from the fact that σk

σk+1
≤ 1

2 and σk+1/uk+1
σk/uk

≤ 1
2

for k = 0, . . . ,K −1, since then
∑K−�

k=0
σ�+k/u�+k

σ�/u�
≤ ∑K−�

k=0 (1
2)k ≤ 2 and

∑�−1
k=0

σ�−k

σ�
≤

∑�−1
k=0(

1
2)k ≤ 2. �

4.3 Improved Analysis

We can improve the approximation guarantee of the algorithm using the ideas of
Grandoni and Italiano [13]. Rather than rounding down the cable capacities and
rounding up the prices, they carefully select a subset of the cables, which allows them
to significantly improve the approximation ratio. They require the cable types to sat-
isfy economies of scale: the cost σk

uk
per unit capacity must decrease as the capacity

of the cable increases. It turns out that we can drop this assumption; see Remark 28
at the end of this section.

It is not hard to adapt our upper bounds to their algorithm and analysis, instead
of the algorithm of Gupta et al. [18]. We give the revised algorithm in Fig. 9. We
replaced the Rounding Step by a Cable Selection Step, which takes two parameters α

and β . We note that in the Intermediate Stages, the algorithm SBBaB-stage-i(q) for
i(q) = k is the same as SSBaB-stage-k given in Fig. 8, except that we replace k + 1
by i(q + 1) (in other words, we only use the cable types i(1), . . . , i(K ′)). If we use
α = 3.059, β = 2.475 in the algorithm given in Fig. 9, we get the following result.

146 Algorithmica (2011) 60: 110–151

SSBaB-Sample-Augment(G = (V ,E), c, t, S, u1, . . . , uK,σ1, . . . , σK)
(Cable Selection Step)
Let i(1) = 1, and given i(q),1 < i(q) < K , let i(q + 1) be the smallest index such
that σi(q+1)+1 ≥ ασi(q) and

σi(q)

ui(q)
≥ β

σi(q+1)

ui(q+1)
, or, if no such index exists, i(q + 1) =

i(K ′) = K .
(Preprocessing Step)
Find a Steiner tree T0 on S ∪ {t}, install a cable of type i(1) on each edge of T0.
Let w′ = Redistribute(T0,w,ui(1)). Let Si(1) = {sj ∈ S : w′

j > 0}.
(Intermediate Stages)
For q = 1, . . . ,K ′ − 1

p̂
i(q)
j = σi(q)

σi(q+1)

for sj ∈ Si(q),

Si(q+1) = SSBaB-Stage-i(q)
(
G,c, t, Si(q), ui(q), ui(q+1), p̂

i(q)
)

.

(Final Stage)
For every s ∈ Si(K ′), install cables of type i(K ′) on the shortest path from s to t .

Fig. 9 Sample-Augment algorithm for single-sink buy-at-bulk with generalized cable selection rule

Theorem 27 There exists a deterministic 27.72-approximation algorithm for the sin-
gle sink buy-at-bulk problem.

Proof We adapt and strengthen our previous analysis; in particular, we slightly
change the definitions of bk, rk(j) and Bk,Rk(j) that we used in the proofs of
Lemmas 22 and 25. Since we now have stages i(0), . . . , i(K ′), we define values
bi(q), ri(q)(j) and Bi(q),Ri(q)(j). We show that bi(q), ri(q) satisfy Lemma 25, and

that if p̂
i(q)
j = σi(q)

σi(q+1)
for sj ∈ Si(q), then the total expected cost of the cables installed

in stage i(q) is at most Bi(q) +∑
sj ∈Si(q)

Ri(q)(j). This part of the analysis is basically
the same as before. The main difference occurs in Lemma 22. We will show that if
α = 3.059, β = 2.475, then

Bi(0) +
∑

sj ∈S
Ri(0)(j) +

K ′
∑

q=1

(

Bi(q) +
∑

sj ∈S

wj

ui(q)

Ri(q)(j)

)

≤ 27.72OPT.

We again define bi(q), ri(q)(j) and Bi(q),Ri(q)(j) based on an LP relaxation of
the single sink buy-at-bulk problem. We use a slightly different LP relaxation. Recall
that previously, SSBaB-LP was defined using the rounded cable capacities and cable
costs. We now redefine SSBaB-LP on the original parameters, so that we can let the
objective value be

min
∑

e∈E

K∑

k=1

σkcez
k
e .

Algorithmica (2011) 60: 110–151 147

In other words, if we define the LP using the original cable parameters, we do not
have to divide the objective value by 4 in order to have SSBaB-LP be a relaxation of
the single sink buy-at-bulk problem.

Now, since we assume that σk+1
uk+1

≤ σk

uk
and σk ≤ σk+1 for all k = 1, . . . ,K − 1, it

is the case that for every fixed q ,
σi(q)/ui(q)

σ�/u�
is increasing in � and

σi(q+1)

σ�
is decreasing

in �. Hence there exists some �(q) such that
σi(q)/ui(q)

σ�/u�
≤ σi(q+1)

σ�
for � ≤ �(q), and

σi(q)/ui(q)

σ�/u�
≥ σi(q+1)

σ�
for � > �(q). Given this definition of �(q) we define

r
i(q)
e (j) =

�(q)∑

�=1

x̂
j,�
e

wj

, (20)

b
i(q)
e =

K∑

�=�(q)+1

ẑ�
e, (21)

where ẑ, x̂ is the optimal solution to the SSBaB-LP.
Then it is not hard to show that Lemma 25 holds for stages i(1), . . . , i(K ′ − 1), if

we define the values Bi(q),Ri(q)(j) to be

Bi(q) = γi(q)

∑

e∈E

σi(q+1)ceb
i(q)
e , Ri(q)(j) = γi(q)

∑

e∈E

σi(q)cer
i(q)
e ,

for appropriately chosen values of γi(q). Instead of setting γi(q) = 5 as we did before,

we refine the analysis and set γi(q) = 2(1 + σi(q+1)/ui(q+1)

σi(q)/ui(q)
)(1 − σi(q)

σi(q+1)
) + 2. From

(14) and the arguments following it we see that this setting for γi(q) rather than 5 is
sufficient for Lemma 25 to hold for stage i(q).

We refer to the preprocessing step as stage i(0) and the final stage as i(K ′) and
we define

Bi(0) = 2
∑

e∈E

σi(1)ce

K∑

�=1

ẑ�
eb

i(0)
e , Ri(0)(j) = 0,

Bi(K ′) = 0, Ri(K ′)(j) =
∑

e∈E

σi(K ′)ce

K∑

�=1

x̂
j,�
e

wj

,

which is the same as (18) and (19). If we let γi(0) = 2, γi(K ′) = 1 and �(0) =
0, �(K ′) = K , then we can write B(i(q),Ri(q) in a single format for all q = 0, . . . ,K ′
as

Bi(q) = γi(q)

∑

e∈E

σi(q+1)ce

K∑

�=�(q)+1

ẑ�
e,

Ri(q)(j) = γi(q)

∑

e∈E

σi(q)ce

�(q)∑

�=1

x̂
j,�
e

wj

.

148 Algorithmica (2011) 60: 110–151

Now, we can follow a similar analysis as in the proof of Lemma 22. First, it follows
from the same arguments as in the proof of Lemma 22 that for q = 0, . . . ,K ′,

∑

sj ∈S

wj

ui(q)

Ri(q)(j) ≤ γi(q)

σi(q)

ui(q)

∑

e∈E

ce

�(q)∑

�=1

u�ẑ
�
e.

Therefore

Bi(0) +
∑

sj ∈S
Ri(0)(j) +

K ′
∑

q=1

(

Bi(q) +
∑

sj ∈S

wj

ui(q)

Ri(q)(j)

)

≤
K ′
∑

q=0

γi(q)

∑

e∈E

ce

⎛

⎝
�(q)∑

�=1

σi(q)

u�

ui(q)

ẑ�
e +

K∑

�=�(q)+1

σi(q+1)ẑ
�
e

⎞

⎠

=
K∑

�=1

∑

e∈E

σ�ceẑ
�
e

⎛

⎝
∑

q:�(q)<�

γi(q)

σi(q+1)

σ�

+
∑

q:�(q)≥�

γi(q)

σi(q)/ui(q)

σ�/u�

⎞

⎠

=
K∑

�=1

∑

e∈E

σ�ceẑ
�
e

(

γi(0)

σi(1)

σ�

+
K ′−1∑

q=1

γi(q) min

{
σi(q)/ui(q)

σ�/u�

,
σi(q+1)

σ�

}

+ γi(K ′)
σi(K ′)/ui(K ′)

σ�/u�

)

,

where the first equality follows by changing the order of summation, and the second
one follows from the definition of �(q).

Plugging in γi(0) = 2, γi(K ′) = 1 and

γi(q) = 2

(

1 + σi(q+1)/ui(q+1)

σi(q)/ui(q)

)(

1 − σi(q)

σi(q+1)

)

+ 2

=
((

2 + 2
σi(q+1)/ui(q+1)

σi(q)/ui(q)

)(

1 − σi(q)

σi(q+1)

)

+ 2

)

for q = 1, . . . ,K ′ − 1, and noting that
σi(K ′)/ui(K ′)

σ�/u�
≤ 1, we see that

∑
e∈E σ�ceẑ

�
e is

thus charged at most

2
σi(1)

σ�

+
K ′−1∑

q=1

((

2 + 2
σi(q+1)/ui(q+1)

σi(q)/ui(q)

)(

1 − σi(q)

σi(q+1)

)

+ 2

)

× min

{
σi(q+1)

σ�

,
σi(q)/ui(q)

σ�/u�

}

+ 1

Algorithmica (2011) 60: 110–151 149

times. This expression is the same as the expression apx(ρ, �) in Lemma 1 in [13], if
we take ρ = 2:

apx(ρ, �) = 1 + ρ
σi(1)

σ�

+
K ′−1∑

q=1

((

2 + 2
σi(q+1)/ui(q+1)

σi(q)/ui(q)

)(

1 − σi(q)

σi(q+1)

)

+ ρ

)

× min

{
σi(q+1)

σ�

,
σi(q)/ui(q)

σ�/u�

}

.

Now, Grandoni and Italiano show how to bound apx(ρ, �) if i(1), . . . , i(K ′) are
chosen according to the Cable Selection Step, i.e. if i(1) = 1, and if, given i(q),1 <

i(q) < K , i(q + 1) is the smallest index such that σi(q+1)+1 ≥ ασi(q) and
σi(q)

ui(q)
≥

β
σi(q+1)

ui(q+1)
, or, if no such index exists, i(q + 1) = i(K ′) = K . Equations (7–12) in the

proof of Theorem 2 in [13] state that if α > 1, β > 1 and β ≤ 3 + ρ
2 then

apx(ρ, �) ≤ max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + (2 + 2
β

+ ρ)(1 + β + β
β−1) + ρ 2

α−1 ,

1 + (2 + 2
β

+ ρ)(α + β
β−1) + ρ α+1

α−1 ,

1 + (2 + 2
β

+ ρ)(1 + β
β−1) + ρ α+1

α−1 ,

1 + (2 + 2
β

+ ρ) + ρ 2
α−1 + (4 + ρ)β,

1 + ρ α+1
α−1 + (4 + ρ)α,

1 + ρ α+1
α−1 + (4 + ρ).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Hence if we set α = 3.059, β = 2.475, then apx(2, �) ≤ 27.72 for � = 1, . . . ,K .
Hence we have shown that

Bi(0) +
∑

sj ∈S
Ri(0)(j) +

K ′
∑

q=1

(

Bi(q) +
∑

sj ∈S

wj

ui(q)

Ri(q)(j)

)

≤ 27.72
K∑

�=1

∑

e∈E

σ�ceẑ
�
e ≤ 27.72OPT.

The arguments leading up to Theorem 26 show that these observations are enough to
show that there exists a deterministic 27.72-approximation algorithm for the single
sink rent-or-buy problem. �

Remark 28 We note that for our analysis, the assumption that the cables satisfy
economies of scale is without loss of generality, because we use the optimal value
of SSBaB-LP as an upper bound: if σk+1

uk+1
>

σk

uk
, then the optimal solution to SSBaB-

LP will not use cable type k + 1, since it can instead use uk+1
uk

cables of type k which
results in a lower cost. Grandoni and Italiano [13] use the (integer) optimum as an up-
per bound, and since uk+1

uk
may not be integer, they do need the additional assumption

of economies of scale.

150 Algorithmica (2011) 60: 110–151

5 Conclusion

We propose a specific method for derandomizing Sample-Augment algorithms, and
we successfully apply this method to all but one of the Sample-Augment algorithms
in Gupta et al. [18], and to the a priori traveling salesman problem and the 2-stage
rooted stochastic Steiner tree problem with independent decisions.

The question whether the Sample-Augment algorithm for multicommodity rent-
or-buy problem can be derandomized remains open. The multicommodity rent-or-buy
problem is a generalization of the single source rent-or-buy problem: instead of one
source s and sinks t1, . . . , tk , we are given k source-sink pairs (s1, t1), . . . , (sk, tk) and
need to construct a network so that each source-sink pair is connected. The Sample-
Augment algorithm for this problem [8, 18] marks each source-sink pair with proba-
bility 1

M
and buys a Steiner forest on the marked terminals in the Subproblem Step.

In the Augmentation Step, we contract the bought edges, and rent the shortest path
connecting each terminal pair in the contracted graph. If we want to use Theorem 1,
we would need to be able to compute Ep[Caug(D)] (or a good upper bound for it)
efficiently and it is unclear how to do this for the multicommodity rent-or-buy algo-
rithm, because unlike in the algorithms we discussed here, Ep[Caug(D)] does depend
on the subproblem solution, and not just on D.

It may also be possible to extend our approach to the Boosted Sampling algorithms
for two-stage stochastic optimization problems [16], especially for the special case of
independent decisions, but except for the rooted Steiner tree problem it is not obvious
how to determine Ep[Caug(D)]. There is a similar but even larger obstacle if we want
to use our techniques to derandomize the Boosted Sampling algorithms for multi-
stage stochastic optimization problems, because here we would also need to be able
to compute (an upper bound on) the expected cost of future stages.

Acknowledgements The author would like to thank David P. Williamson and Frans Schalekamp for
helpful comments on earlier drafts of this paper.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for
k-median and facility location problems. In: Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pp. 21–29 (2001)

2. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem. Report
388, Graduate School of Industrial Administration, Carnegie Mellon University (1976)

3. Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual private network de-
sign. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 928–
932 (2005)

4. Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual private network
design. SIAM J. Comput. 37(3), 706–721 (2007)

5. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected facility location
problems via random facility sampling and core detouring. In: Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1174–1183 (2008)

6. Erdős, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press, San Diego (1974)
7. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree

metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

Algorithmica (2011) 60: 110–151 151

8. Fleischer, L., Könemann, J., Leonardi, S., Schäfer, G.: Simple cost sharing schemes for multicom-
modity rent-or-buy and stochastic Steiner tree. In: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, pp. 663–670 (2006)

9. Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On the integrality gap of a
natural formulation of the single-sink buy-at-bulk network design problem. In: Proceedings of the 8th
International Integer Programming and Combinatorial Optimization Conference, pp. 170–184 (2001)

10. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online combinatorial opti-
mization problems. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 942–951 (2008)

11. Goemans, M.X., Bertsimas, D.J.: Survivable networks, linear programming relaxations and the parsi-
monious property. Math. Program. Ser. A 60(2), 145–166 (1993)

12. Goyal, V., Gupta, A., Leonardi, S., Ravi, R.: Pricing tree access networks with connected backbones.
In: Proceedings of the 15th Annual European Symposium on Algorithms, pp. 498–509 (2007)

13. Grandoni, F., Italiano, G.F.: Improved approximation for single-sink buy-at-bulk. In: Proceedings of
the 17th International Symposium on Algorithms and Computation, pp. 111–120 (2006)

14. Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the single sink edge
installation problems. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pp. 383–388 (2001)

15. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network
design. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 365–372
(2003)

16. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for stochastic
optimization. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp.
417–426 (2004)

17. Gupta, A., Pál, M., Ravi, R., Sinha, A.: What about Wednesday? Approximation algorithms for mul-
tistage stochastic optimization. In: Approximation, Randomization and Combinatorial Optimization.
Lecture Notes in Computer Science, vol. 3624, pp. 86–98. Springer, Berlin (2005)

18. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: simpler and better
approximation algorithms for network design. J. ACM 54(3), 11 (2007)

19. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. Algorithmica
50(1), 98–119 (2008)

20. Jung, H., Hasan, M.K., Chwa, K.-Y.: Improved primal-dual approximation algorithm for the con-
nected facility location problem. In: COCOA 2008: Proceedings of the 2nd International Conference
on Combinatorial Optimization and Applications. Lecture Notes in Computer Science, vol. 5165, pp.
265–277. Springer, Berlin (2008)

21. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of procrastination:
approximation algorithms for stochastic combinatorial optimization problems. In: Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 691–700 (2004)

22. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems.
SIAM J. Comput. 36(2), 411–432 (2006) (electronic)

23. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer
programs. J. Comput. Syst. Sci. 37(2), 130–143 (1988)

24. Shmoys, D., Talwar, K.: A constant approximation algorithm for the a priori traveling salesman prob-
lem. In: Proceedings of the 13th International Integer Programming and Combinatorial Optimization
Conference (2008)

25. Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp TSP bound: A monotonicity property with
application. Inf. Process. Lett. 35, 281–285 (1990)

26. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica
40(4), 245–269 (2004)

27. Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Proceedings of the 9th
International Integer Programming and Combinatorial Optimization Conference, pp. 475–486 (2002)

28. van Zuylen, A.: Deterministic sampling algorithms for network design. In: Proceedings of the 16th
Annual European Symposium. Lecture Notes in Computer Science, vol. 5193, pp. 830–841. Springer,
Berlin (2008)

29. Williamson, D.P., van Zuylen, A.: A simpler and better derandomization of an approximation algo-
rithm for single source rent-or-buy. Oper. Res. Lett. 35(6), 707–712 (2007)

30. Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math. Program. Study
13, 121–134 (1980)

	Deterministic Sampling Algorithms for Network Design
	Abstract
	Introduction
	Related Work
	Our Results

	General Framework
	Conditioning on the Size of D

	Derandomization of Sample-Augment Algorithms
	Single Source Rent-or-Buy
	2-Stage Stochastic Steiner Tree with Independent Decisions
	A Priori Traveling Salesman with Independent Decisions
	Connected Facility Location Problems
	Virtual Private Network Design

	Single-Sink Buy-at-Bulk Network Design
	Derandomization of the Sample-Augment Algorithm for Single-Sink Buy-at-Bulk
	Proofs of Lemmas 21, 22 and 25
	Improved Analysis

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

