
Fast-Convergent Learning-aided Control in Energy Harvesting Networks

Longbo Huang
longbohuang@tsinghua.edu
IIIS, Tsinghua University

Abstract— In this paper, we present a novel learning-aided
energy management scheme (LEM) for multihop energy har-
vesting networks. Different from prior works on this problem,
our algorithm explicitly incorporates information learning into
system control via a step called perturbed dual learning. LEM
does not require any statistical information of the system
dynamics for implementation, and efficiently resolves the chal-
lenging energy outage problem. We show that LEM achieves the
near-optimal [O(ε), O(log(1/ε)2)] utility-delay tradeoff with an
O(1/ε1−c/2) energy buffers (c ∈ (0, 1)). More interestingly,
LEM possesses a convergence time of O(1/ε1−c/2 + 1/εc), which
is much faster than the Θ(1/ε) time of pure queue-based
techniques or the Θ(1/ε2) time of approaches that rely purely
on learning the system statistics. This fast convergence property
makes LEM more adaptive and efficient in resource allocation
in dynamic environments. The design and analysis of LEM
demonstrate how system control algorithms can be augmented
by learning and what the benefits are. The methodology
and algorithm can also be applied to similar problems, e.g.,
processing networks, where nodes require nonzero amount of
contents to support their actions.

I. INTRODUCTION

Recent developments in energy harvesting technologies
make it possible for wireless devices to support their func-
tions by harvesting energy from the environment. For ex-
ample, by using solar panels [1] [2], by harvesting ambient
radio power [3], and by converting mechanical vibration into
energy [4], [5]. Due to the capability in providing long lasting
energy supply, the energy harvesting technology has the
potential to become a promising solution to energy problems
in networks formed by self-powered devices, e.g., wireless
sensor networks and mobile devices.

To realize the full benefits of energy harvesting, algorithms
must be designed to efficiently incorporate it into system
control. In this paper, we develop an online learning-aided
energy management scheme for energy harvesting networks.
Specifically, we consider a discrete stochastic network, where
network links have time-varying qualities, and nodes are
powered by finite capacity energy storage devices and can
harvest energy from the environment. In each time slot,
every node decides how much new workload to admit, e.g.,
sampled data from a field, and how much power to spend for
traffic transmission (or data processing). The objective of the
network is to find a joint energy management and schedul-
ing policy, so as to maximize the aggregate traffic utility,
while ensuring network stability and energy availability, i.e.,
the network nodes always have enough energy to support
transmissions.

There have been many previous works on energy harvest-
ing networks. Works [6] and [7] consider a leaky-bucket
like structure and design joint energy prediction and power
management schemes for energy harvesting sensor nodes. [8]
focuses on designing energy-efficient schemes that maximize
the decay exponent of the queue size. [9] develops scheduling
algorithms to achieve near-optimal utility for energy har-
vesting networks with time-varying channels. [10] designs
an energy-aware routing scheme that achieves optimality as
the network size increases. [11] proposes an online energy
management and scheduling algorithm for multihop energy
harvesting networks. [12] considers joint compression and
transmission in energy harvesting networks. [13] considers a
multihop network and proposes a control scheme based on
energy replenishment rate estimation.

However, we notice that the aforementioned works either
focus on scenarios where complete statistical information
is given beforehand, or try to design schemes that do not
require such information. Therefore, they ignore the potential
benefits of utilizing information of system dynamics in con-
trol, and do not provide interfaces for integrating information
collecting and learning techniques [14], e.g., sensing and
data mining or machine learning, into algorithm design. In
this work, we try to explicitly bring information learning
into the system control framework. Specifically, we develop
a learning mechanism called perturbed dual learning and
propose a learning-aided energy management scheme (LEM).
LEM is an online control algorithm and does not require

any statistical information for implementation. Instead, it
builds an empirical distribution of the system dynamics,
including network condition variation and energy availability
fluctuation. Then, it learns an approximate optimal Lagrange
multiplier of a carefully constructed underlying optimiza-
tion problem that captures system optimality, via a step
called perturbed dual learning. Finally, LEM incorporates the
learned information into the system controller by augmenting
the controller with the approximate multiplier. We show that
LEM is able to achieve a near-optimal [O(ε), O(log(1

ε)2)]
utility-delay tradeoff for general multihop energy harvesting
networks with an O((1

ε)2/3 log(1
ε)2) energy storage capacity

and resolves the energy outage problem. Moreover, we show
that by incorporating information learning, one can signifi-
cantly improve the algorithm convergence time, i.e., the time
an algorithm takes to converge to its optimal operating point:
LEM requires an O((1

ε)2/3 log(1
ε)2) time for convergence,

whereas existing queue-based algorithms require a Θ(1/ε)
time and algorithms based purely on learning the statistics

require a Θ(1/ε2) time. This fast convergence implies that
learning-aided algorithms can adapt faster when the envi-
ronment statistics changes, which indicates better robustness
and higher efficiency in resource allocation.

Learning-aided control with dual learning was first devel-
oped in [15]. In this work, we extend the results to resolve
energy outage problems in energy harvesting networks via
a perturbed version of dual learning. Intuitively speaking,
perturbed dual learning learns a perturbed empirical optimal
Lagrange multiplier required for “no-underflow” systems,
where optimal multipliers must be steered and made track-
able by queues.

Our paper is mostly related to recent works [6], [13], and
[11]. Specifically, both [6] and [13] try to form estimations
of the harvestable energy rates and utilize the information in
network control. However, they do not consider the system
dynamics and do not explicitly characterize network delay
performance. On the other hand, [11] focuses on achieving
long term performance guarantees without learning. More-
over, these three works do not characterize the algorithm
convergence speed, which is an important metric for mea-
suring the efficiency of control algorithms in learning the
optimal system operating point in dynamic environments.

We summarize the main contributions as follows:
• We propose the Learning-aided Energy Manage-

ment algorithm (LEM) for multihop energy harvest-
ing networks, and show that LEM achieves a near-
optimal [O(ε), O(log(1

ε)2)] utility-delay tradeoff with
an O((1

ε)2/3 log(1
ε)2) energy storage capacity.

• We show that LEM possesses an O((1
ε)2/3 log(1

ε)2)
convergence time. This convergence time is much faster
compared to the Θ(1

ε) time of existing queue-based
techniques and the Θ(1

ε)2 time required for approaches
that purely rely on learning the statistics.

• We analyze the performance of LEM with the augmented
drift analysis approach, which handles the interplay
between learning and control and no-underflow con-
straints. This analysis approach can likely find appli-
cations to other similar problems with the no-underflow
constraints, e.g., processing networks [16].

The rest of the paper is organized as follows. We present
the system model in Section II. We explain the algorithm
design approach and present the LEM algorithm in Section III
and explain the intuition. Then, we present the performance
results of LEM in Section IV. Simulation results are provided
in Section V. We conclude the paper in Section VI.

II. THE SYSTEM MODEL

We consider a general multi-hop network that operates in
slotted time. The network is modeled by a directed graph
G = (N ,L), where N = {1, 2, ..., N} is the set of nodes
in the network, and L = {[n,m], n,m ∈ N} is the set
of communication links. We use N (o)

n to denote the set of
nodes b with [n, b] ∈ L for each node n, and use N (in)

n

to denote the set of nodes a with [a, n] ∈ L. We define
dmax , maxn(|N (in)

n |, |N (o)
n |) the maximum in-degree/out-

degree that any node n can have.

A. The Traffic and Utility Model

At every time slot, the network decides how much new
workload (called packets below) destined for node c to admit
at node n. We call this traffic the commodity c data and
use R(c)

n (t) to denote the amount of new commodity c data
admitted. We assume that 0 ≤ R

(c)
n (t) ≤ Rmax for all n, c

with some finite Rmax > 0 at all time.
We assume that each commodity is associated with a

utility function U (c)
n (rnc), where rnc is the time average rate

of the commodity c traffic admitted into node n, defined as
rnc = limt→∞ 1

t

∑t−1
τ=0 E

{
R

(c)
n (τ)

}
.1 Each U (c)

n (r) function
is assumed to be increasing, continuously differentiable, and
concave in r with a bounded first derivative and U (c)

n (0) =

0. We define β , maxn,c(U
(c)
n)′(0) the maximum first

derivative of all utility functions.

B. The Transmission Model

In order to deliver the admitted data to their destina-
tions, each node needs to allocate power to the links for
transmission at every time slot. To model the effect that
the transmission rates typically also depend on the link
conditions and that the link conditions may be time-varying,
we denote S(t) the network channel state, i.e., the N -by-
N matrix where the (n,m) component of S(t) denotes the
channel condition between nodes n and m.

Denote P[n,b](t) the power allocated to link [n, b] at time
t. At every time slot, if S(t) = si, the power allocation
vector P (t) = (P[n,b](t), [n, b] ∈ L) must be chosen from
some feasible power allocation set P(si). We assume that
P(si) is compact for all si, and that every power vector
in P(si) satisfies the constraint that for each node n, 0 ≤∑
b∈N (o)

n
P[n,b](t) ≤ Pmax for some finite Pmax > 0. We

also assume that for any P ∈ P(si), setting the entry P[n,b]

to zero yields another power vector that is still in P(si).
Given channel state S(t) and power allocation vector P (t),
the transmission rate over link [n, b] is given by the rate-
power function µ[n,b](t) = µ[n,b](S(t),P (t)).

For each si, we assume that the function µ[n,b](si,P)
satisfies the following properties: Let P ,P ′ ∈ P(si) be such
that P ′ is obtained by changing any single component P[n,b]

in P to zero. Then, (i) there exists some finite constant κ > 0
that:

µ[n,b](si,P) ≤ µ[n,b](si,P
′) + κP[n,b], (1)

and (ii) for each link [a,m] 6= [n, b],
µ[a,m](si,P) ≤ µ[a,m](si,P

′). (2)
These properties can be satisfied by most rate-power func-
tions, e.g., when the rate function is differentiable and has
finite directional derivatives with respect to power [17], and
when link rates do not improve with increased interference.

We assume that there exists a finite constant µmax such
that µ[n,b](t) ≤ µmax for all time under any power allocation
vector P (t) and any channel state S(t). We use µ(c)

[n,b](t) to

1In this paper, we assume for clarity that all limits exist with probability
1. When some limits do not exist, we can obtain similar results by replacing
limit by lim inf or lim sup, but the results are more involved.

denote the rate allocated to the commodity c data over link
[n, b] at time t. It can be seen that

∑
c µ

(c)
[n,b](t) ≤ µ[n,b](t)

for all [n, b] and for all t.

C. The Energy Harvesting Model

Each node in the network is assumed to be powered by
a finite capacity energy storage device, e.g., a battery or an
ultra-capacitor [18]. We model such a device with an energy
queue. We use the energy queue size at node n at time t,
denoted by En(t), to measure the amount of the energy
stored at node n at time t. Each node n can observe its
current energy level En(t). In any time slot t, the power
allocation vector P (t) must satisfy the following “energy-
availability” constraint:2∑

b∈N (o)
n

P[n,b](t) ≤ En(t), ∀ n, (3)

i.e., the consumed power must be no more than what is
available.

Each node in the network is assumed to be capable of
harvesting energy from the environment, for instance, using
solar panels [18] or mechanical vibration [5]. To capture
the fact that the amount of harvestable energy typically
varies over time, we use hn(t) to denote the amount of
harvestable energy by node n at time t, and denote by
h(t) = (h1(t), ..., hN (t)) the harvestable energy vector at
time t, called the energy state. We assume that hn(t) ≤ hmax

for all n, t for some finite hmax. In the following, it is
convenient for us to assume that each node can decide
whether or not to harvest energy in each slot. Specifically,
we use en(t) ∈ [0, hn(t)] to denote the amount of energy
that is actually harvested at time t. We will see later that
under our algorithm, en(t) 6= hn(t) only when the energy
storage is close to full.

Denote z(t) = (S(t),h(t)). We assume that z(t) takes
values in Z = {z1, ...,zM}, where zm = (sm,hm) and is
i.i.d. every time. We denote πm = Pr

{
z(t) = zm

}
. We also

rewrite P(si) as Pm and µ[n,b](sm,P) = µ[n,b](zm,P).
This allows arbitrary correlations among the harvestable
energy processes and channels dynamics.3

D. Queueing Dynamics

Let Q(t) = (Q
(c)
n (t), n, c ∈ N), t = 0, 1, 2, ... be the data

queue backlog vector in the network, where Q(c)
n (t) is the

amount of commodity c data queued at node n. We assume
the following queueing dynamics:

Q(c)
n (t+ 1) ≤

[
Q(c)
n (t)−

∑
b∈N (o)

n

µ
(c)
[n,b](t)

]+
(4)

+
∑

a∈N (in)
n

µ
(c)
[a,n](t) +R(c)

n (t),

2We measure time in unit size slots, so that our power P[n,b](t) has units
of energy/slot, and P[n,b](t)× (1 slot) is the resulting energy consumption
in one slot. Also, the energy harvested at time t is assumed to be available
for use in time t+ 1.

3The i.i.d. assumption is made for ease of presentation. Our results can be
extended to the case when z(t) evolves according to a general finite-state
Markovian.

with Q
(c)
n (0) = 0 for all n, c ∈ N , Q(c)

c (t) = 0 ∀ t, and
[x]+ = max[x, 0]. The inequality in (4) is due to the fact that
some nodes may not have enough commodity c packets to
fill the allocated rates. In this paper, we say that the network
is stable if the following condition is met:

Q , lim
t→∞

1

t

t−1∑
τ=0

∑
n,c

E
{
Q(c)
n (τ)

}
<∞. (5)

Similarly, let E(t) = (En(t), n ∈ N) be the vector of
energy queue sizes. Due to the energy availability constraint
(3), for each node n, the energy queue En(t) evolves
according to the following:

En(t+ 1) = En(t)−
∑

b∈N (o)
n

P[n,b](t) + en(t), (6)

with En(0) = 0 for all n. Note that with (6), we start by
assuming that each energy queue has infinite capacity. We
will show later that under our algorithm, a finite buffer size
is sufficient for achieving the desired perfromance.

E. Utility Maximization

The goal of the network is to design a joint flow control,
routing and scheduling, and energy management algorithm
to maximize the system utility, defined as:

Utot(r) =
∑
n,c

U (c)
n (rnc), (7)

subject to network stability (5) and energy availability (3).
Here r = (rnc,∀n, c ∈ N) is the vector of the average
expected admitted rates. We also use r∗ to denote an optimal
rate vector that maximizes (7) subject to (5) and (3).

F. Discussion of the Model

This model is general and can be used to model systems
that are self-powered and can harvest energy, e.g., envi-
ronment monitoring wireless sensor networks, or networks
formed by mobile cellular devices. The same model was
also considered in [11]. There, two online algorithms were
developed for achieving near-optimal utility performance. In
this work, we use a very different approach, which explicitly
incorporates learning into algorithm design and explores the
benefits of historic system information. Moreover, while pre-
vious works mostly focus on long term average performance,
we also investigate the algorithm convergence time, defined
to be the time it takes for the algorithm (and the system) to
learn the optimal operating point.

III. ALGORITHM DESIGN VIA LEARNING

In this section, we present our algorithm and the design
approach. To facilitate understanding, we first discuss the
intuition behind the approach. Then, we provide detailed
descriptions of the algorithm.

A. Design Approach

We first consider the following optimization problem,
which can be intuitively viewed as the solution to our

problem.4

max : φ = V
∑
n,c

U (c)
n (rnc) (8)

s.t. rnc +
∑
m

πm
∑

a∈N (in)
n

µ
(c)
[a,n](zm,P

m) (9)

≤
∑
m

πm
∑

b∈N (o)
n

µ
(c)
[n,b](zm,P

m),∀ (n, c)

∑
m

πm
∑

b∈N (o)
n

Pm[n,b] =
∑
m

πme
m
n ,∀n (10)

Pm ∈ Pm,∀zm, 0 ≤ rnc ≤ Rmax,∀ (n, c)∑
c

µ
(c)
[n,b](zm,P

m) ≤ µ[n,b](zm,P
m), ∀ [n, b]

0 ≤ emn ≤ hmn , ∀ n,hj .
Here V ≥ 1 is a constant and corresponds to a control
parameter of our algorithm (explained later). Intuitively,
problem (8) computes an optimal control policy. To see this,
note that we can interpret rnc as the traffic admission rate,
Pm as the power allocation vector under state zm, and em

as the energy harvesting decision. (9) represents the queue
stability constraint and (10) denotes the energy consumption
constraint.

In practice, one may not always have the statistics (πm,m)
a-prior. As a result, online algorithms have been proposed,
e.g., ESA in [11], [13]. However, doing so ignores the
historic system information one can accumulate over time
and loses its value. In our case, we try to explicitly utilize
such information and to explore its benefits. Specifically, we
first try to build an empirical distribution for the system
dynamics {zm}Mm=1. Then, we solve a perturbed empirical
version of the dual problem of (8) to obtain an empirical
Lagrange multiplier (called perturbed dual learning). After
that, we incorporate the empirical multiplier into an online
system controller (Fig. 1 shows its steps).

B. Learning-aided Energy Management

Here we present our algorithm, which consists of an online
controller and a learning component. We first present the
algorithm and then explain the controller in Section III-D.

For our algorithm, we need the dual problem of (8):
min : g(υ,ν), s.t. υ � 0, ν ∈ RN , (11)

where υ = (υ
(c)
n ,∀ (n, c)) and ν = (νn,∀n) are the

Lagrange multipliers, and g(υ,ν) ,
∑
m πmgm(υ,ν) is the

dual function with gm(υ,ν) defined as:

gm(υ,ν) = sup

{
V
∑
n,c

U (c)
n (rnc)

−
∑
n

υ(c)n
[
rnc +

∑
a∈N (in)

n

µ
(c)
[a,n](zm,P

m) (12)

−
∑

b∈N (o)
n

µ
(c)
[n,b](zm,P

m)
]
−
∑
n

νn
[
emn −

∑
b∈N (o)

n

Pm[n,b]
]}
.

4Technically speaking, one has to solve a “convexified” version of (8) to
find an optimal control policy. But (8) is sufficient for our algorithm design
and analysis.

Here the sup is taken over r, Pm ∈ Pm, µ, and em � hm.
In the following, we use (υ∗,ν∗) to represent an optimal
solution of g(υ,ν).

We now present the algorithm, which uses a control
parameter V ≥ 1 to tradeoff utility and delay, and specifies
a learning time TL = V c for some c ∈ (0, 1).

Drift-based
Controller

Perturbed
Dual-learning

TL

(�⇤(t),⌫⇤(t))

Distribution
Estimation

⇡(TL)

Empirical Distribution

(Q̂(t), Ê(t))

Update (Q̂(t), Ê(t))

with

Fig. 1. There are three main components in LEM: (i) Build an empirical
distribution π(t) for z(t). (ii) Perform perturbed dual learning and obtain
the empirical optimal multiplier at time TL. (iii) Incorporate the multiplier
into the controller.

Learning-aided Energy Management (LEM): Initialize
ξQ = 0, ξE = 0, and set TL = V c with c ∈ (0, 1). At every
time t, observe Q(t), E(t), z(t), and define the following
augmented queue vectors:

Q̂(t) = Q(t) + ξQ, Ê(t) = E(t) + ξE . (13)
Then, do:
• Energy harvesting: If Ên(t)− θn < 0, harvest energy,

i.e., set en(t) = hn(t). Else set en(t) = 0.
• Data admission: For each n, choose R(c)

n (t) by solving
the following optimization problem:

max : V U (c)
n (r)− Q̂(c)

n (t)r, s.t. 0 ≤ r ≤ Rmax. (14)
• Power allocation: Define the weight of commodity c

data over link [n, b] as:

W
(c)
[n,b](t) ,

[
Q̂(c)
n (t)− Q̂(c)

b (t)
]+
. (15)

Then, define the link weight W[n,b](t) =

maxcW
(c)
[n,b](t), and choose P (t) ∈ P(z(t)) to

maximize:

G(P (t)) ,
∑
n

[∑
b∈N (o)

n

µ[n,b](t)W[n,b](t) (16)

+(Ên(t)− θn)
∑

b∈N (o)
n

P[n,b](t)

]
.

• Routing and scheduling: For every node n, find any
c∗ ∈ argmaxcW

(c)
[n,b](t). If W (c∗)

[n,b](t) > 0, set:

µ
(c∗)
[n,b](t) = µ[n,b](t), µ

(c)
[n,b](t) = 0, ∀ c 6= c∗. (17)

That is, allocate the full rate over link [n, b] to any
commodity that achieves the maximum positive weight
over the link. Use idle-fill if needed.

• Queue update and packet dropping: Use Last-In-
First-Out (LIFO) for packet selection. If for any node n,
the resulting {P[n,b](t),m} in (16) violates constraint
(3), set

∑
b∈N (o)

n
P[n,b](t) = En(t) and drop all the

packets that are supposed to be transmitted. Update
Q

(c)
n (t) and En(t) according to (4) and (6), respectively.

• Perturbed Dual-learning at TL: Let Nm be the num-
ber of times states zm appear in {0, ..., TL−1}. Denote

πm(TL) = Nm

TL
the empirical distribution of zm. Solve:

min :
∑
m

πm(TL)gm(υ,ν − θ), s.t. υ � 0,ν ∈ RN , (18)

and obtain the optimal multiplier (υ∗(TL),ν∗(TL)).
Change ξQ and ξE in (13) to:

ξQ = υ∗(TL)− V 1− c
2 log(V)2 · 1 (19)

ξE = ν∗(TL)− V 1− c
2 log(V)2 · 1. 3 (20)

We will explain the controller in the next subsection.
Here, we first note that the perturbed dual learning step is
performed only once at time t = TL.5 Also, although LEM is
equipped with a packet dropping option to ensure zero energy
outage, dropping rarely happens, i.e., O(V − log(V)). More-
over, we will show that the energy availability constraint is
always ensured.

C. Remarks on LEM

LEM only requires knowledge of the instantaneous state
z(t) and queue states Q(t) and E(t). It does not require
any statistical information about S(t) or any knowledge of
the energy state process h(t). This is a very useful feature,
as exact knowledge of the energy source may be difficult to
obtain at the beginning.

There is an explicit learning step in LEM. This distinguishes
it from previous algorithms for energy harvesting networks,
e.g., [13], [19], [6], where sufficient statistical knowledge
of the energy source is often required and no learning is
considered. We will show in Theorem 2 that LEM converges
in O(V 2/3) time (up to a log factor), which is much faster
than the Θ(V) time for algorithms based purely on queues,
or the Θ(V 2) time for algorithms based purely on learning
the statistics.

The perturbation approach here is needed for guaranteeing
the feasibility of dual learning and the resulting algorithm.
Specifically, it “shifts” the optimal Lagrange multiplier to a
positive value via θ. This step allows us to track the negative
multiplier with positive queue sizes for decision making, and
is critical for networks with the “no-underflow” constraint,
e.g., processing networks [16].

Finally, note that due the general rate functions
{µ[nm](z,P)}, our problem inevitably requires a centralized
controller for achieving optimality. Thus, LEM requires cen-
tralized implementation. In the special case when network
links do not interfere with each other and the dynamics are
all independent, nodes can estimate the local distributions
and pass the information to a leader node to compute
(υ∗(TL),ν∗(TL)). Then, the leader node sends back the
multiplier information to the nodes. After that, LEM can be
implemented in a distributed manner.

D. Information Augmented Controller

Here we provide mathematical explanations for our con-
troller. As we will see, the control rules are results of a drift
minimization principle [20], augmented by the information
learned in perturbed dual learning.

5One can also devise a version of LEM which does continuous learning.

To start, we define a perturbed Lyapunov function as
follows:

L(t) ,
1

2

∑
n,c∈N

[
Q(c)
n (t)

]2
+

1

2

∑
n∈N

[
En(t)− θn

]2
. (21)

Denote Y (t) = (Q(t),E(t)) and define a one-slot condi-
tional Lyapunov drift as follows:

∆(t) , E
{
L(t+ 1)− L(t) | Y (t)

}
. (22)

We then have the following lemma from [11].

Lemma 1: Under any feasible data admission action,
power allocation action that satisfies constraint (3), routing
and scheduling action, and energy harvesting action that can
be implemented at time t, we have:

∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Y (t)
}

(23)

≤ B +
∑
n∈N

(En(t)− θn)E
{
en(t) | Y (t)

}
−E
{∑
n,c

[
V U (c)

n (R(c)
n (t))−Q(c)

n (t)R(c)
n (t)

]
| Y (t)

}
−E
{∑

n

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q(c)
n (t)−Q(c)

b (t)
]

+(En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)

]
| Y (t)

}
.

Here B , N2(3
2d

2
maxµ

2
max + R2

max) + N
2 (Pmax + hmax)2,

and dmax is defined as the maximum in-degree/out-degree
of any node in the network. 3

Proof: See [11].

Now add to both sides of (23) the following drift-
augmenting term, which carries the information learned in
the dual learning step, i.e., ξQ and ξE in (19) and (20) as
follows:

∆A(t) , −E
{∑

n

ξ
(c)
Q,n[

∑
b∈N (o)

n

µ
(c)
[n,b](t) (24)

−
∑

b∈N (in)
n

µ
(c)
[a,n](t)−R

(c)
n (t)] | Y (t)

}
−E
{∑

n

ξE,n[
∑

b∈N (o)
n

P[n,b](t)− en(t)] | Y (t)
}
.

Doing so, one obtains the following augmented drift:

∆(t) + ∆A(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Y (t)
}

(25)

≤ B +
∑
n∈N

(Ên(t)− θn)E
{
en(t) | Y (t)

}
−E
{∑
n,c

[
V U (c)

n (R(c)
n (t))− Q̂(c)

n (t)R(c)
n (t)

]
| Y (t)

}
−E
{∑

n

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q̂(c)
n (t)− Q̂(c)

b (t)
]

+(Ên(t)− θn)
∑

b∈N (o)
n

P[n,b](t)

]
| Y (t)

}
.

Comparing (25) and LEM, we see that LEM is constructed to
minimize the right-hand-side (RHS) of the augmented drift

(25). This augmenting step is important and provides a way
to incorporate learning into control algorithm design.

IV. PERFORMANCE ANALYSIS

Here we present the performance results for LEM. We first
state the assumptions. Then, we present the theorems.

A. Assumptions

In our analysis, we make the following assumptions.
Assumption 1: There exists a constant ε = Θ(1) > 0

such that for any valid distributions π̂ = (π̂1, ..., π̂M) with
‖π̂ − π‖ ≤ ε, there exist a set of actions {R(c)

n,k}k∈N+
,

{Pm
k }mk∈N+

, {µmk }mk∈N+
, and {emk }mk∈N+

, and distributions
{ϑmk }mk∈N+

and {%mk }mk∈N+
(possibly dependent on π̂), such

that (i) there exists η0 = Θ(1) > 0 independent of π̂, so
that:∑

m

πm
{∑

k

ϑmk [R
(c)
n,k +

∑
a∈N (in)

n

µ
(c)
[a,n],k, (26)

−
∑

b∈N (o)
n

µ
(c)
[n,b],k]

}
≤ −η0, ∀ n, c,

and for each n,∑
m

πm
∑
k

%mk e
m
n,k −

∑
m

πm
∑
k

ϑmk
∑

b∈N (o)
n

Pm[n,b],k = 0,(27)

and (ii) 0 <
∑
m πm

∑
k %

m
k e

m
n,k <

∑
m πmh

m
n ∀n. 3

Although Assumption 1 appears complicated, it indeed
only assumes that the system has a “slackness” property,
so that there exists a stationary and randomized policy that
can stabilize the system, and the resulting service rates
are slightly larger than the arrival rates for the queues.
Assumption 1 is a necessary condition for achieving network
stability and is often assumed in network optimization works
with ε = 0, e.g., [21]. Here with ε > 0, we assume
that systems with slightly different channel and harvestable
energy distributions can also be stabilized with the same
slack (the stabilizing policy may be different). Note that such
a policy may not actually be implementable as it ignores the
energy-availability constraint.

B. Performance Results

Here we present the performance results. We first define
the following structural property of the system, which will
be used in our analysis.

Definition 1: A system is called polyhedral with param-
eter ρ > 0, if the dual function g(v,ν) satisfies:

g(v∗,ν∗) ≤ g(v,ν)− ρ‖(v∗,ν∗)− (v,ν)‖. 3 (28)
This polyhedral property often appears in practical systems,
especially when the control actions are discrete (see [22]
for more discussions). Moreover, (28) holds for all V values
whenever it holds for V = 1.

Our first lemma shows that with θn = V log(V), one can
guarantee that at time TL, the empirical multipliers v∗(t) and
ν∗(t) are close to their true values with high probability.

Lemma 2: For a sufficiently large V , with probability 1−
O(1

V 4 log(V)), at time t = TL = V c with c ∈ (0, 1), one has:

‖(v∗(t),ν∗(t))− (v∗,ν∗ + θ)‖ = Θ(V 1− c
2 log(V)). (29)

Here ν∗ + θ = Θ(V log(V)) > 0. 3
Proof: Omitted. Please see our online report [23].

Since ν∗ + θ = Θ(V log(V)), we see that the relative error
of (v∗(t),ν∗(t)) is quite small, i.e., only Θ(V 1− c

2 log(V)).
This high accuracy (with respect to the size of (v∗,ν∗ +
θ)) contributes to achieving a good performance and fast
convergence rate for LEM. Here ν∗ + θ = Θ(V log(V)) > 0
is important, because without θ, we may get a non-positive
ν∗ after solving (18), due to the fact that (10) is an equality
constraint. In that case, it is impossible to use E(t) to track
ν∗ and to base decisions on E(t).

We now state our first main theorem, which summarizes
the performance of LEM.

Theorem 1: Suppose that the dual function g(v,ν) is
polyhedral with ρ = Θ(1) > 0, i.e., independent of V , and
has a unique optimal (v∗,ν∗) with v∗ > 0. Then, under
LEM with θn = V log(V) and a sufficiently large V , with
probability 1−O(1

V 4 log(V)), we have:

(a) The average queue sizes satisfy:

Q(c)
n,av ≤

3

2
V 1− c

2 log(V)2 +O(1), ∀ (n, c), (30)

En,av ≤
3

2
V 1− c

2 log(V)2 +O(1), ∀ n. (31)

In particular, in steady state, there exist Θ(1) constants
D, ξ,K such that:

Pr
{
Q(c)
n (t) ≥ 3

2
V 1− c

2 log(V)2 +D + b
}
≤ ξe−Kb (32)

Pr
{
En(t) ≥ 3

2
V 1− c

2 log(V)2 +D + b
}
≤ ξe−Kb. (33)

(b) For every data queue j with arrival rate λj > 0,
there exist a set of packets with rate λ̃j ≥ [λj −
O(1/V log(V))]+, such that their average delay at queue
j is O(log(V)2).

(c) Let r = (rnc,∀ (n, c)) be the time average admitted
rate vector achieved by LEM defined in Section II-A.
We have:

Utot(r) ≥ Utot(r
∗)−O(

1

V
). (34)

Here r∗ is an optimal solution of our problem. More-
over, no dropping takes places before time TL and the
average packet dropping rate is O(1/V log(V)). 3

Proof: Omitted. Please see our online report [23].
By taking ε = 1/V , we see from Part (a) and Part (b) that

LEM achieves an [O(ε), O(log(1
ε)2)] utility-delay tradeoff.

We also see from Part (a) that LEM can use an energy buffer
of size O((1

ε)1−
c
2 log(1

ε)2), which is much smaller than the
Θ(1/ε) size under previous algorithms.

Our second main result concerns the convergence time of
LEM. The convergence time of an algorithm characterizes
how fast it (or equivalently, the system) enters its steady
state. A faster convergence speed implies faster learning and
more efficient resource allocation. The formal definition of
the convergence time is as follows [15]:

Definition 2: Let ζ > 0 be a given constant. The conver-
gence time of the control algorithm is defined as:
Tζ , inf{t : ‖(Q̂(t), Ê(t))− (v∗,ν∗ + θ)‖ < ζ}.3 (35)

Here the intuition is that once (Q̂(t), Ê(t)) gets close to
(v∗,ν∗ + θ), LEM will start making near-optimal decisions.

Theorem 2: Suppose the conditions in Theorem 1 hold.
Under LEM, there exists an Θ(1) constant D such that, with
probability 1−O(1

V 4 log(V)),

E
{
TD
}

= O(V c + V 1− c
2 log(V)2). (36)

In particular, when c = 2
3 , E

{
TD
}

= O(V
2
3 log(V)2). 3

Proof: Omitted. Please see our online report [23].
We remark here that if one only uses pure queue-based poli-
cies to track the optimal multipliers, e.g., ESA in [11] (can
be viewed as linear learning since each queue can change
by an Θ(1) amount at each time), the convergence time
is necessarily Θ(V), since the optimal multiplier is Θ(V)
[22]. If instead one tries to compute the optimal solution
only by learning the distribution, it requires Θ(V 2) time
to ensure that the distribution is within O(1/V) accuracy.
Dual learning can be viewed as combining the benefits of
the two methods, i.e., the fast start of statistical learning and
the smooth learning of queue-based policies. Hence, it is able
to achieve a superior convergence speed compared to both
methods.

V. SIMULATION

This section provides simulation results for LEM. We
consider the network shown in Fig. 2, which is an example of
a data collecting sensor network. In this network, traffic are
admitted from nodes 1, 2 and 3, and are relayed to node 4.
Since we only have one commodity, we omit the superscript.

1
4

2

3

R
(4)
1 (t)

R
(4)
2 (t)

R
(4)
3 (t)

Fig. 2. A data collection network.

The channel state of each communication link is i.i.d.
every time slot and can be either “G=Good” or “B=Bad.” The
probabilities of being in the good state for the links are given
by ps = (ps12, p

s
13, p

s
23, p

s
24, p

s
34) = (0.5, 0.2, 0.3, 0.5, 0.7).

For each node, the harvestable energy hn(t) takes values 2
or 0. The probabilities of having a 2-unit energy arrival at
the nodes are ph = (ph1 , p

h
2 , p

h
3) = (0.6, 0.3, 0.5). We have a

total of 32 channel states and 8 energy states.
At every time t, a node can either allocate one unit power

for transmission or do not transmit. When the channel is
good, one unit power can support a transmission of two
packets. Otherwise it can only support one. We assume
Rmax = 2 and at each time Rn(t) ∈ {0, 1, 2}. The utility
functions are given by: U1(r) = 3 log(1 + r) and U2(r) =
2 log(1 + r), and U3(r) = log(1 + r). We also assume that
the links do not interfere with each other.

We simulate LEM with V ∈ {30, 40, 50, 80, 100, 150} and
c = 2/3. We choose to begin with V = 30 so that dropping
does not happen. Each simulation is run for 106 slots. In
the simulation, in order to combact the effect of V not being

large enough, we slightly increase the learning time from V c

to V c log(V) (same performance can be proven). We also
reduce V 1−c/2 log(V)2 in (19) and (20) to V 1−c/2 log(V),
the results are not affected. For benchmark comparison, we
also implement the ESA algorithm in [11].6

0 50 100 150
2.72

2.74

2.76

2.78

2.8

2.82

2.84

2.86

2.88

V

0 50 100 150
0

100

200

300

400

500

600

700

800

V

0 50 100 150
0

200

400

600

800

1000

1200

1400

1600

1800

2000

V

LEM
ESA

LEM
V2/3log(V)2

ESA

LEM
V2/3log(V)2

ESA

Utility Data
Queue

Energy
Queue

Fig. 3. Utility and queue performance of LEM.

Fig. 3 shows the utility and queue performance of LEM.
We see that LEM achieves good utility performance. We also
see from the middle and the right plots that both the average
data queues and the average energy queues under LEM are
of size O(V 1−c/2 log(V)2), whereas it is Θ(V) under ESA.
This implies that one can implement LEM with much smaller
energy buffers compared to ESA.

20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

V

LEM
ESA

Delay Performance

Fig. 4. Delay scaling under LEM.

Fig. 4 also shows the average packet delay under LEM,
computed using the packets that exit the network when
the simulation ends (This accounts for more than 99.9%
of the packets that enter the network). It can be seen that
the average packet delay under LEM grows very slowly, i.e.,
O(log(V)2), and stays around 12 slots. On the other hand,
the delay under ESA grows linearly in V , and ranges from
75 to 380 slots (ESA requires a V ≥ 30 to achieve a similar
utility performance as LEM). Thus, with the same utility
performance, LEM achieves a 6 to 30-fold delay saving.

Fig. 5 shows the convergence property of LEM. To show the
convergence, we shorten the time to 104 slots and change the
system statistics in slot 5000 to ps = (0.3, 0.2, 0.2, 0.5, 0.7)
and ph = (0.1, 0.6, 0.2). We see that LEM converges much
faster compared to ESA (We only show E(t) here. The
data queues have similar performance). Indeed, in the first
time, the energy queue sizes converge to the optimal values

6Other algorithms in the literature are designed for different settings and
do not directly apply to our problem.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

LEM
converges

ESA
converges

System stat
changes

System stat
changes

E1(t)

Ehat1(t)

E2(t)

Ehat2(t)

E3(t)

Ehat3(t)

Actual energy
queues

ESA
re−converges

LEM
re−converges

Fig. 5. Convergence comparison between LEM and ESA for V = 150

(the corresponding optimal Lagrange multiplier values) at
around 650 slots under LEM, whereas ESA converges at
around 1500 slots (an 850-slot saving!). Then, after we apply
the change, LEM re-converge after about 450 slots, whereas
ESA takes about 3300 slots to re-adapt to the system (7×
faster, save about 2900 slots!). Moreover, we also note that
the actual energy queue sizes are barely affected, except
for a small change after time 5000. This clear demonstrates
the effectiveness of using dual learning in accelerating the
convergence of the algorithm.

VI. CONCLUSION

In this paper, we develop a learning-aided energy manage-
ment algorithm (LEM) for general multihop energy harvesting
networks. LEM explicitly utilizes historic system information
and learns an empirical optimal Lagrange multiplier via
perturbed dual learning. Then, it incorporates the multiplier
into a drift-based system controller via drift-augmenting. We
show that LEM is able to achieve a near-optimal utility-delay
tradeoff with a finite energy storage capacity. Moreover, LEM
possesses a provable faster convergence speed compared to
existing techniques that based purely on queue-based control
or based purely on learning the statistics.

VII. ACKNOWLEDGEMENT

This work was supported in part by the National Ba-
sic Research Program of China Grant 2011CBA00300,
2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61361136003, 61303195, Tsinghua
Initiative Research Grant, Microsoft Research Asia Collab-
orative Research Award, and the China Youth 1000-talent
Grant.

REFERENCES

[1] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava.
Design considerations for solar energy harvesting wireless embedded
systems. Proc. of IEEE IPSN, April 2005.

[2] Solar powered smart benches. Energy Harvesting Journal, July 22,
2014.

[3] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman. Challenge: Ultra-low-power energy-harvesting active
networked tags (EnHANTs). Proceedings of MobiCom, Sept. 2009.

[4] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan,
and J. H. Lang. Vibration-to-eletric energy conversion. IEEE Trans.
on VLSI, Vol. 9, No.1, Feb. 2001.

[5] Wireless train sensor harvests vibrational energy. Energy Harvesting
Journal, July 22, 2014.

[6] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management
in energy harvesting sensor networks. ACM Trans. on Embedded
Computing Systems, Vol.6, Issue 4, Sept. 2007.

[7] D. Ganesan C. M. Vigorito and A.G. Barto. Adaptive duty cycling
for energy harvesting systems. Proceedings of IEEE SECON, 2007.

[8] R. Srivastava and C. E. Koksal. Basic tradeoffs for energy man-
agement in rechargeable sensor networks. ArXiv Techreport arXiv:
1009.0569v1, Sept. 2010.

[9] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of wireless
networks with rechargeable batteries. IEEE Trans. on Wireless
Communications, Vol. 9, No. 2, Feb. 2010.

[10] L. Lin, N. B. Shroff, and R. Srikant. Asymptotically optimal power-
aware routing for multihop wireless networks with renewable energy
sources. Proceedings of INFOCOM, 2005.

[11] L. Huang and M. J. Neely. Utility optimal scheduling in energy
harvesting networks. IEEE/ACM Transactions on Networking, Vol.
21, Issue 4, pp. 1117-1130, August 2013.

[12] O. Simeone C. Tapparello and M. Rossi. Dynamic compression-
transmission for energy-harvesting multihop networks with correlated
sources. IEEE/ACM Trans. on Networking, 2014.

[13] S. Chen, P. Sinha, N. B. Shroff, and C. Joo. A simple asymptotically
optimal joint energy allocation and routing scheme in rechargeable
sensor networks. IEEE/ACM Trans. on Networking, to appear.

[14] C. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[15] L. Huang, X. Liu, and X. Hao. The power of online learning in
stochastic network optimization. Proceedings of ACM Sigmetrics,
2014.

[16] L. Jiang and J. Walrand. Stable and utility-maximizing scheduling for
stochastic processing networks. Allerton Conference on Communica-
tion, Control, and Computing, 2009.

[17] M. J. Neely. Energy optimal control for time-varying wireless
networks. IEEE Transactions on Information Theory 52(7): 2915-
2934, July 2006.

[18] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. Optimal energy
management policies for energy harvesting sensor nodes. IEEE Trans.
on Wireless Communication, Vol.9, Issue 4., April 2010.

[19] L. Huang. Optimal sleep-wake scheduling for energy harvesting smart
mobile devices. Proceedings of WiOpt, April 2013.

[20] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends
in Networking Vol. 1, no. 1, pp. 1-144, 2006.

[21] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control.
IEEE/ACM Trans. Netw., 15(6):1333–1344, 2007.

[22] L. Huang and M. J. Neely. Delay reduction via Lagrange multipliers in
stochastic network optimization. IEEE Trans. on Automatic Control,
56(4):842–857, April 2011.

[23] L. Huang. Fast-convergent learning-aided control in energy harvesting
networks. ArXiv Tech Report 1503.05665v1, 2015.

[24] R. Durrett. Probability: Theory and Examples. Duxbury Press, 3rd
edition, 2004.

[25] L. Huang and M. J. Neely. Max-weight achieves the exact
[O(1/V), O(V)] utility-delay tradeoff under Markov dynamics.
arXiv:1008.0200v1, 2010.

[26] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari. LIFO-
backpressure achieves near optimal utility-delay tradeoff. IEEE/ACM
Transactions on Networking, 21(3):831–844, June 2013.

