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Abstract— Network coding can significantly improve the
transmission rate of communication networks with packet loss
compared with routing. However, using network coding usually
incurs high computational and storage costs in the network
devices and terminals. For example, some network coding
schemes require the computational and/or storage capacities
of an intermediate network node to increase linearly with
the number of packets for transmission, making such schemes
difficult to be implemented in a router-like device that has only
constant computational and storage capacities. In this paper, we
introduce batched sparse code (BATS code), which enables a
digital fountain approach to resolve the above issue. BATS code
is a coding scheme that consists of an outer code and inner
code. The outer code is a matrix generation of a fountain code.
It works with the inner code that comprises random linear coding
at the intermediate network nodes. BATS codes preserve such
desirable properties of fountain codes as ratelessness and low
encoding/decoding complexity. The computational and storage
capacities of the intermediate network nodes required for apply-
ing BATS codes are independent of the number of packets for
transmission. Almost capacity-achieving BATS code schemes are
devised for unicast networks and certain multicast networks.
For general multicast networks, under different optimization
criteria, guaranteed decoding rates for the destination nodes can
be obtained.

Index Terms— Network coding, fountain codes, sparse graph
codes, erasure network.

I. INTRODUCTION

ONE fundamental task of communication networks is to
distribute a bulk of digital data, called a file, from a

source node to a set of destination nodes. We consider this
file distribution problem, called multicast, in packet networks,
in which data packets transmitted on the network links can be
lost due to channel noise, congestion, faulty network hardware,
and so on.
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Fig. 1. Three-node network. Node s is the source node, node t is the
destination node, and node a is the intermediate node that does not demand
the file. Both links are capable of transmitting one packet per use and have a
packet loss rate 0.2.

Existing network protocols, for example TCP, mostly use
retransmission to guarantee reliable transmission of individual
packets. Retransmission relies on feedback and is not scalable
for multicast transmission. On the other hand, fountain codes,
including LT codes [1], Raptor codes [2] and online codes [3],
provide a good solution without relying on feedback for
routing networks, where the intermediate nodes apply store-
and-forward. When using fountain codes, the source node
keeps transmitting coded packets generated by a fountain
code encoder and a destination node can decode the original
file after receiving n coded packets, where n typically is
only slightly larger than the number of the input packets,
regardless of which n packets are received. Fountain codes
have the advantages of ratelessness, universality, and low
encoding/decoding complexity. Taking Raptor codes as an
example, both the encoding and decoding of a packet has
constant complexity.

Routing, however, is not an optimal operation at the
intermediate nodes for multicast. For a general network, the
maximum multicast rate can be achieved only by network
coding [4]. Network coding allows an intermediate node to
generate and transmit new packets using the packets it has
received. Linear network coding was proved to be sufficient
for multicast communications [5], [6] and can be realized
distributedly by random linear network coding [7]–[10].

Moreover, routing is not optimal in the presence of packet
loss from the throughput point of view, even for unicast.
For example, the routing capacity of the network in Fig. 1
is 0.64 packet per use.1 If we allow decoding and encoding
operations at the intermediate node and treat the network as
a concatenation of two erasure channels, we can achieve the
rate 0.8 packet per use by using erasure codes on both links.

The following network coding method has been proved to
achieve the multicast capacity for networks with packet loss in
a wide range of scenarios [11]–[13]. The source node transmits
random linear combinations of the input packets and an
intermediate node transmits random linear combinations of the
packets it has received. Note that no erasure codes are required
for each link though packet loss is allowed. Network coding
itself plays the role of end-to-end erasure codes. A destination

1One use of a network means the use of all network links at most once.
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node can decode the input packets when it receives enough
coded packets with linearly independent coding vectors. This
scheme is referred to as the baseline random linear network
coding scheme (baseline RLNC scheme).

The baseline RLNC scheme has been implemented for small
number of input packets, e.g., 32 [14], but the scheme is
difficult to be implemented efficiently when the number of
input packets is large due to the computational and storage
complexities and the coefficient vector overhead. Consider
transmitting K packets where each packet consists of T sym-
bols in a finite field. The encoding of a packet at the source
node takes O(T K ) finite field operations, where T is given
and K goes to infinity. A finite field operation refers to the
addition or multiplication of two field elements. An interme-
diate node needs to buffer all the packets it has received for
network coding, so in the worst case, the storage cost at an
intermediate node is K packets and the computational cost of
encoding a packet at an intermediate node is O(T K ) finite
field operations. Decoding using Gaussian elimination costs
on average O(K 2 + T K ) finite field operations per packet.
Though these complexities are polynomials in K , the baseline
RLNC scheme is still difficult to implement for large K .

Coefficient vectors are used in random linear network
coding to recover the linear transformation induced by network
coding [7]. For transmitting K input packets, the baseline
RLNC scheme requires that each packet includes a coefficient
vector of K symbols. Hence, the coefficient vector overhead is
K symbols per packet of T symbols. Network communication
systems usually have a maximum value for T , e.g., several
thousands of symbols. Therefore, for large values of K , the
coding vector overhead is significant.

In this paper, we study file transmission through networks
with packet loss using network coding. We hope to build
network coding enabled devices with limited storage and
computational capabilities. Accordingly, it is desirable for a
network coding scheme to have i) low encoding complexity
in the source node and low decoding complexity in the
destination nodes, ii) constant computational complexity for
encoding a packet at an intermediate node and constant buffer
requirement at an intermediate node,2 iii) small protocol and
coefficient vector overhead, and iv) high transmission rate.

A. Related Works

Existing works mostly use one of the following two
approaches to reduce the computation/storage complexity and
the coefficient vector overhead. These approaches apply in
the presence or absence of packet loss. The first approach
is to use chunks, each of which is a subset of the input
packets. A large file can be separated into a number of small
chunks, and network coding is applied to each chunk [8]. The
use of small chunks can effectively reduce the computational
complexity and coefficient vector overhead. Therefore this idea
is used in many implementations of random linear network
coding in both wireline networks [15], [16] and wireless
networks [14], [17]. However, the use of chunks introduces the

2A constant buffer requirement is desirable because one may not know
ahead of time the size of the file to be transmitted.

scheduling issue of chunks since all or a large fraction of the
chunks are required to be decoded individually. Specifically,
sequential scheduling of chunks requires feedback and is not
scalable for multicast, while random scheduling of chunks
requires the intermediate nodes to cache all the chunks [18].
A detailed discussion of the scheduling issues of chunks can
be found in [19].

Further, random scheduling of chunks becomes less efficient
when a fraction of chunks have been decoded. To resolve this
issue of the random scheduling of chunks, both precoding [18]
and chunks with overlap [20]–[23] have been considered.
Precoding allows the input packets to be recovered when only
a fraction of all the chunks have been successfully decoded.
Chunked codes use the already decoded chunks to help the
decoding of the other chunks. Instead of overlapping, a more
general approach to connect multiple chunks is to add some
parity check constraints between chunks [24], [25]. For a given
number of input packets, those chunk based codes mentioned
above can only generate a fixed number of chunks.

The second approach is to use fountain codes for networks
with coding at the intermediate nodes. The low complexity
belief propagation decoding algorithm of LT/Raptor codes
depends on a suitably chosen degree distribution. Since coding
at the intermediate nodes changes the degrees of the coded
packets, it is difficult to guarantee that the degrees of the
received packets follow a specific distribution. Heuristic algo-
rithms have been proposed for special network topologies
(e.g., line networks [26], [27]) and special communication
scenarios (e.g., peer-to-peer file sharing [28], [29]), but these
solutions are difficult to be extended to general network
settings and require the intermediate nodes to have a buffer
size that increases linearly with the number of packets for
transmission.

In addition to the above two approaches, there are tech-
niques focusing on certain specific issues or scenarios. For
example, an error correction code based approach is proposed
by Jafari et al. to reduce the coefficient vector overhead [30].
This approach puts a limit on the number of packets that
can be combined together, but does not take the decoding
complexity into consideration. Link-by-link feedback can be
used to reduce the storage at the intermediate nodes [31]–[33].
Jaggi et al. have proposed a binary permutation matrix based
approach to reduce the complexity of the finite field operations
in linear network coding [34].

B. Our Solution

In this paper, we propose an efficient linear network coding
solution based on a new class of codes called BATched
Sparse (BATS) codes, which extend fountain codes to incor-
porate random linear network coding. A BATS code consists
of an inner code and an outer code over a finite field. The
outer code is a matrix generalization of a fountain code,
and hence rateless. The outer code encodes the file to be
transmitted into batches, each containing M packets. When
the batch size M is equal to 1, the outer code reduces to a
fountain code. The inner code applies a linear transformation
on each batch and is represented by the linear transfer matrices
of the batches. The inner code is formed by linear network
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coding performed at the intermediate network nodes with the
constraint that only packets belonging to the same batch can
be combined inside the network. The property of the inner
code preserves the degrees of the batches so that an efficient
belief propagation (BP) decoding algorithm can be used to
jointly decode the outer code and the inner code.

BATS codes are suitable for any network that allows linear
network coding at the intermediate nodes. BATS codes are
robust against dynamical network topology and packet loss
since the end-to-end operation remains linear. Moreover, BATS
codes can operate with small finite fields. In contrast, most
existing random linear network coding schemes require a large
field size to guarantee a full rank for the transfer matrix.
For BATS codes, the transfer matrices of the batches are
allowed to have arbitrary rank deficiency. We demonstrate the
applications of BATS codes in line networks, unicast networks,
and some multicast networks.

BATS codes resolve the feedback issue of sequential
scheduling of the chunk-based approach: Feedback is not
required for sequential scheduling of batches due to the rate-
less property. BATS codes also resolve the degree distribution
issue of the fountain-code-based approach since the inner code
of BATS codes (induced by linear network coding) does not
change the degrees of the batches. When applying BATS
codes, the encoding of a packet by the outer code costs
O(T M) finite field operations, where T and M are given and
K goes to infinity. An intermediate node uses O(T M) finite
field operations to recode a packet, and an intermediate node
is required to buffer only O(M) packets for tree networks,
including the three-node network in Fig. 1. BP decoding
of BATS codes costs on average O(M2 + T M) finite field
operations per packet. The coefficient vector overhead of a
BATS code is M symbols per packet. Note that all these
requirements for BATS codes are constant in K , the total
number of packets for transmission.

The (empirical) rank distribution of the transfer matrices
of the batches plays an important role in BATS codes.
The optimization of the outer code depends only on the
rank distribution. We use density evolution to analyze the
BP decoding process of BATS codes, and obtain a sufficient
and a necessary condition for BP decoding recovering a given
fraction of the input packets with high probability. For given
rank distributions, a degree distribution for a BATS code can
be obtained by solving an optimization problem induced by
the sufficient condition.

For any inner code with rank distribution (h0, h1, . . . , hM ),
we verify theoretically for certain cases and demonstrate
numerically for general cases that the BATS code with BP
decoding achieves rates very close to the expected rank∑

i ihi , the theoretical upper bound on the achievable rate of
the code in packets per batch. For unicast erasure networks,
BATS codes with BP decoding can achieve the min-cut
capacity asymptotically when both M and T tend to infinity.
This can be extended to multicast erasure networks when all
the destination nodes have the same empirical rank distribution
(which may be rare in practice).

When the destination nodes have different empirical rank
distributions, we can optimize the degree distribution for

various criteria, and obtain a set of guaranteed rate tuples
for BP decoding. However, there is no guarantee in general
that with this degree distribution, the rate of BP decoding
at each destination node can achieve the expected rank for
that node. For a given batch size, we can obtain numerically
the percentage of the expected rank that is achievable for all
possible rank distributions by using one degree distribution.
For example, the percentage is at least 52.74 for batch size 16.
When the possible empirical rank distributions are in a smaller
set, a better degree distribution achieving higher rates can be
found.

C. Organization of This Paper

BATS codes are formally introduced in Section II. The
belief propagation decoding of BATS codes is analyzed in
Section III. A necessary and a sufficient condition such that
the BP decoding stops with a given fraction of the input
packets recovered is obtained in Theorem 1, which is proved
in Section IV. The degree distribution optimizations and the
achievable rates of BATS codes are discussed in Section V.
The degree distribution optimizations of BATS codes for
multiple rank distributions is discussed in Section V-C. The
necessary techniques for the design of the outer codes and
decoding algorithms with good finite length performance are
discussed in Section VI. Examples of how to use BATS codes
in networks, as well as the design of the inner code of a BATS
code, are given in Section VII. Concluding remarks are in
Section VIII.

II. BATS CODES

In this section, we discuss the encoding and decoding of
BATS codes. Consider encoding K input packets, each of
which has T symbols in a finite field F with size q . A packet
is denoted by a column vector in F

T . The rank of a matrix A
is denoted by rk(A). In the following discussion, we equate a
set of packets to a matrix formed by juxtaposing the packets
in this set. For example, we denote the set of the input packets
by the matrix

B = [
b1, b2, . . . , bK

]
,

where bi is the i th input packet. On the other hand, we also
regard B as a set of packets, and so, with an abuse of notation,
we also write bi ∈ B, B′ ⊂ B, etc.

A. Encoding of Batches

Let us first describe the outer code of a BATS code, which
generates coded packets in batches. (We also call the outer
code itself the BATS code when the meaning is clear from
the context.) A batch is a set of M coded packets generated
from a subset of the K input packets. For i = 1, 2, . . ., the
i th batch Xi is generated from a subset Bi ⊂ B of the input
packets by the operation

Xi = Bi Gi ,

where Gi , a matrix with M columns, is called the generator
matrix of the i th batch. We call the packets in Bi the
contributors of the i th batch. The formation of Bi is specified
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Fig. 2. Tanner graph for the inner and the outer code of a BATS code. Nodes
in the first row are the variable nodes representing the input packets. Nodes
in the second row are the check nodes representing the batches generated by
the outer code. Nodes in the third row are the check nodes representing the
batches processed by the inner code.

by a degree distribution � = (�0,�1, . . . , �K ) as follows:
1) sample the distribution � which returns a degree di with
probability �di ; 2) uniformly at random choose di input
packets to form Bi . The design of � is crucial for the
performance of BATS code, which will be discussed in details
in this paper.

The generator matrix Gi has dimension di × M and can
be generated randomly. Specifically, Gi is the instance of
a di × M random matrix Gi , in which all the components
are independently and uniformly chosen at random. Such
a random matrix is also called a totally random matrix.
We analyze BATS codes with random generator matrices in
this paper. Random generator matrices do not only facilitate
analysis but are also readily implementable. For example,
Gi , i = 1, 2, . . . can be generated by a pseudorandom number
generator and can be recovered at the destination nodes by the
same pseudorandom number generator.

The generator matrices can also be designed deterministi-
cally. For example, when di ≤ M , we can pick Gi such that
rk(Gi ) = di . When di > M , we can use the generator matrix
of an MDS code as the generator matrix of the i th batch.
But we would not analyze the performance of such transfer
matrices in this paper.

When M = 1 and the generator matrices have no zero
components, the above batch encoding process becomes the
encoding of LT codes. We are interested in this paper in the
case M > 1. There are no limits on the number of batches
that can be generated. So BATS code can be used as a rateless
code.

The batch encoding process can be described by a Tanner
graph. The Tanner graph has K variable nodes, where variable
node i corresponds to the i th input packet bi , and n check
nodes, where check node j corresponds to the j th batch X j .
Check node j is connected to variable node i if bi is a
contributor of X j . Associated with each check node j is the
generator matrix G j . Fig. 2 illustrates an example of a Tanner
graph for encoding batches.

B. Transmission of Batches

Now we turn to the inner code of a BATS code. The batches
generated by the outer code are transmitted in a network
employing network coding to multiple destination nodes.

We assume that the end-to-end transformation of each batch
is a linear operation. Fix a destination node. Let Hi be the
transfer matrix of the i th batch and Yi be the output (received)
packets of the i th batch. We have

Yi = Xi Hi = Bi Gi Hi . (1)

The number of rows of Hi is M . The number of columns
of Hi corresponds to the number of packets received for the
i th batch, which may vary for different batches and is finite.
We assume that Hi is known for decoding. In linear network
coding, this knowledge can be obtained at the destination
nodes through the coefficient vectors in the packet headers.

In other words, we assume that a received packet of a
destination node cannot be the linear combinations of the
packets of more than one batch from the same BATS code.
To obtain such received packets, we may assume that an inter-
mediate node can only apply network coding on packets of
the same batch.3 Packet loss and dynamical network topology
are allowed during the network transmission. The benefits of
applying network coding within batches includes

• The network coding complexity at an intermediate node
is O(MT ) finite field operations per packet, which does
not depend on K .

• The coefficient vector overhead is bounded by M . When
the packet length T is sufficiently larger than M , this
overhead is negligible.

Moreover, since packets from different batches will not be
encoded together, it is not necessary to keep all the batches in
an intermediate node for the purpose of network coding.

We call the the network coding scheme at the intermediate
network nodes the inner code of a BATS code. The transfer
matrices of batches are determined jointly by the inner code
and the network topology between the source node and the
destination node. Under the principle that only packets of
the same batch can be recoded, we have a lot of freedom in
designing the inner code, including how to manage the buffer
content, how to schedule the transmission of batches/packets,
and how to use the feedback messages. The design of the
inner code is closely related to the network topology. We will
use several typical network topologies to demonstrate how to
design the inner code such that the benefit of BATS codes is
maximized (see Section VII).

The empirical rank distribution of the transfer matrices is
an important parameter for the design of BATS codes. The
empirical rank distribution determines the maximum achiev-
able rate of the outer code and provides sufficient information
to design nearly optimal outer codes. Since many network
operations are random, e.g., random linear network coding,
random packet loss pattern and network topology dynamics,
the transfer matrices are also random matrices. Consider Hi

as the instance of a random matrix Hi . The operation of the
network on the batches in (1) can be modeled as a channel
with input Xi and output Yi = Xi Hi , i = 1, 2, . . ., where the
instance of Hi , regarded as the state of the channel, is known

3It is possible that network coding between packets of different batches is
applied locally so that the coded packets of different batches in an intermediate
node can be decoded directly at the nodes in the next hop.
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Fig. 3. A decoding graph. Nodes in the first row are the variable nodes
representing the input packets. Nodes in the second row are the check nodes
representing the batches.

by the receiver. This channel model is called a linear operator
channel (LOC) with receiver side channel state information.
Similar channel models have been studied without the chan-
nel state information [35], [36]. Unless otherwise specified,
receiver side channel state information is assumed for all the
LOCs discussed in this paper. The LOC is not necessary to
be memoryless since Hi , i = 1, 2, . . . are not assumed to be
independent. With receiver side channel state information, the
capacity of the LOC can be easily characterized. Consider that

lim
n→∞

∑n
i=1 rk(Hi)

n
P−→ h̄.

We can check that channel capacity of the above channel is
upper bounded by h̄ and the upper bound can be achieved by
random linear codes [37]. As a channel code for the LOC, the
maximum achievable rate of a BATS code is bounded by h̄
for any inner code with average rank of the transfer matrices
converging to h̄. From the above analysis, we should design
the inner code to maximize h̄. Define the design coding rate
of a BATS code as K/n. As we will show in Section V, for
a given empirical rank distribution (h0, h1, . . . , hM ), we have
a BATS code that can achieve a rate very close to

∑
i ihi .

C. Belief Propagation Decoding

A destination node tries to decode the input packets using
Yi and the knowledge of Gi and Hi for i = 1, 2, . . . , n. The
decoding is equivalent to solving the system of linear equations
formed by (1) for i = 1, . . . , n. Solving the system of linear
equations using Gaussian elimination has high computational
cost when K is large. We propose a belief propagation (BP)
based low complexity decoding algorithm for BATS codes.
The BP decoding process is better described using the bipartite
graph in Fig. 3, which is the same as the encoding graph in
Fig. 2 except that the two stages of the encoding are combined
together and the overall transfer matrix Gi Hi is associated with
each check node i .

A check node i is called decodable if rk(Gi Hi ) is equal to
the degree of the i th batch di . If check node i is decodable,
then Bi can be recovered by solving the linear system of
equations Yi = Bi Gi Hi , which has a unique solution since
rk(Gi Hi ) = di . After decoding the i th batch, we recover the
di input packets in Bi . Next, we substitute the values of these
input packets in Bi in the undecoded batches. Consider that
bk is in Bi . If variable node k has only one edge that connects
with check node i , just remove variable node k. If variable
node k also connects check node j �= i , then we further

reduce the degree of check node j by one and remove the
row in G j corresponding to variable node k. In the decoding
graph, this is equivalent to first removing check node i and
its neighboring variable nodes, and then for each removed
variable node update its neighboring check nodes. We repeat
this decoding-substitution procedure on the new graph until
no more check nodes are decodable.

One of the main tasks of this paper is to understand the
performance of BATS code under BP decoding, which will be
discussed in Section III-V.

D. Computational Complexity

In the following computational complexity, the unit is a
finite field operation. Suppose that T and M are given, and
K and n are the variables that tend to infinity in the big O
notation.

To generate a batch of degree d , we combine d packets
together M times. So generating a batch with degree d
costs O(T Md) finite field operations. Thus the encoding
complexity of n batches is O(T M

∑n
i=1 di ), which converges

to O(T Mn�̄) finite field operations when n is large, where
�̄ = ∑

d d�d is the average degree.
Let ki = rk(Hi ) and let k ′

i be the rank of Gi Hi when check
node i is decodable. It is clear that k ′

i ≤ ki ≤ M . By the
definition of the decodability of a check node, k ′

i is also the
degree of check node i when it is decodable. Since the degree
of a check node tends to decrease at each step of the decoding
process, we have k ′

i ≤ di . The decoding processing involves
two parts: the first part is the decoding of the decodable check
nodes, which costs O(

∑
i k ′3

i + T
∑

i k ′2
i ) finite field opera-

tions; the second part is the updating of the decoding graph,
which costs O(T

∑
i (di −k ′

i )M) finite field operations. So the
total complexity is O(

∑
i k ′3

i + T
∑

i k ′2
i + T

∑
i (di − k ′

i)M),
which can be simplified to O(nM3 + T M

∑
i di). When n is

large, the complexity converges to O(M3n + T Mn�̄) finite
field operations. Usually, T and �̄ is larger than M and the
second term is dominant.

III. ANALYSIS OF BP DECODING

In this section, we study that when the BP decoding stops,
how much input packets have been decoded for a given
degree distribution. Some existing methods for analyzing the
BP decoding of erasure codes can be modified to analyze
the BP decoding of BATS codes. In this paper, we adopt
the differential equation approach by Wormald [38] that has
been used by Luby et al. [39] to analyze Tornado codes
(see also [40] for an analysis of LDPC codes over erasure
channel).

Compared with the analysis of fountain codes, BATS codes
have a relatively complex decoding criteria that involves both
the degree and the rank value of a check node. In addition to
the evolution of the degrees of the check nodes, the evolution
of the ranks of the check nodes also needs to be tracked in
the decoding analysis.

A. Random Decoding Graph

Consider a BATS code with K input symbols and n batches.
Fix a degree distribution � = (�0,�1, . . . , �D), where D is
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the maximum integer such that �D is nonzero. Assume that D
does not change with K . The decoder observes a random graph
as well as the associated generator and transfer matrices. The
probability model of these objects is implied in the encoding
of BATS codes described in the last section. Here we explicitly
describe this model for the sake of the analysis.

Denote by dgi , i = 1, . . . , n a sequence of i.i.d random
variables each of which follows the distribution � . Denote by
T a Tanner graph with K variable nodes and n check nodes.
The i th check node of T has degree dgi . For a given degree d ,
a check node connects to d variable nodes chosen uniformly
at random. Therefore the probability Pr{T = T |{dgi = di }}
can be fixed. The generator matrix Gi of check node i is
a dgi × M totally random matrix, i.e., its components are
uniformly i.i.d. Conditioning on a sequence of degrees, the
Tanner graph and the generator matrices of the BATS code
are obtained independently.

Let Hi be the transfer matrix associated with check node i .
Note that Hi , i = 1, . . . , n may not be independent. We
do not need to make any assumption on the distribution of
Hi , i = 1, . . . , n, except that the empirical distributions of the
transfer matrix ranks converge in probability to a probability
vector h = (h0, . . . , hM ). Specifically, for k = 0, . . . , M let

πk � |{i : rk(Hi) = k}|
n

.

Note that πk depends on n. We assume that the convergence
of the matrix ranks satisfies

|πk − hk | = O(n−1/6), 0 ≤ k ≤ M, (2)

with probability at least 1 − γ (n), where γ (n) = o(1), i.e.,
there exists a constant c such that for all sufficiently large n,

Pr{|πk − hk | < cn−1/6, 0 ≤ k ≤ M} ≥ 1 − γ (n),

and
lim

n→∞ γ (n) = 0.

As an example of valid transfer matrices, {Hi} are i.i.d.
and rk(Hi) follows the distribution h. Hereafter, we call the
probability vector h the rank distribution (of the transfer
matrix). We assume that the transfer matrices are independent
of the generation of batches.

Denote by BATS(K , n,�, h) the random vector
({dgi , Gi , Hi}n

i=1,T ). The decoder observes an instance
of BATS(K , n,�, h) with probability

Pr
{{dgi = di , Gi = Gi , Hi = Hi }n

i=1,T = T
}

=
(
∏

i

�di

)

Pr
{
T = T |dgi = di , i = 1, . . . , n

}

×
(
∏

i

Pr{Gi = Gi |dgi = di }
)

× Pr
{

Hi = Hi , i = 1, . . . , n
}
.

The decoding runs on an instance of BATS(K , n,�, h) and
we will look at the convergence of the decoding performance.

We will analyze the decoding performance of
BATS(K , n,�, h) with a random decoding strategy. We call

rk(Gi Hi) the rank of check node i . In each decoding step,
an edge (U, V ) with degree equal to the rank is uniformly
chosen, where U is a check node and V is a variable
node. Since check node U has degree equal to the rank,
variable node V is decodable. Variable node V , as well as
all the edges connected to it, are removed from the decoding
graph. For each check node connected to variable node V ,
three operations are applied: 1) the degree is reduced by 1;
2) the row in the generator matrix corresponding to the
variable node V is removed; and 3) the rank is updated
accordingly. The decoding process stops when there is no
edge with degree equal to the rank. The following decoding
analysis is based on this random decoding strategy. In the
decoding process described in the last section, decoding
a check node with degree equal to the rank can recover
several variable nodes simultaneously. Note that for a given
instance of the decoding graph, both strategies will reduce
the decoding graph to the same residual graph when they
stop (see the discussion in Appendix B).

B. Edge Perspective

An edge is said to be of degree d and rank r if it is connected
to a check node with degree d and rank r . Let Rd,r be the
number of edges of degree d and rank r . Define the following
two regions of the degree-rank pair:

F̄ � {(d, r) : 1 ≤ r ≤ M, r ≤ d ≤ D},
F � {(d, r) : 1 ≤ r ≤ M, r < d ≤ D}.

We see that F̄ = F ∪ {(r, r), r = 1, . . . , M}. A check node
with rank zero does not help the decoding, so we do not
include (d, 0) in F̄ and F . Define the degree-rank distribution
of the edges as

R̄ � (Rd,r , (d, r) ∈ F̄).

Note that Rd,r/d gives the number of nodes with degree d
and rank r .

Using the property of totally random matrix and some
counting techniques in projective space [41], [42], we have

Pr{rk(Gi Hi) = r |dgi = d, rk(Hi) = k} = ζ d
r ζ k

r

ζ r
r q(d−r)(k−r)

,

(3)
where

ζ m
r �

{
(1 − q−m)(1 − q−m+1) · · · (1 − q−m+r−1) r > 0,
1 r = 0.

Define

ζ d,k
r � ζ d

r ζ k
r

ζ r
r q(d−r)(k−r)

.

Let

ρd,r = d�d

M∑

k=r

ζ d,k
r hk . (4)

The value nρd,r is the expected number of edges of degree
d and rank r in the decoding graph when the rank of a
transfer matrix is chosen according to the probability vector
h independently. The following lemma shows that Rd,r/n
converges in probability to ρd,r as n goes to infinity.
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Lemma 1: With probability at least 1 − (γ (n) +
2M D exp(−2n2/3)),

∣
∣
∣
∣

Rd,r

n
− ρd,r

∣
∣
∣
∣ = O(n−1/6), (d, r) ∈ F̄ .

Proof: Consider the instances of decoding graphs with
{πk} satisfying (2). By the assumption on {πk}, this will
decrease the bound by at most γ (n). With an abuse of notation,
we treat {πk} as an instance satisfying (2) in the following of
this proof, i.e., the decoding graph has nπk check nodes with
transfer matrix rank k.

By (3), the expected number of check nodes with degree d
and rank r is

M∑

k=r

nπk�dζ d,k
r = n�d

M∑

k=r

πkζ
d,k
r .

Applying Hoeffding’s inequality, with probability at least
1 − 2M D exp(−2n2/3),

∣
∣
∣
∣
∣

Rd,r

dn
− �d

M∑

k=r

πkζ
d,k
r

∣
∣
∣
∣
∣
< n−1/6, (d, r) ∈ F̄ . (5)

Then,
∣
∣
∣
∣

Rd,r

n
− ρd,r

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

Rd,r

n
− d�d

M∑

k=r

πkζ
d,k
r + d�d

M∑

k=r

πkζ
d,k
r − ρd,r

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

Rd,r

n
− d�d

M∑

k=r

πkζ
d,k
r

∣
∣
∣
∣
∣
+ d�d

M∑

k=r

|πk − hk |ζ d,k
r .

By (5), under the condition in (2), we have
∣
∣
∣
∣

Rd,r

n
− ρd,r

∣
∣
∣
∣ = O(n−1/6)

with probability at least 1 − 2M D exp(−2n2/3).
The proof is completed by substracting the probability that

{πk} does not satisfy (2).

C. Density Evolution

Consider the evolution of BATS(K , n,�, h) during
the decoding process. Time t starts at zero and increases by
one for each variable node removed by the decoder. During the
decoding, some of the random variables we defined in the pre-
vious two subsections will be analyzed as random processes.
We denote by dgi (t) the degree of the i th check node in the
residual graph at time t , and Gi (t) the corresponding generator
matrix, where dgi (0) = dgi and Gi (0) = Gi . For (d, r) ∈ F̄
let Rd,r (t) denote the number of edges in the residual graph
of degree d and rank r at time t ≥ 0 with Rd,r (0) = Rd,r .

Upon removing a neighboring variable node of a check node
with degree d and rank r , the degree of the check node will
change to d − 1. The rank of the check node may remain
unchanged or may change to r − 1. Regarding a degree-rank
pair as a state, the state transition of a check node during the
decoding process is illustrated in Fig. 4, where the transition
probability is characterized in the following lemma.

Fig. 4. State transition diagram for M = 5 and D = 8. Each node in the
graph represent a degree-rank pair. In each step, if the check node connects to
the decoded variable node, its state changes according to the direction of the
outgoing edges of its current state. The label on an edge shows the probability
that a direction is chosen.

Lemma 2: For any check node i and any (d, r) ∈ F̄ ,

Pr{rk(Gi (t + 1)Hi) = r
∣
∣rk(Gi (t)Hi ) = r,

dgi (t + 1) = d − 1, dgi (t) = d} = 1 − q−d+r

1 − q−d
� αd,r ,

Pr{rk(Gi (t + 1)Hi) = r − 1
∣
∣rk(Gi (t)Hi ) = r,

dgi (t + 1) = d − 1, dgi (t) = d} = 1 − αd,r � ᾱd,r .

Proof: We omit the index i in the proof to simplify the
notation. By (3) and the fact that Gi is totally random, we
have for k ≥ r ,

Pr{rk(G(t)H ) = r |rk(G(t + 1)H ) = r,

dg(t + 1) = d − 1, dg(t) = d, rk(H ) = k} = qr−k,

Pr{rk(G(t + 1)H ) = r |dg(t + 1) = d − 1,

dg(t) = d, rk(H ) = k} = ζ d−1,k
r ,

Pr{rk(G(t)H ) = r |dg(t + 1) = d − 1,

dg(t) = d, rk(H ) = k} = ζ d,k
r .

Hence,

Pr{rk(G(t + 1)H ) = r
∣
∣rk(G(t)H ) = r,

dg(t + 1) = d − 1, dg(t) = d, rk(H ) = k}
= qr−k ζ d−1,k

r

ζ d,k
r

= 1 − q−d+r

1 − q−d .

The proof is completed by multiplying Pr{rk(H ) =
k|rk(G(t)H ) = r, dg(t + 1) = d − 1, dg(t) = d} on both sides
of the above equality and taking summation over all k ≥ r .

Assume that the decoding process has not stopped.
At time t , we have K − t variable nodes left in the residual
graph, and an edge with degree equal to the rank is uniformly
chosen to be removed. Let

R̄(t) � (Rd,r (t) : (d, r) ∈ F̄).

The random process {R̄(t)} is a Markov chain, which suggests
a straightforward approach to compute all the transition prob-
abilities in the Markov chain. However, this approach leads
to a complicated formula. Instead of taking this approach, we
work out the expected change Rd,r (t + 1) − Rd,r (t) explicitly
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Fig. 5. A decoding graph. Edge (U, V ) is to be removed at time t .

for all t ≥ 0. Let

R0(t) =
M∑

r=1

Rr,r (t).

We do not need to study the behavior of Rr,r (t) for individual
values of r since R0(t) is sufficient to determine when the
decoding process stops. Specifically, the decoding process
stops as soon as R0(t) becomes zero.

Lemma 3: For any constant c ∈ (0, 1), as long as t ≤ cK
and R0(t) > 0, we have

E[Rd,r (t + 1) − Rd,r (t)|R̄(t)]
= (αd+1,r Rd+1,r (t) + ᾱd+1,r+1 Rd+1,r+1(t) − Rd,r (t))

× d

K − t
, (d, r) ∈ F , (6)

and

E[R0(t + 1) − R0(t)|R̄(t)]
=

∑
r rαr+1,r Rr+1,r (t)

K − t
− R0(t)

K − t
− 1 + O(1/K ). (7)

Proof: Fix a time t ≥ 0. With an abuse of notation, we
treat R̄(0), . . . , R̄(t) as instances in the proof, i.e., the values
of these random vectors are fixed. Let (U, V ) be the edge
chosen to be removed at time t , where V is the variable node
and U is the check node, according to the random decoding
algorithm described in Section III-A. Note that V is uniformly
distributed among all variable nodes and U must be a check
node with degree equal to the rank at time t . See the illustration
in Fig. 5.

Let Nd,r be the number of check nodes which has degree d
and rank r at time t and has degree d − 1 at time t + 1. Let
N+

d,r (resp. N−
d,r ) be the number of check nodes which has

degree d and rank r at time t and has degree d − 1 and rank
r (resp. r − 1) at time t + 1. Clearly, N+

d,r + N−
d,r = Nd,r . The

difference Rd,r (t + 1) − Rd,r (t) can then be expressed as

Rd,r (t + 1) − Rd,r (t) = d(N+
d+1,r + N−

d+1,r+1 − Nd,r ). (8)

The probability that a check node with degree d and rank
rank r , d > r , connects to the variable node V at time t is
d/(K − t). Therefore, when d > r ,

Nd,r ∼ Binom

(
Rd,r (t)

d
,

d

K − t

)

.

As we characterize in Lemma 2, for a check node with degree
d and rank r connecting to the variable node V at time t ,
its rank will become r (resp. r − 1) with probability αd,r

(resp. ᾱd,r ) at time t + 1. So when d > r ,

N+
d,r ∼ Binom

(
Rd,r (t)

d
, αd,r

d

K − t

)

,

N−
d,r ∼ Binom

(
Rd,r (t)

d
, ᾱd,r

d

K − t

)

.

The expectation in (6) is obtained by taking expectation on (8).
To verify (7), note that N+

r,r = 0 and hence N−
r,r = Nr,r .

Then we have

R0(t + 1) − R0(t) =
∑

r

(
Rr,r (t + 1) − Rr,r (t)

)

=
∑

r

r N+
r+1,r −

∑

r

Nr,r . (9)

For a check node with degree r and rank r , with probability
r/R0(t) it is U , and hence connects to V , otherwise, with
probability r/(K − t) it connects to V . Therefore,

Nr,r ∼ Binom

(
Rr,r (t)

r
,

r

R0(t)
+
(

1 − r

R0(t)

)
r

K − t

)

.

Taking expectation on (9), we have

E[R0(t + 1) − R0(t)|R̄(t)]
=
∑

r

rαr+1,r
Rr+1,r (t)

K − t

−
∑

r

(
Rr,r (t)

R0(t)
+
(

1 − r

R0(t)

)
Rr,r (t)

K − t

)

=
∑

r

rαr+1,r
Rr+1,r (t)

K − t
− R0(t)

K − t
− 1 +

∑

r

r

R0(t)

Rr,r (t)

K − t
.

The expectation in (7) is obtained by noting that
∑

r
r

R0(t)
Rr,r (t)
K−t < M2

K (1−c) since t ≤ cK .

D. Sufficient and Necessary Conditions

We care about when R0(t) goes to zero for the first time.
The evolution of R0(t) depends on that of Rd,r (t), (d, r) ∈ F .
Consider the system of differential equations

dρd,r (τ )

dτ
= (

αd+1,rρd+1,r (τ ) + ᾱd+1,r+1ρd+1,r+1(τ )

−ρd,r (τ )
) d

θ − τ
, (d, r) ∈ F , (10)

dρ0(τ )

dτ
=

∑D−1
r=1 rαr+1,rρr+1,r (τ ) − ρ0(τ )

θ − τ
− 1 (11)

with initial values ρd,r (0) = ρd,r , (d, r) ∈ F , and
ρ0(0) = ∑

r ρr,r , where θ = K/n is the design rate of the
BATS code.

We can get some intuition about how the system of
differential equations is obtained by substituting Rd,r (t)
and R0(t) with nρd,r (t/n) and nρ0(t/n), respectively,
in (6) and (7). Defining τ = t/n and letting n → ∞, we
obtain the system of differential equations in (10) and (11).
The expectation operations are ignored because ρd,r (τ ) and
ρ0(τ ) are deterministic functions. Theorem 2 in Section IV
makes the above intuition rigorous.
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The system of differential equations in (10) and (11) is
solved in Appendix C for 0 ≤ τ < θ . In particular, the solution
for ρ0(τ ) is

ρ0(τ ) =
(

1 − τ

θ

)( M∑

r=1

D∑

d=r+1

d�d h̄r Id−r,r

(τ

θ

)

+
M∑

r=1

r�r

M∑

s=r

h̄s + θ ln(1 − τ/θ)

)

,

(12)

where

h̄r = h̄r (h) �
M∑

i=r

ζ i
r

qi−r
hi . (13)

and

Ia,b(x) �
a+b−1∑

j=a

(
a + b − 1

j

)

x j (1 − x)a+b−1− j

is called the regularized incomplete beta function. For
η̄ ∈ (0, 1), the following theorem shows that if ρ0(τ ) > 0 for
τ ∈ [0, η̄θ ], then the decoding does not stop until t > η̄K with
high probability, and Rd,r (t) and R0(t) can be approximated
by nρd,r (t/n) and nρ0(t/n), respectively.

Theorem 1: Consider a sequence of decoding graphs
BATS(K , n,�, h), n = 1, 2, . . . with fixed θ = K/n, and the
empirical rank distribution of transfer matrices (π0, . . . , πM )
satisfying

|πi − hi | = O(n−1/6), 0 ≤ i ≤ M, (14)

with probability at least 1 − γ (n), where γ (n) = o(1). For
η̄ ∈ (0, 1),

(i) if ρ0(τ ) > 0 for τ ∈ [0, η̄θ ], then for sufficiently large K ,
with probability 1 − O(n7/24 exp(−n1/8)) − γ (n), the
decoding terminates with at least η̄K variable nodes
decoded, and

|Rd,r (t) − nρd,r (t/n)| = O(n5/6), (d, r) ∈ F
|R0(t) − nρ0(t/n)| = O(n5/6)

uniformly for t ∈ [0, η̄K ];
(ii) if ρ0(τ ) < 0 for some τ ∈ [0, η̄θ ], then for sufficiently

large K , with probability 1−O(n7/24 exp(−n1/8))−γ (n),
the decoding terminates before η̄K variable nodes are
decoded.

When M = 1, the above theorem does not exactly reduce to
the analysis of the BP decoding of Raptor codes since random
generator matrices are used to generate batches. If we instead
use the generator matrices with all ones when M = 1, the
above theorem still holds with h̄ replaced by h in the formula
of ρ0(τ ) and becomes exactly the analysis of the BP decoding
of Raptor codes. Note that when M > 1, using generator
matrices with all ones does not give a good performance.

IV. PROOF OF THEOREM 1

A. A General Theorem

The main technique to prove Theorem 1 is a general
theorem by Wormald [38], [43] with a small modification.

The statement of the next theorem follows that of [38, Th. 5.1]
with an extra initial condition. A similar version is provided in
[40, Th. C.28] with a deterministic boundedness condition.

We say a function f (u1, . . . , u j ) satisfies a Lipschitz
condition on D ⊂ R

j if there exists a constant CL such
that

| f (u1, . . . , u j ) − f (v1, . . . , v j )| ≤ CL max
1≤i≤ j

|ui − vi |

for all (u1, . . . , u j ) and (v1, . . . , v j ) in D. We call CL the
Lipschitz constant for f . Note that max1≤i≤ j |ui − vi | is
the distance between (u1, . . . , u j ) and (v1, . . . , v j ) in the
l∞-norm.

Theorem 2: Let G0,G1, . . . be a random process with a
positive integer parameter n, and let (Yl(t))L

l=0 be a random
vector determined by G0, . . . ,Gt . For some constant C0 and
all l, |Yl(t)| < C0n for t ≥ 0 and all n. Let D be some
bounded connected open set containing the closure of

{(0, z1, . . . , zL) : ∃n, Pr{Yl(0) = zln, 1 ≤ l ≤ L} �= 0}.
Define the stopping time TD to be the minimum t such
that (t/n, Y1(t)/n, . . . , YL (t)/n) /∈ D. Assume the following
conditions hold.

(i) (Boundedness) For some functions β = β(n) ≥ 1 and
γ = γ (n), the probability that

max
l

|Yl(t + 1) − Yl(t)| ≤ β,

is at least 1 − γ for t < TD.
(ii) (Trend) For some function λ1 = λ1(n) = o(1), if t < TD,

E[Yl(t + 1) − Yl(t)|G1, . . . ,Gt ]
= fl

(
t

n
,

(
Yi (t)

n

)L

i=0

)

+ O(λ1),

for 1 ≤ l ≤ L.
(iii) (Lipschitz) Each function fl satisfies a Lipschitz condition

on D ∩ {(t, z1, . . . , zL), t ≥ 0} with the same Lipschitz
constant CL for each l.

(iv) (Initial condition) For some point (0, z0
1, . . . , z0

l ) ∈ D,

|Yl(0)/n − z0
l | ≤ σ = o(1), 0 ≤ l ≤ L .

Then the following are true.

(a) For (0, (ẑl)
L
l=1) ∈ D, the system of differential equations

dzl(τ )

dτ
= fl(τ, (zl′ (τ ))L

l′=1), l = 1, . . . , L,

has a unique solution in D for zl : R → R passing
through zl(0) = ẑl , l = 1, . . . , L, and this solution
extends to points arbitrarily close to the boundary of D.

(b) Let λ > max{σ, λ1 + C0nγ } with λ = o(1). There exists
a sufficiently large constant C1 such that when n is suffi-
ciently large, with probability 1 −O(nγ + β

λ exp(− nλ3

β3 )),

|Yl(t) − nzl (t/n)| = O(λn) (15)

uniformly for 0 ≤ t ≤ τ̄n and for each l, where ẑl = z0
l ,

and τ̄ = τ̄ (n) is the supremum of those τ to which the
solution of the system of differential equations in (a) can
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be extended before reaching within l∞-distance C1λ of
the boundary of D.

Proof: The proof follows exactly the proof of [38, Th. 5.1]
except for the place where we need to handle the initial
condition (iv). We only have to modify the definition of B j

(below [38, eq. (5.9)]) in the original proof to

B j = (nλ + ω)

((

1 + Bω

n

) j

− 1

)

+ B0

(

1 + Bω

n

) j

,

where B0 = nλ. The induction in the original proof now
begins by the fact that |zl(0) − Yl(0)/n| ≤ σ < O(λ).
The other part of the proof stays the same as that
of [38, Th. 5.1].

B. Completing the Proof

We first prove two technical lemmas. For BATS(K , n,�, h),
the degrees of the variable nodes are not independent but
follow the same distribution. The following lemma shows that
the degree of a variable node is not likely to be much larger
than its expectation.

Lemma 4: Let V be the degree of a variable node of
BATS(K , n,�, h). For any α > 0,

Pr{V > (1 + α)�̄/θ} <

(
eα

(1 + α)(1+α)

)�̄/θ

,

where θ = K/n.
Proof: Fix a variable node. Let Xi be the indicator

random variable of the i th check node being the neighbor
of the specific variable node. Then V = ∑

i Xi . We have
E[V ] = ∑

i E[Xi ] = ∑
i
∑

d
d
K �d = n

K �̄ = �̄
θ . Since Xi ,

i = 1, . . . , n, are mutually independent, the lemma is proved
by applying the Chernoff bound.

The following lemma verifies the boundedness condition of
Theorem 2.

Lemma 5: When β/D > �̄/θ , the probability that

max
ι∈F∪{0}

|Rι(t + 1) − Rι(t)| ≤ β,

is at least

1 − θn exp

(

− β

D
(ln(β/D) − ln(�̄/θ) − 1) − �̄

θ

)

.

Proof: Let V be the degree of the variable node to be
removed at the beginning of time t + 1. By (8), we have for
(d, r) ∈ F ,

|Rd,r (t + 1) − Rd,r (t)| ≤ DV ,

and by (9), we have

|R0(t + 1) − R0(t)| ≤ DV .

Hence when β/D > �̄/θ ,

Pr

{

max
ι∈F∪{0}

|Rι(t + 1) − Rι(t)| ≤ β

}

≥ Pr{V D ≤ β}
≥ Pr{degrees of all variable nodes at time zero ≤ β/D}
> 1 − θn exp

(

− β

D
(ln(β/D) − ln(�̄/θ) − 1) − �̄

θ

)

,

where the last inequality follows from Lemma 4 and the union
bound.

Proof of Theorem 1: We consider in the proof only the
instances of BATS(K , n,�, h) satisfying

∣
∣
∣
∣

Rd,r

n
− ρd,r

∣
∣
∣
∣ = O(n−1/6), (d, r) ∈ F̄ . (16)

By Lemma 1 this will decrease the probability bounds we will
obtained by at most γ (n) + 2M D exp(−2n2/3).

Define the stopping time T0 as the first time t such that
R0(t) = 0. By defining suitable functions fd,r , (d, r) ∈ F
and f0 we can rewrite (6) and (7) as

E[Rd,r (t + 1) − Rd,r (t)|R̄(t)]
= fd,r

(
t

n
,

(
R0(t)

n

)

,

(
Rd ′,r ′(t)

n

)

(d ′,r ′)∈F

)

, (d, r) ∈ F

E[R0(t + 1) − R0(t)|R̄(t)]
= f0

(
t

n
,

(
R0(t)

n

)

,

(
Rd ′,r ′ (t)

n

)

(d ′,r ′)∈F

)

+ O
(

1

n

)

,

for t < T0. For ι ∈ F ∪ {0}, define random variable R̂ι as
R̂ι(0) = Rι(0) and for t ≥ 0,

R̂ι(t + 1)

=
⎧
⎨

⎩

Rι(t + 1) t < T0

R̂ι(t) + fι

(
t
n ,
(

R0(t)
n

)
,
(

Rd̃,r̃ (t)
n

)

(d̃,r̃)∈F

)

t ≥ T0.

Note that T0 is also the first time that R̂0(t) becomes zeros.
We now apply Theorem 2 with (R̂0(t), (R̂d,r (t))(d,r)∈F ) in

place of (Yl(t))L
l=1. The region D is defined as

D = (−η, (1 − η/2)θ) × (−M, M + η) × (−η, d)|F |.

So 1) t/n is in the interval (−η, (1 − η/2)θ); 2) R̂0(t)/n is
in the interval (−M, M + η); and 3) R̂d,r (t)/n, (d, r) ∈ F ,
is in the interval (−η, d). As required, D is a bounded
connected open set and containing all the possible initial state
(0, R̂0(0)/n, (R̂d,r (0)/n)(d,r)∈F).

The conditions of Theorem 2 can readily be verified. When
t ≥ T0, the change |R̂ι(t + 1) − R̂ι(t)| for ι ∈ F ∪ {0} is
deterministic and upper bounded. When t < T0, by Lemma 5
with β = n1/8, the boundedness condition (i) holds with

γ = n exp
(
−n1/8 (c1,3 ln n − c1,1

) − c1,2

)
,

where c1,1, c1,2, and c1,3 are only related to �̄ and θ . The trend
condition (ii) is satisfied with λ1 = O(1/n). By definition,
it can be verified that fι, ι ∈ F ∪ {0} satisfy the Lipschitz
condition (iii). The initial condition (iv) holds with σ =
O(n−1/6).

Wormald’s method leads us to consider the system of
differential equations

dρd,r (τ )

dτ
= fd,r (τ, ρ0(τ ), (ρd ′,r ′(τ ))(d ′,r ′)∈F ), (d, r) ∈ F

dρ0(τ )

dτ
= f0(τ, ρ0(τ ), (ρd ′,r ′ (τ ))(d ′,r ′)∈F )

with the initial condition ρd,r (0) = ρd,r , (d, r) ∈ F , and
ρ0(0) = ∑

r ρr,r . The conclusion (a) of Theorem 2 shows the
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existence and uniqueness of the solution of the above system
of differential equations. We solve the system of differential
equations explicitly in Appendix C.

Let λ = O(n−1/6). By the conclusion (b) of Theorem 2, we
know that for a sufficiently large constant C1, with probability
1 − O(nγ + β

λ exp(− nλ3

β3 )),

|R̂d,r (t) − nρd,r (t/n)| = O(n5/6), (d, r) ∈ F ,

|R̂0(t) − nρ0(t/n)| = O(n5/6)

uniformly for 0 ≤ t ≤ τ̄n, where τ̄ is defined in
Theorem 2. Increase n if necessary so that β

λ exp(− nλ3

β3 ) =
n7/24 exp(−n−1/8) > nγ and C1λ < η

2 θ , which implies
τ̄ ≥ (1 − η)θ . So there exists constants c0 and c′

0 such that
the event

E0 = {|R̂0(t)/n − ρ0(t/n)| ≤ c0n−1/6, 0 ≤ t ≤ (1 − η)K }
holds with probability at least 1 − c′

0n7/24 exp(−n−1/8).
Now we consider the two cases in the theorem to prove.

(i) If ρ0(τ ) > 0 for τ ∈ [0, (1 − η)θ ], then there exists
ε > 0 such that ρ0(τ ) ≥ ε for τ ∈ [0, (1 − η)θ ]. Increase
n if necessary so that c0n−1/6 < ε. Then, we have

Pr{T0 > (1 − η)K } = Pr{R̂(t) > 0, 0 ≤ t ≤ (1 − η)K }
≥ Pr{E0}
≥ 1 − c′

0n7/24 exp(−n−1/8), (17)

where (17) follows that under the condition E0, for all
t ∈ [0, (1 − η)K ], R̂0(t)/n ≥ ρ0(t/n) − c0n−1/6 > 0. Since
R̂ι = Rι, ι ∈ F∪{0}, when t < T0, the first part of the theorem
is proved.

(ii) Consider ρ0(τ0) < 0 for τ0 ∈ [0, (1−η)θ ]. There exists
ε > 0 such that ρ0(τ ) ≤ −ε for all τ ∈ [τ0 − ε, τ0 + ε] ∩
[0, (1 − η)θ ]. Increase n if necessary so that c0n−1/6 < ε and
nε > 1. Then, we have

Pr{T0 ≤ (1 − η)K }
= Pr{R̂0(t) < 0, for some t ∈ [0, (1 − η)K ]}
≥ Pr{E0}
≥ 1 − c′

0n7/24 exp(−n−1/8), (18)

where (18) can be shown as follows. Since nε > 1, there exists
t0 such that t0/n ∈ [τ0−ε, τ0 +ε]∩[0, (1−η)θ ]. Hence, under
the condition E0, R̂0(t0)/n ≤ c0n−1/6 + ρ0(t0/n) < 0.

The proof of the theorem is completed by subtracting the
probability that (16) does not hold.

V. DEGREE DISTRIBUTION OPTIMIZATIONS

Following the discussion of BATS codes in Section II, we
now study the design of degree distributions based on the
sufficient condition in Theorem 1.

A. Optimization for Single Rank Distribution

We start with a single destination node with rank distribution
h = (h0, h1, . . . , hM ). For η̄ ∈ [0, 1), we say a rate R is
η̄-achievable by BATS codes using BP decoding if for every
ε > 0 and every sufficiently large K , there exists a BATS code

with K input packets such that for n ≤ η̄K/(R − ε) received
batches, the BP decoding recovers at least η̄K input packets
with probability at least 1 − ε.

For a given rank distribution h, the following optimization
problem maximizes the η̄-achievable rate with the degree
distribution as the variable:

max θ s.t. �(x; h̄(h),�)+θ ln(1−x) ≥ 0, 0 ≤ x ≤ η̄,
∑

d

�d =1 and �d ≥ 0, d =1, . . . , D, (P1)

where

�(x; h̄,�) �
M∑

r=1

h̄r

D∑

d=r+1

d�dId−r,r (x) +
M∑

r=1

r�r

M∑

s=r

h̄s,

(19)
When the context is clear, we also write �(x; �), �(x; h̄) or
�(x) to simplify the notation.

To compare with the degree distribution optimization of
the Raptor codes, we see that when M = 1, �(x; h̄,�) =
h̄1

∑D
d=1 d�d xd−1. The optimization P1 reduces to the opti-

mization of the Raptor codes if h̄1 is replaced by h1. The rea-
son why we have h̄ instead of h in �(x; h̄,�) is that random
generator matrices are used for the batches. When M = 1,
if generator matrices with all 1’s are used, �(x; h,�) =
h1

∑D
d=1 d�d xd−1 will be obtained instead in the analysis,

and the optimization (P1) reduces exactly to the optimization
of the Raptor codes.

Lemma 6: Let θ̂ be the optimal value in (P1). When the
empirical rank distribution of the transfer matrices converges
in probability to h = (h0, . . . , hM ) (in the sense of (14)), any
rate less than or equal to η̄θ̂ is η̄-achievable by BATS codes
using BP decoding.

Proof: By (12), we can write

ρ0(τ ) = (1 − τ/θ) (�(τ/θ) + θ ln(1 − τ/θ)) . (20)

To show that η̄θ̂ is η̄-achievable, by Theorem 1, we only need
to show that there exists a degree distribution such that for
any ε > 0,

�(x) + (θ̂ − ε) ln(1 − x) > 0, 0 ≤ x ≤ η̄. (21)

Since the proof for η̄ = 0 is trivial, assume that η̄ > 0. For
the degree distribution � that achieves θ̂ in (P1), we have

�(x; �) + θ̂ ln(1 − x) ≥ 0, 0 ≤ x ≤ η̄.

Multiplying by θ̂−ε

θ̂
on both sides, we have

θ̂ − ε

θ̂
�(x; �) + (θ̂ − ε) ln(1 − x) ≥ 0, 0 ≤ x ≤ η̄. (22)

Since �(x; �) > 0 for x > 0, (22) implies that �
satisfies (21) except possibly for x = 0. If �(0; �) > 0,
which implies � satisfies (21), we are done.

In the following, we consider the case with �(0; �) = 0.
Checking the definition of � in (19), we have

�(0; �) =
M∑

r=1

r�r

M∑

s=r

h̄s .



YANG AND YEUNG: BATCHED SPARSE CODES 5333

Let r∗ be the largest integer r such that hr > 0. Since
�(0; �) = 0, we know that

∑
d≤r∗ �d = 0. Define a new

degree distribution � ′ by � ′
d = �d

θ̂−ε

θ̂
for d > r∗ and

� ′
d = � for d ≤ r∗, where � > 0 can be determined

by the constraint
∑

d � ′
d = 1. Then we can check that � ′

satisfies (21).
The converse of Lemma 6 is that “a rate larger than η̄θ̂ is

not η̄-achievable”. Intuitively, for any ε > 0, we cannot have
a degree distribution such that

�(x) + (θ̂ + ε) ln(1 − x) ≥ 0, 0 ≤ x ≤ η̄,

where θ̂ is the maxima of (P1). Thus, with θ̂ + ε in place
of θ in the expression of ρ0 in (20), for any degree dis-
tribution we have ρ0(τ ) < 0 for some τ ∈ [0, η̄(θ̂ + ε)].
By Theorem 1, for any degree distribution there exists K0
such that when the number of input packets K ≥ K0, with
probability approaching 1 the BATS code cannot recover η̄K
input packets. To prove this converse, however, we need a
uniform bound K0 for all degree distributions such that the
second part of Theorem 1 holds, which is difficult to obtain.
Instead, we demonstrate that θ̂ is close to the capacity of the
underlying linear operator channel (cf. Section II-B).

Before analyzing the achievable rate, we determine the
maximum degree D, which affects the encoding/decoding
complexity. The next theorem shows that it is optimal to
choose D = �M/η� − 1, where η = 1 − η̄.

Theorem 3: Using D > �M/η� − 1 does not give a better
optimal value in (P1), where η = 1 − η̄.

Proof: Consider an integer � such that η ≥ M
�+1 . Let �

be a degree distribution with
∑

d>� �d > 0. Construct a new
degree distribution �̃ with

�̃d =

⎧
⎪⎨

⎪⎩

�d if d < �,
∑

k≥� �k if d = �,

0 if d > �.

Write

�(x; �̃) − �(x; �)

=
∞∑

d=�+1

�d

M∑

r=1

h̄r (�I�−r,r (x) − dId−r,r (x)).

For d ≥ � + 1,

r − 1

d − r
≤ M − 1

d − M
<

M

� − M + 1
≤ η

1 − η
.

So we can apply the properties of the incomplete beta function
(Lemma 9 in Appendix A) to show that, for any x with 0 <
x ≤ 1 − η,

dId−r,r (x)

(d − 1)Id−1−r,r (x)
<

d

d − 1

(
1 − η

r

)

≤ d

d − 1

(
1 − η

M

)

≤ � + 1

�

(

1 − 1

� + 1

)

= 1,

which gives �(x; �̃) > �(x; �) for 0 < x ≤ 1 − η.
This means that using only degree distributions � with

∑
d>� �d = 0, we can get the same optimal value as using

all degree distributions. Therefore, it is sufficient to take the
maximum degree D ≤ minη≥ M

�+1
� = �M/η� − 1.

To solve (P1) numerically, we can relax it as a linear
programming by only considering x in a linearly sampled
set of values between 0 and 1 − η. Let xi = (1 − η) i

N for
some integer N . We relax (P1) by considering only x = xi ,
i = 1, . . . , N , where N can be chosen to be 100 or even
smaller.

For many cases, we can directly use the degree
distribution � obtained by solving (P1). But it is possible
that �(0; �) = 0, so that the degree distribution � does not
guarantee that decoding can start. We can then modify � as
we do in the proof of Lemma 6 by increasing the probability
masses �d , d ≤ M by a small amount to make sure that
decoding can start.

B. Achievable Rates

The first upper bound on the optimal value θ̂ of (P1) is
given by the capacity of LOCs with receiver side channel
state information. When the empirical rank distribution of the
transfer matrices converging to h = (h0, . . . , hM ), the capacity
is

∑
r rhr packets per batch. The BP decoding algorithm

recovers at least a fraction η̄ of all the input packets with high
probability. So asymptotically BATS codes under BP decoding
can recover at least a fraction η̄θ̂ of the input packets. Thus,
we have η̄θ̂ ≤ ∑

r rhr .
A tighter upper bound can be obtained by analyzing (P1)

directly. Rewrite

�(x; h̄,�) =
M∑

r=1

h̄r Sr (x; �), (23)

where

Sr (x; �) = Sr (x) �
D∑

d=r+1

d�d Id−r,r (x) +
r∑

d=1

d�d . (24)

This form of �(x; h̄,�) will be used in the subsequent proofs.
Theorem 4: The optimal value θ̂ of (P1) satisfies

η̄θ̂ ≤
M∑

r=1

r h̄r .

Proof: Fix a degree distribution that achieves the optimal
value of (P1). Using (35) in Appendix A, we have

∫ 1

0
Sr (x)dx =

D∑

d=r+1

d�d

∫ 1

0
Id−r,r (x)dx +

r∑

d=1

d�d

=
D∑

d=r+1

r�d +
r∑

d=1

d�d ≤ r
D∑

d=1

�d = r.

Hence,
∫ 1

0
�(x)dx =

∫ 1

0

M∑

r=1

h̄r Sr (x)dx ≤
M∑

r=1

r h̄r . (25)

Since �(x) is an increasing function,
∫ 1

1−η
�(x)dx ≥ η�(1 − η) ≥ −ηθ̂ ln η. (26)
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Since �(x) + θ̂ ln(1 − x) ≥ 0 for 0 < x ≤ 1 − η,
∫ 1−η

0
�(x)dx − θ̂ (η ln η + 1 − η)

=
∫ 1−η

0
�(x)dx + θ̂

∫ 1−η

0
ln(1 − x)dx ≥ 0. (27)

Therefore, by (25)-(27), we have

M∑

r=1

r h̄r ≥
∫ 1

0
�(x)dx

=
∫ 1−η

0
�(x)dx +

∫ 1

1−η
�(x)dx

≥ θ̂ (η ln η + 1 − η) − ηθ̂ ln η = θ̂ (1 − η).

The proof is completed.
By (48) in Appendix C,

∑M
k=r h̄k = ∑M

i=r hiζ
i
r ≤ ∑M

k=r hk ,
where the last inequality follows from ζ i

r < 1. Hence,

∑

r

r h̄r =
M∑

r=1

M∑

k=r

h̄k ≤
M∑

r=1

M∑

k=r

hk =
∑

r

rhr .

Therefore, Theorem 4 gives a strictly better upper bound than∑
r rhr . When q → ∞,

∑
r r h̄r → ∑

r rhr . Even for small
finite fields,

∑
r r h̄r and

∑
r rhr are very close.

We prove for a special case and demonstrate by simulation
for general cases that the optimal value θ̂ of (P1) is very close
to

∑
r r h̄r .

Theorem 5: For D = �M/η� − 1, the optimal value θ̂
of (P1) satisfies

θ̂ ≥ max
r=1,2,...,M

r
M∑

i=r

h̄i .

Proof: Define a degree distribution �r by

�r
d =

⎧
⎨

⎩

0 if d ≤ r,
r

d(d−1) if d = r + 1, · · · , D − 1,
r

D−1 if d = D.
(28)

Recall the definition of Sr (x; �) in (24). For M ≥ r ′ ≥ r , we
will show that

Sr ′ (x; �r) + r ln(1 − x) > 0, 0 ≤ x ≤ 1 − η. (29)

By Lemma 10 in Appendix A,

−r ln(1 − x) = r
∞∑

d=r ′+1

1

d − 1
Id−r ′,r ′(x).

By (24) and (28),

Sr ′ (x; �r) + r ln(1 − x)

≥
D∑

d=r ′+1

d�r
d Id−r ′,r ′ (x) − r

∞∑

d=r ′+1

1

d − 1
Id−r ′,r ′(x)

= r
D

D − 1
ID−r ′,r ′(x) − r

∞∑

d=D

1

d − 1
Id−r ′,r ′ (x)

= r ID−r ′,r ′(x) − r
∞∑

d=D+1

1

d − 1
Id−r ′,r ′ (x).

To show ID−r ′,r ′(x) >
∑∞

d=D+1
1

d−1 Id−r ′,r ′(x) for
x ∈ [0, 1 − η], we prove that

∞∑

d=D+1

1

d − 1

Id−r ′,r ′(x)

ID−r ′,r ′(x)
< 1 for x ∈ [0, 1 − η]. (30)

By Lemma 8 in Appendix A,
Id−r′ ,r′ (x)

ID−r′,r′ (x) is monotonically
increasing, so we only need to prove the above inequality
for x = 1 − η. By Lemma 9 in Appendix A,

Id−r′ ,r′ (1−η)

ID−r′,r′ (1−η) <

(1 − η
M )d−D . Therefore,

∞∑

d=D+1

1

d − 1

Id−r ′,r ′(x)

ID−r ′,r ′ (x)
≤ 1

D

∞∑

d=D+1

Id−r ′,r ′(1 − η)

ID−r ′,r ′(1 − η)

<
1

D

∞∑

d=D+1

(1 − η

M
)d−D

= M − η

Dη
≤ 1,

where the last inequality follows from D = �M/η�−1. So we
have established (30) and hence (29).

Last, by (23) and (29), we have for 0 ≤ x ≤ 1 − η,

�(x; �r) ≥
∑

r ′≥r

h̄r ′ Sr ′ (x; �r)

> − ln(1 − x)r
∑

r ′≥r

h̄r ′ ,

or

�(x; �r) +
⎛

⎝r
∑

r ′≥r

h̄r ′

⎞

⎠ ln(1 − x) > 0.

We conclude that θ̂ ≥ r
∑

r ′≥r h̄r ′ . The proof is completed by
considering all r = 1, 2, . . . , M .

Though in general the lower bound in Theorem 5 is not
tight, we can show for a special case that it converges
asymptotically to the upper bound in Theorem 4. Consider a
rank distribution h = (h0, h1, . . . , hM ) with hκ = 1 for some
1 ≤ κ ≤ M . Theorem 5 implies that θ̂ ≥ κ h̄κ . On the other
hand, Theorem 4 says that η̄θ̂ ≤ ∑

r r h̄r = κ h̄κ +∑
r<κ r h̄r .

Note that η̄ can be arbitrarily close to 1, and
∑

r<κ r h̄r → 0
and h̄κ → hκ when the field size goes to infinity. Thus,
both the upper bound in Theorem 4 and the lower bound in
Theorem 5 converge to κhκ , the capacity of the LOC with
empirical rank distribution converging to h.

We can compute the achievable rates of BATS codes
numerically by solving (P1). Set M = 16 and q = 28.
Totally 4 × 104 rank distributions are tested.4 For each
rank distribution h we solve (P1) for η̄ = 0.98, 0.99 and

4A rank distribution is randomly generated as follows. First, select
x1, x2, . . . , xM−1 independently and uniformly at random in [0, 1]. Next,
sort {xi } so that x1 ≤ x2 ≤ · · · ≤ xM−1. Then, the rank distribution is given
by h0 = 0, and for 1 ≤ r ≤ M, hr = xr − xr−1, where x0 = 1 and xM = 1.
This gives an almost uniform sampling among all the rank distributions with∑M

i=1 hi = 1 according to [44]. The reason that we choose h0 = 0 is as
follows. For a rank distribution h = (h0, . . . , h M ) with h0 > 0, we obtain
a new rank distribution h′ = (h′

0 = 0, h′
i = hi/(1 − h0) : i = 1, . . . , M).

Optimization (P1) is equivalent for these two rank distributions except that the
objective function is scaled by 1 − h0. Thus the values of θ̃ := η̄θ̂ /

∑
r rh̄r

for both h and h′ are the same.
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Fig. 6. The empirical cumulative distribution function (eCDF) of
θ̃ := η̄θ̂/

∑
r rh̄r for 4 × 104 rank distributions. Here q = 28 and M = 16.

0.995. The empirical distributions of θ̃ � η̄θ̂/
∑

r r h̄r are
shown in Fig. 6. By Theorem 4, θ̃ ≤ 1. The results show
that when η̄ = 0.995, for more than 99.1% of the rank
distributions, θ̃ is larger than 0.96; for all the rank distributions
the smallest θ̃ is 0.9057. The figures in Fig. 6 clearly show the
trend that when η becomes smaller, θ̂ becomes larger for the
same rank distribution. Note that for these rank distributions,
the ratio

∑
r r h̄r/

∑
r rhr are all larger than 0.999, so the

upper bound in Theorem 4 is indeed very close to the
capacity.

C. Optimizations for Multiple Rank Distributions

In the previous part of this section, we consider how to find
an optimal degree distribution for a single rank distribution.
For many scenarios, however, we need a degree distribution
that is good for multiple rank distributions. In a general multi-
cast problem, the rank distributions observed by the destination
nodes can be different. Even for a single destination node, the
empirical rank distribution may not always converge to the
same value. We discuss the degree distributions for multiple
rank distributions in the remaining part of this section.

Let H be the set of rank distributions observed by the
destination nodes of a multicast network. Consider a degree
distribution � and θh, h ∈ H satisfying the following set of
constraints:

�(x; �, h̄(h))+ θh ln(1 − x) ≥ 0, ∀x ∈ [0, η̄], ∀h ∈ H,

(31)

where h̄(h) = (h̄i (h), i = 1, . . . , M). Then for each rank
distribution h ∈ H, rate η̄θh is η̄-achievable by the BATS
code with degree distribution � .

To illustrate the discussion, we extend the three-node
network in Fig. 1 with two more destination nodes as shown
in Fig. 7. In this network, node a transmits the same packets
on its three outgoing links, but these links have different loss
rates. Fixing M = 16, q = 256 and a certain inner code in
node a (see the inner code to be defined in Section VII-A),
we obtain the rank distributions hi for node ti , i = 1, 2, 3 in
Table I. For the above example, see the maximum η̄-achievable

Fig. 7. In this network, node s is the source node. Node t1, t2 and t3 are the
destination nodes. Node a is the intermediate node that does not demand the
file. All links are capable of transmitting one packet per use. The link (s, a)
has packet loss rate 0.2. The links (a, ti ), i = 1, 2, 3 have packet loss rate
0.1, 0.2 and 0.3, respectively.

TABLE I

THE RANK DISTRIBUTIONS FOR THE THREE

DESTINATION NODES IN FIG. 7

rates evaluated in Table II. The observation is that the degree
distribution optimized for one rank distribution may not have a
good performance for the other rank distributions: The degree
distributions optimized for destination node t1 and t2 have poor
performance for destination node t3.

There are different criteria to optimize the degree distrib-
ution for a set of rank distributions. Here we discuss two of
them as examples. One performance metric of interest is the
multicast rate, which is a rate that is achievable by all the
rank distributions. We can find the maximum multicast rate
for all the rank distributions in H by solving the following
optimization problem:

max θ s.t. �(x; h̄(h),�) + θ ln(1 − x) ≥ 0,

∀x ∈ [0, η̄] ∀h ∈ H,

�i ≥ 0,
∑

i

�i = 1. (P2)

Denote by θ̂H the maxima of (P2) w.r.t. H. By the upper
bound discussed in Section V-B, η̄θ̂H should be less than the
minimum expected rank among all the rank distributions in H,
denoted by h̄H. For the example that H = {h1, h2, h3}, the
optimal degree distribution of (P2) is exactly �3. Since nodes
t1 and t2 can emulate the packet loss rate of node t3, the
multicast rate of the BATS code is bounded by node t3. So in
this case, BATS codes can achieve a multicast rate very close
to h̄H.

In general, however, η̄θ̂H may not be very close to h̄H.
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TABLE II

THE ACHIEVABLE RATES FOR DIFFERENT PAIRS OF RANK

DISTRIBUTIONS AND DEGREE DISTRIBUTIONS. FOR EACH

RANK DISTRIBUTION IN THE FIRST ROW AND EACH DEGREE

DISTRIBUTION IN THE FIRST COLUMN, WE EVALUATE THE

MAXIMUM 0.99-ACHIEVABLE RATE IN THE TABLE. FOR

i = 1, 2, 3, � i IS OBTAINED BY SOLVING (P1) WITH

hi IN PLACE OF h . �3 CAN ALSO BE OBTAINED BY

SOLVING (P2) WITH {h1, h2, h3} IN PLACE OF H.

�MAX-PERC IS OBTAIN BY SOLVING (P3)

WITH {h1, h2, h3} IN PLACE OF H

The maximum gap between η̄θ̂H and h̄H can be obtained
numerically. For any real value μ, 0 ≤ μ ≤ M , define

B(μ) =
{

(h0, . . . , hM ) :
M∑

i=1

ihi ≥ μ,

M∑

i=1

hi = 1, hi ≥ 0

}

.

The set B(μ) includes all the rank distributions that can
potentially support rate μ. Since using more rank distributions
can only give smaller optimal values, solving (P2) w.r.t. B(μ)
gives us a guaranteed multicast rate that is achievable by BATS
codes with BP decoding for any set of rank distributions H
with h̄H = μ. Directly solving (P2) w.r.t. B(μ) is difficult
since B(μ) includes infinitely many of rank distributions.
Using the techniques developed in [45], the set B(μ) can be
reduced to a finite set, and hence (P2) can be solved efficiently.
See Fig. 8 for η̄θ̂B(μ) when M = 16, q = 256 and η̄ = 0.99.
For example, η̄θ̂B(10) = 8.10.

The degree distribution obtained using (P2) may not be
fair for all the destination nodes. For the degree distribution
optimized using (P2), nodes t1 and t2 do not achieve a rate
much higher than node t3 though they have much lower loss
rate than node t3 (ref. Table II). To resolve this issue, we can
find the percentage of

∑
i i h̄i (h) that is achievable for all the

rank distributions h in H using the following optimization:

max α s.t. �(x; h̄(h),�) + α
∑

i

i h̄i (h) ln(1 − x) ≥ 0

∀x ∈ [0, η̄] ∀h ∈ H,

�i ≥ 0,
∑

i

�i = 1. (P3)

Denote by α̂ the maxima of (P3). When H = {h1, h2, h3} and
η̄ = 0.99, the percentage is 94.9 (the optimal value of (P3)
multiplied by 100η̄). The performance of the optimal degree
distribution of (P3) is shown in the last row of Table II.
BATS codes with this degree distribution achieves 95.0, 95.3
and 94.9 percentage of

∑
i i h̄i for sink nodes t1, t2 and t3,

respectively.
In general, BATS codes are not universal. There does not

exist a degree distribution that can achieve rates close to

Fig. 8. The optimal values of (P2) w.r.t. B(μ), where M = 16, q = 28 and
η̄ = 0.99.

TABLE III

THE MAXIMUM VALUE α̂ OF (P3) WHEN H IS THE SET OF ALL RANK

DISTRIBUTIONS FOR A GIVEN BATCH SIZE. HERE η̄ = 0.99

∑
i i h̄(h) for all rank distributions for a given batch size M ,

except for M = 1, the case of LT/Raptor codes. In Table III,
we give the optimal values of (P3) (multiplied by η̄) with
H being the set of all the rank distributions for batch size
1, 2, 4, . . . , 64. Take M = 16 as an example. The value
η̄α̂ = 0.5274 implies a worst guaranteed rateless rate for an
arbitrary number of destination nodes with arbitrary empirical
rank distributions: A destination node can decode the original
file with high probability after receiving n batches such that
0.5274

∑n
i=1 rk(Hi ) is larger than the number of original input

packets, where Hi is the transfer matrix of the i th batch. When
the possible empirical rank distributions are in a smaller set,
the optimal value of (P3) can be much larger, as in the network
with three destination nodes.

Using different objective functions and constraints, other
optimization problems can be formulated to optimize a degree
distribution for a set of rank distributions. For example, we
can optimize the average rate and average completion time of
all the destination nodes. Readers are referred to [45] for more
degree distribution optimization problems and the techniques
to solve these problems.

VI. PRACTICAL BATCH ENCODING AND

DECODING DESIGNS

Asymptotic performance of BATS codes has been studied in
the previous sections. Now we look at several practical issues
about the design of BATS codes.

A. Overhead and Rate

We give an alternative and convenient way to evaluate
the performance of a BATS code with finite block lengths.
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We define two kinds of overheads, which is related to the outer
code and inner code respectively, and discuss their relationship
with coding rate.

Suppose that a destination node decodes successfully after
receiving n batches with transfer matrices {Hi , i = 1, . . . , n}.
If the coefficient vector of a received packet is linearly
dependent with those of the other received packets of the
same batch, this packet is redundant and can be discarded
by the decoder. Therefore we define the receiving overhead as
RO = ∑n

i=1[col(Hi )−rk(Hi )], where col(H) is the number of
columns of H. The receiving overhead is generated inside the
networks by the inner code, and hence cannot be reduced by
the design of batch encoding and decoding. We should design
the inner code to reduce the receiving overhead, but it may
not always be necessary to reduce the receiving overhead to a
value close to zero (see example designs in the next section).

Define the coding overhead as CO = ∑n
i=1 rk(Hi ) − K .

We should design batch encoding and decoding schemes
such that the coding overhead is as small as possible. The
coding rate observed by the destination node is CR =

K∑n
i=1 col(Hi )

. For an optimal code, we have CO
K → 0 and hence

CR →
∑n

i=1 rk(Hi )∑n
i=1 col(Hi )

, the normalized average rank of the transfer
matrices.

B. Precoding

In Section V, we have discussed how to design BATS codes
such that the BP decoding can stop with at least a given
fraction of the input packets decoded. This fraction can be
made arbitrarily close to 1 as long as the number of input pack-
ets is sufficiently large. After the BP decoding has stopped,
we can try to decode the remaining input packets using
Gaussian elimination. Can we guarantee that the Gaussian
elimination succeeds with a small coding overhead? The
answer is actually negative. Consider that we want to recover
all the K input symbols using n batches with probability at
least 1 − 1/K c for some positive constant c. Similar to the
analysis of LT codes (see [2, Proposition 1]), no matter what
decoding algorithm is applied, the expected degree must be
lower bounded by c′ K

n log(K ) for some positive constant c′.
When K/n converges to a constant positive value, the expected
degree is lower bounded by a function of log(K ). However,
the degree distribution obtained using (P1) with a fixed value
of η̄ = 1 − η has a constant expected rank, which is desired
for low encoding/decoding complexity.

One way to resolve the above issue is to refine the analysis
in Section III so that we allow η̄ = o(K ), e.g., η̄ = (log K )−1.
However, this would incur a higher order of the encod-
ing/decoding complexity. A better way to resolve the above
issue is to use the precoding technique which has been used
in Raptor codes. That is, before applying the batch encoding
process in Section II-A, the input packets are first encoded
using a traditional erasure code (called a precode). The batch
encoding process is applied to the intermediate input packets
generated by the precode. Fig. 9 illustrates an example of
BATS codes with precoding. If the BP decoding of the BATS
code can recover a given fraction of the intermediate input

Fig. 9. Precoding of BATS codes. Nodes in the first row represent the input
packets. Nodes in the second row represent the intermediate packets generated
by the precode.

packets, the precode is able to recover the original input
packets in face of a fixed fraction of erasures.

Due to similar requirements, the precode for Raptor codes
in can be applied to BATS without much modifications.
Readers can find the detailed discussion of these techniques
in [46] and [47].

C. Inactivation Decoding

BP decoding stops with high probability before the desired
fraction of input packets are decoded when the number of input
packets is small. When the BP decoding stops, a better way
to continue the decoding process than Gaussian elimination is
to use inactivation. Inactivation is an efficient way to solve
sparse linear systems [48], [49], and it has been used for the
decoding of LT/Raptor codes [46], [50] (a similar algorithm
has been used for efficient encoding of LDPC codes [51]).

Recall that BP decoding stops when there are no decodable
batches. In inactivation decoding, when there are no decodable
batches at time t , we instead pick an undecoded input packet
bk and mark it as inactive. We substitute the inactive packet
bk into the batches like a decoded packet, except that bk is an
indeterminate. For example, if bk is a contributor of batch i ,
we express the components of the updated Yi as polynomials
in bk . The decoding process is repeated until all input packets
are either decoded or inactive. The inactive input packets can
be recovered by solving a linear system of equations using
Gaussian elimination. In a nutshell, inactivation decoding
trades computation cost (decoding inactive input symbols
using Gaussian elimination) with coding overhead.

Inactivation decoding of BATS codes has been studied
in [52], where a recursive formula is obtained to calculate the
expected number of inactive packets when the inactive packets
are chosen uniformly among all undecoded input packets.
The degree distribution obtained using the optimization (P1)
can be further fine-tuned to obtain better performance for
inactivation decoding [53]. Using the techniques discussed in
this section, it is possible to design BATS codes with very low
coding overhead for finite block lengths. See the numerical
results in Section VII-A and [53].



5338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 9, SEPTEMBER 2014

VII. EXAMPLES OF BATS CODE APPLICATIONS

In this section, we use several examples to illustrate how to
apply BATS codes in erasure networks, where each (network)
link can transmit one packet in a time slot subject to a certain
packet erasure probability. If not erased, the packet will be
correctly received. We say a network has homogeneous links
if all network links have the same erasure probability, and
has heterogeneous links otherwise. Unless otherwise specified,
network link transmission is instantaneous. We will focus on
how to design the inner code including cache management and
batch scheduling at the intermediate nodes.

A. Line Networks

A line network of length k is formed by a sequence of k +1
nodes {v0, v1, . . . , vk}, where the first node v0 is the source
node and the last node vk is the destination node. There are
only network links between two consecutive nodes. The net-
work in Fig. 1 is a line network of length 2. We first study line
networks with homogeneous links and then extend the results
to general line networks. Suppose that all the links in the line
network have the same link erasure probability ε. When there
is no computation and storage constraints at the intermediate
network nodes, the min-cut capacity of the line network with
length k is 1−ε packet per use for any k > 0. Here one use of
the network means the use of each network link at most once;
transmitting nothing on a network link in a particular time slot
is allowed. We apply the following BATS code scheme for line
networks.

Scheme 1 (Line Network): The source node generates
batches and transmits a packet in each time slot. The M
packets of a batch are transmitted in M consecutive time
slots, and the batches are transmitted according to the order in
which they are generated. The source node keeps transmitting
batches until the destination node decodes successfully.
No feedback is required except for the notification of
successful decoding from the destination node.

In the first M time slots, node v1 can potentially receive M
packets of the first batch. In the first M −1 time slots, node v1
saves the received packets in its buffer but transmits nothing.
In the Mth time slot, node v1 generates M coded packets
using random linear coding on the packets in its buffer and
the packet just received, if any, which are all in the same batch.
After generating the M coded packets, the original received
packets in the buffer are deleted. Node v1 then transmits one
of the coded packets and saves the remaining M − 1 coded
packets in its buffer. In each of the following M −1 time slots,
node v1 transmits one of the remaining coded packets of the
first batch and then deletes in the buffer the transmitted packet
immediately. During these time slots, if node v1 receives a new
packet (of the 2nd batch), the new packet is saved in the buffer.
From the 2Mth to the (3M − 1)th time slot, node v1 repeats
the above operations on the second batch, so on and so forth.
All the other intermediate nodes apply the same operations as
node v1.

In the above scheme, each intermediate node caches at
most M − 1 packets in the buffer. There is a delay for
each intermediate node: node vi can only start to receive

packets after (i − 1)(M − 1) time slots. For a network of
fixed length, the delay is neglectable compared with the
total transmission time when the file size is large. The
buffer at the intermediate nodes may be better managed to
improve the rate and/or to reduce the delay, but the scheme
we defined here is easy to analyze and is asymptotically
optimal.

The transfer matrices of all batches are i.i.d. and can be
expressed explicitly. The transmission of a batch through a
network link can be modelled by an M × M random diagonal
matrix E with independent components, where a diagonal
component is 0 with probability ε and is 1 with probability
1− ε. The network coding at an intermediate node for a batch
is given by a totally random M × M matrix �. The transfer
matrix H (1) for the unit-length line network is H (1) = E1,
where E1 has the same distribution as E . For k > 1, the
transfer matrix H (k) for the k-length line network can be
expressed as

H (k) = H (k−1)�k−1 Ek,

where �k−1 has the same distribution as � and Ek has the
same distribution as E . Further, �1, . . . ,�k−1, E1, . . . , Ek are
mutually independent.

The rank distribution of the transfer matrix H (k) can be
calculated recursively. Let h(k) = (h(k)

0 , . . . , h(k)
M ) be the rank

distribution of H (k). First

h(1)
r =

(
M

r

)

(1 − ε)rεM−r , r = 0, 1, . . . , M.

Using (3) we obtain that for k > 1,

h(k)
r =

M∑

i=r

M∑

j=r

h(k−1)
i

(
M

j

)

(1 − ε) jεM− j ζ
i, j
r , r = 0, . . . , M.

When M = 1, the BATS code scheme for line networks
degenerates to an LT/Raptor code scheme with forwarding at
the intermediate nodes. The achievable rate for the length-k
line network is (1 − ε)k , i.e., the rate decreases exponentially
fast with the network length.

We know from the previous discussion that the normalized
expected rank

∑
r rh(k)

r /M can be approached by BATS
codes. By the following lemma, when M tends to infinity, the
normalized expected rank will converge to 1 − ε. Therefore,
for line networks with link erasure probability ε, Scheme 1
can achieve a normalized rate very close to 1 − ε when M is
sufficiently large.

Lemma 7: limM→∞
∑

r rh(k)
r /M = 1 − ε.

Proof: First, we have
∑

r rh(k)
r /M = E[rk(H (k))]/M ≤

E[rk(Ek)]/M → 1 − ε as M → ∞. We then prove by
induction that for any δ > 0,

lim
M→∞ Pr

{
rk(H (k))

M
≥ 1 − ε − δ

}

= 1, (32)

which impies limM→∞ E[rk(H (k))]/M ≥ 1 − ε.
Since rk(H (1)) = rk(E1) follows a binomial distribution

with mean M(1 − ε), (32) with k = 1 follows from the
weak law of large numbers. Suppose that (32) holds for H (i),
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i = 1, . . . , k, k ≥ 1. We have for t = 1 − ε − δ, δ > 0,

Pr
{ rk(H (k+1))

M
≥ t

}

= Pr
{ rk(H (k)�E)

M
≥ t

}

≥ Pr
{ rk(H (k)�E)

M
≥ t

∣
∣
∣
rk(H (k))

M
≥ t + δ

2
,

rk(E)

M
≥ t

}

× Pr
{ rk(H (k))

M
≥ t + δ/2

}
Pr
{ rk(E)

M
≥ t

}
, (33)

where the last two terms on the RHS of (33) converge to 1
as M → ∞. Since

Pr
{ rk(H (k)�E)

M
≥ t

∣
∣
∣
rk(H (k))

M
≥ t + δ

2
,

rk(E)

M
≥ t

}

≥ Pr
{
rk(H (k)�E) = �Mt�∣∣
rk(H (k)) = �M(t + δ/2)�, rk(E) = �Mt�}

= ζ
�M(t+δ/2)�
�Mt�

where the equality follows from (3), and ζ
�M(t+δ/2)�
�Mt� → 1, as

M → ∞, the RHS of (33) converges to 1 as M → ∞. The
proof is completed.

We, however, are more interested in the performance for
small values of M , which can be characterized numerically.
We calculate the normalized expected rank

∑
r rh(k)

r /M for
ε = 0.2 and field size q = 256 in Fig. 10. Compared
with M = 1, the normalized expected rank decreases slowly
as the network length increases when M ≥ 2. For a fixed
network length, Fig. 10 also illustrates the tradeoff between
the batch size and the maximum achievable rates of BATS
codes (without considering the coefficient vector overhead, or
assuming T is much larger than M). We see that when M is
larger than 32, using a larger batch size only gives a marginal
rate gain (but increases significantly the computation cost).

The gain by using a larger M can be offset by the coefficient
vector overhead. If we include the coefficient vector overhead,
the normalized rate of BATS codes should be multiplied
by (1 − M/T ). In the extreme case that M = T , the
achievable rate becomes zero. We calculate the value of
(1 − M/T )

∑
r rh(k)

r /M for T = 1024, ε = 0.2 and q = 256
in Fig. 10. These values of T and q correspond to a packets
size of 1 KB. It can be seen from the plot that when ε = 0.2,
a small batch size roughly equal to 32 is almost rate-optimal
for practical parameters.

If ε is large, e.g., 0.9, however, a much larger batch size,
e.g., 200, will be required so that the normalized expected
rank approaches 1−ε. But a large batch size results in a large
coefficient vector overhead. We introduce a technique such that
small batch sizes can still be used for high erasure probabili-
ties. Suppose that M is a large enough batch size such that the
normalized expected rank is close 1−ε. Let M̃ = M(1−ε+δ)
for certain small positive value δ. For example, M̃ = 30 when
ε = 0.9, M = 200 and δ = 0.05. We modify Scheme 1 by
using an outer code with batch size M̃ to replace the outer code
with batch size M: For each batch X of size M̃ , the source
node generates M packets for transmission by multiplying X
with an M̃ × M totally random matrix �M̃×M . The inner code

Fig. 10. Numerical results for line networks. The field size q is 28.
(a) Normalized expected ranks for ε = 0.2. (b) Normalized expected ranks
times (1 − M/T ) for ε = 0.2.

does not change: the batch size is still M . The destination
node decodes by using batch size M̃ .

The effectiveness of the above technique is explained as
follows. Let H be the transfer matrix of a batch for the outer
code with batch size M . In the above modified Scheme 1, the
transfer matrix of a batch for the outer code with batch size
M̃ can be expressed as �M̃×M H . We know that in Scheme 1,
the rank of H is smaller than M̃ = M(1 − ε + δ) with high
probability when M is large. Thus, the expected ranks of H
and �M̃×M H converges to the same value in probability as
M tends to infinity. Therefore, the asymptotic performance of
the outer codes is not sacrificed by using a small batch size.

The above technique can in principle be applied for all
values of ε. However, for small values of ε, the advantage
of using the technique is small.

Scheme 1 does not depend on the erasure probability of
network links, so it can also be applied to a line network with
heterogeneous links. Consider a length-k line network where
the maximum link erasure probability among all links is ε.
The min-cut capacity of this network is 1 − ε. The expected
rank of the transfer matrix of this network is less than the one
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TABLE IV

NUMERICAL RESULTS OF BATS CODES FOR THE LENGTH-4 LINE

NETWORK WITH M = 32 AND q = 256.

of the length-k line netwrok where the erasure probabilities
of all links are ε. Therefore, the normalized expected rank
will converge to 1 − ε when M tends to infinity, and hence
Scheme 1 can achieve a normalized rate very close to 1 − ε
when M is sufficiently large for a line network.

We use the length-4 line network as an example to evaluate
the finite length performance of a BATS code with inactivation
decoding. The results are in Table IV, where the average
overhead is less than 3 packets per 1,600 packets.5

B. Unicast Networks

A unicast network is represented by a directed acyclic graph
with one source node and one destination node. We first
provide two BATS code schemes for unicast networks with
homogeneous links, and then discuss how to extend the
schemes to unicast networks with heterogeneous links. One
way to apply Scheme 1 to unicast networks with homogeneous
links is as follows.

Scheme 2 (Unicast): Consider a unicast network with
homogeneous links. Find L edge-disjoint paths from the
source node to the destination node, and separate the input
packets into L groups, each of which is associated with a path.
The source node encodes each group of the input packets using
a BATS code, and transmits all the batches on the associated
path. An intermediate node on that path runs an instance of
the inner code of the BATS code defined in Scheme 1. The
destination node decodes the packets received from a path to
recover a group of input packets.

For a unicast network with link erasure probability ε for
all links, the min-cut capacity is (1 − ε)L∗, where L∗ is
the maximum number of edge-disjoint paths from the source
node to the destination node. Since Scheme 2 is equivalent to
applying Scheme 1 on multiple line networks, the normalized
expected rank of the transfer matrix for each path converges to
1 − ε as M tends to infinity. Therefore, Scheme 2 can achieve
a rate very close to the min-cut capacity by optimizing the
degree distribution for each path separately. However, a better
scheme can be obtained by encoding and decoding the batches
for different paths jointly.

Scheme 3 (Unicast): This scheme for a unicast network
with homogeneous links is same as Scheme 2 except that the
source node encodes all the input packets using a BATS code.

5The implementation of the BATS codes used for the generation of the
results in Table IV can be found in https://github.com/shhyang/simbats.

The batches are grouped into sets of L sequentially. Each set
is transmitted on the L paths in M time slots, with each batch
in the set transmitted on a distinct path.

The rank distribution for the above scheme is the rank
distributions averaged over all the paths. So, the normalized
expected rank of the transfer matrix converges to 1 − ε as M
tends to infinity. Now we consider a general unicast network
with heterogeneous links. We apply the above BATS code
scheme to the unicast network in three steps:

1) Obtain a unicast network G∗ with homogeneous links
that has the same min-cut as the original unicast net-
work G.

2) Apply Scheme 3 on network G∗.
3) Convert the scheme on G∗ to one that can be used in

network G while preserving the performance.

The second step is straightforward. The first and third steps
are explained as follows.

In the first step, assume that the link erasure probability
are all rational. Fix an integer N such that (1 − ε)N is an
integer for any erasure probability ε in a link of the network.
Network G∗ has the same set of nodes as network G. For any
link between nodes a and b in G with erasure probability ε, we
have a set of (1−ε)N parallel links between nodes a and b in
G∗ with erasure probability 1 − 1/N . We call network G∗ the
homogenized network of network G. We can check that
the min-cut capacity of network G and G∗ are the same. Use
the three-node network in Fig. 1 as example. Suppose the two
links (s, a) and (a, t) have erasure probabilities 0.2 and 0.1,
respectively. Let N = 10. The homogenized network of the
three-node network has 8 parallel links from node s to node a
and 9 parallel links from node a to node t , where all the links
have an erasure probability 0.9.

In the third step, we convert Scheme 3 on network G∗ to one
that can be used in the original network by emulating virtual
links in the network nodes in G. In the three-node network
example, for link (s, a), node s emulates 8 virtual outgoing
links and node a emulates 8 virtual incoming links, each of
which corresponds to a virtual outgoing link of node s; for
link (a, t), node a emulates 9 virtual outgoing links and node
t emulates 9 virtual incoming links, each of which corresponds
to a virtual outgoing link of node a. In each time slot, nodes
s and a randomly choose one of their virtual outgoing links,
transmit the packet on that virtual link on the original outgoing
link, and delete the packets on the other virtual outgoing links.
We assume that the choice of virtual outgoing links in node s is
known by node a so that the received packet of node a from
link (s, a) can be associated with the corresponding virtual
incoming link. The same is assumed for nodes a and t . In a
general network topology, a network node needs to maintain
a set of virtual outgoing (incoming) links for each original
outgoing (incoming) link.

The rank distribution induced by Scheme 3 on network G∗
is the same as the modified scheme on the original network G.
Therefore, the BATS code scheme can achieve a rate very
close to the min-cut capacity of a unicast network when M is
sufficiently large.
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Fig. 11. Butterfly network. Node s is the source node. Node t and u are
destination nodes.

C. Butterfly Network

We use the butterfly network (see Fig. 11) as an example
to discuss how to design better BATS code schemes for
general multicast networks. Suppose the butterfly network is
homogeneous. We first propose a BATS code scheme and
then discuss some improvements of the scheme for tackling a
practical issue.

Scheme 4 (Butterfly Network): In this scheme for the but-
terfly network, the source node s generates batches of size 2M
and transmits M packets of a batch on link (s, a) and the other
M packets of the batch on link (s, b). Nodes a and b apply
an inner code similar to that defined in Scheme 1 on batches
of size M except that they generate 2M coded packets for
each batch so that they can transmit different packets on two
of their outgoing links. Node c applies the inner code defined
in Scheme 1 with two exceptions: First node c has a buffer
size 2M − 2 packets since in each time slots it may receive
two packets. Second, in each of the time slots M, 2M, . . .,
node c generates M coded packets using all the packets it has
received in the current batch. Node d applies the inner code
defined in Scheme 1 for line networks on batches of size M
and transmits the same packets on both of their outgoing links.

Two aspects of the above scheme deserves some
explanation. First, node a (or b) transmits different packets to
its children, which is different from the operation at node d .
Note that both outgoing links of node a can reach node t .
Therefore, transmitting different packets on these two links can
potentially increase the rank of the transfer matrix of a batch.
Second, node c can potentially receive up to 2M packets of a
batch, but it only generates M recoded packets. This is crucial
for making the transmission on link (c, d) efficient for both
destination nodes.

In Scheme 4, the two destination nodes have the same rank
distribution for the transfer matrix of the batches. We can argue
that for each destination node, the normalized expected rank
of the transfer matrix induced by this scheme converges to
1 − ε (using an approach similar to the one we have used for
line networks and unicast networks with homogeneous links),
where ε is the link erasure probability. Therefore, the BATS
code scheme can achieve a rate very close to the multicast
capacity of the butterfly network when M is sufficiently large.

Now we incorporate a practical issue in the butterfly net-
work: consider that the two paths from node s to node c can
have different latencies. With the latency issue, it is possible
that node c receives packets from different batches on its
incoming links at the same time slot. One approach to resolve
the latency issue is to allow node c has a larger buffer so
that the packets of the same batch can be aligned in node
c for network coding. This approach is feasible when the
latency difference is in certain measurable range. For example,
if we know that the two paths from node s to node c have a
maximum latency difference of 10 time slots, we can enlarge
the buffer in node c to cache 20 more packets. A more robust
scheme is still desired for the scenarios where the latency
difference is large or not measurable.

Scheme 5 (Butterfly Network): Consider the butterfly net-
work with possibly different latencies for different links.
The source node separates its input packets into two groups
A and B . The source node encodes packets in group A and
in group B using two BATS codes of batch size M , and
the batches generated using groups A and B are denoted by
X A[i ] and X B [i ], i = 1, 2, . . . , respectively. Batches X A[i ],
i = 1, 2, . . . are transmitted on link (s, a) and batches X B[i ],
i = 1, 2, . . . are transmitted on link (s, b). Nodes a, b and d
apply the same inner code defined in Scheme 4.

Suppose note c is receiving packets of batch X A[i ] from
link (a, c). If node c recieves no packets from link (b, c)
during the period of receiving the packets of X A[i ], it will
generate M coded packets of batch X A[i ] and transmit them
on M consecutive times slots on link (c, d). If node c receives
some packets of batch X B[ j ] from link (b, c) during this
period, where j may be different from i due to different
latencies of different links, node c will align the transmission
of the coded packets of X A[i ] and X B[ j ]. The M coded
packets of X A[i ] and the M coded packets of X B [i ] generated
by node c can be expressed as X A[i ]HA and X B [ j ]HB,
respectively, for certain M-column matrices HA and HB .
Node c then transmits the packets X A[i ]HA + X B [ j ]HB.

Node t first decodes the packets in group A using the
batches received from link (a, t). The packets received from
link (d, t) are in batches of the form

Y = X A[i ]HA[i ] + X B[ j ]HB[ j ],
where HA and HB are the corresponding batch transfer
matrices. Since group A has been decoded, node t can recover
the batch X A[i ] and cancel the effect of X A[i ] from the
received batch Y . Then node t decodes the packets in B . Node
u applies a similar decoding procedure.

The butterfly network has two sub-trees with the node s as
the root and nodes t and u as the leaves: one sub-tree includes
nodes a, c and d; and the other sub-tree includes nodes b,
c and d . In the above scheme, for each group of the input
packets, we apply a BATS code scheme for multicast in one
of the two sub-trees. Since the two sub-trees share the network
link (c, d), the batches of these two BATS codes are mixed
together to share the network link (c, d). Note that we do not
mix the batches of the same BATS code. The decoding in
a destination node is a kind of successive cancellation: One
group of the input packets is first decoded using BP decoding
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of BATS codes; The effect of this group is cancelled out from
the mixed batches; The other group of the input packets is
then decoded using BP decoding of BATS codes.

VIII. CONCLUDING REMARKS

Benefiting from previous research on network coding and
fountain codes, BATS codes are proposed as a rateless code
for transmitting files through multi-hop communication net-
works with packet loss. In addition to low encoding/decoding
complexity, BATS codes can be realized with constant compu-
tation and storage complexity at the intermediate nodes. This
desirable property makes BATS code a suitable candidate for
the making of universal network coding based network devices
that can potentially replace routers.

Our study in this paper provides the tools to optimize
the performance of BATS code and the guidelines to design
BATS code-based network communication schemes. Examples
of BATS code applications are given for line networks and
general unicast networks. For general multicast networks,
schemes based on BATS codes can be developed as illustrated
for the butterfly network. More work is expected to explore the
applicability of BATS codes and to study the implementation
of BATS code-based network communication systems.

APPENDIX A
INCOMPLETE BETA FUNCTION

Beta function with integer parameters is used extensively in
this work. Related results are summarized here. For positive
integer a and b, the beta function is defined by

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt = (a − 1)!(b − 1)!

(a + b − 1)! .

The (regularized) incomplete beta function is defined as

Ia,b(x) =
∫ x

0 ta−1(1 − t)b−1dt

B(a, b)

=
a+b−1∑

j=a

(
a + b − 1

j

)

x j (1 − x)a+b−1− j . (34)

For more general discussion of beta functions, as well as
incomplete beta functions, please refer to [54].

Using the above definitions, we can easily show that
∫ 1

0
Ia,b(x)dx = b

a+b , (35)

and

Ia+1,b(x) = Ia,b(x) − xa(1 − x)b

a B(a, b)
. (36)

Lemma 8: Ia+1,b(x)
Ia,b(x) is monotonically increasing in x .

Proof: By (36),

Ia+1,b(x)

Ia,b(x)
= 1− xa(1 − x)b

a B(a, b)Ia,b(x)

= 1− 1

a B(a, b)
∑a+b−1

j=a

(a+b−1
j

)
x j−a(1 − x)a−1− j

= 1− 1

a B(a, b)
∑b−1

j=0

(a+b−1
j+a

)
x j (1 − x)−1− j

,

in which x j (1 − x)−1− j is monotonically increasing.
Lemma 9: When b−1

a+1 ≤ η
1−η where 0 < η < 1, Ia+1,b(x)

Ia,b(x) ≤
1 − η

b for 0 < x ≤ 1 − η with equality when b = 1 and
x = 1 − η.

Proof: Since Ia+1,b(x)
Ia,b(x) is monotonically increasing in x

(cf. Lemma 8), it is sufficient to show Ia+1,b(1−η)
Ia,b(1−η) ≤ 1 − η

b .

Since a + 1 ≥ (b − 1) 1−η
η ,

Ia,b(1 − η) =
a+b−1∑

j=a

(
a + b − 1

j

)

(1 − η) jηa+b−1− j

≤ b

(
a + b − 1

a

)

(1 − η)aηb−1,

where the equality holds for b = 1. Thus,

Ia+1,b(1 − η)

Ia,b(1 − η)
= 1 − (1 − η)aηb

a B(a, b)Ia,b(1 − η)

≤ 1 − (1 − η)aηb

abB(a, b)
(a+b−1

a

)
(1 − η)aηb−1

= 1 − η

b
.

We will use the following result about the summation of
binomial coefficients:

n∑

j=0

(−1) j−n
(

j + m

n

)(
n

j

)

= 1, m ≥ n. (37)

The above equality can be verified as follows:

n∑

j=0

(−1) j−n
(

j + m

n

)(
n

j

)

=
n∑

j=0

(−1) j−n
(

j + m

j + m − n

)(
n

j

)

=
n∑

j=0

(−1) j−n(−1) j+m−n

×
(− j − m + j + m − n − 1

j + m − n

)(
n

j

)

(38)

=
n∑

j=0

(−1)m
( −n − 1

j + m − n

)(
n

n − j

)

= (−1)m
(−1

m

)

= 1, (39)

where (39) follows from Vandermonde’s identity;
(38) and (39) use the relation between binomial coefficients
with negative integers and positive integers.

Lemma 10: For r ≥ 1,
∞∑

d=r+1

1

d − 1
Id−r,r (x) = − ln(1 − x), x ∈ [0, 1).

Proof: As a special case, when r = 1, the equality
becomes ∞∑

d=2

xd−1

d − 1
= − ln(1 − x), (40)
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which is the Taylor expansion of − ln(1 − x) for x ∈ [0, 1).
To prove the general case, let us first derive an alternative

form of Id−r,r (x). For a > 0,

Ia,b(x)

=
a+b−1∑

j=a

(
a + b − 1

j

)

x j
a+b−1− j∑

i=0

(−1)i
(

a + b − 1 − j

i

)

xi

=
a+b−1∑

m=a

xm
m∑

j=a

(
a + b − 1

j

)

(−1)m− j
(

a + b − 1 − j

m − j

)

=
a+b−1∑

m=a

(−x)m
(

a + b − 1

m

) m∑

j=a

(
m

j

)

(−1) j

=
a+b−1∑

m=a

(−x)m
(

a + b − 1

m

)(
m − 1

a − 1

)

(−1)a

= b

(
a + b − 1

b

)

(−1)a
a+b−1∑

m=a

(−x)m

m

(
b − 1

m − a

)

.

Using this form for Id−r,r (x), we have
∞∑

d=r+1

1

d − 1
Id−r,r (x)

=
∞∑

d=r+1

r

d − 1

(
d − 1

r

) d−1∑

m=d−r

(
r − 1

m − d + r

)

(−1)m−d+r xm

m

=
∞∑

m=1

xm

m
Am, (41)

where

Am �
m+r∑

d=max{m,r}+1

r

d − 1

(
d − 1

r

)(
r − 1

m − d + r

)

(−1)m−d+r .

For m ≤ r ,

Am =
m+r∑

d=r+1

r

d − 1

(
d − 1

r

)(
r − 1

m − d + r

)

(−1)m−d+r

=
m+r∑

d=r+1

(
d − 2

r − 1

)(
r − 1

m − d + r

)

(−1)m−d+r

=
m−1∑

j=0

(
j + r − 1

r − 1

)(
r − 1

m − j − 1

)

(−1)m− j−1

=
m−1∑

j=0

(
j + r − 1

m − 1

)(
m − 1

m − j − 1

)

(−1)m− j−1 = 1,

where the last equality follows from (37). Similarly, for m > r ,

Am =
m+r∑

d=m+1

r

d − 1

(
d − 1

r

)(
r − 1

m − d + r

)

(−1)m−d+r

=
m+r∑

d=m+1

(
d − 2

r − 1

)(
r − 1

m − d + r

)

(−1)m−d+r

=
r−1∑

j=0

(
j + m − 1

r − 1

)(
r − 1

r − j − 1

)

(−1)r− j−1 = 1.

The proof is completed by referring to (40) and (41) with
Am = 1.

APPENDIX B
LAYERED DECODING GRAPH

We have discussed different decoding strategies under the
rule that a check node is decodable if and only if its rank
equals its degree. We say a variable node is decodable if it
is connected to a decodable check node. In Section II-C, a
decodable check node is chosen and all its neighbors (variable
nodes) are recovered simultaneously, while in Section III-A, a
decodable variable node is uniformly chosen to be recovered.
Here we show that under the decoding rule that a check node
is decodable if and only if its rank equals its degree, both
strategies stop with the same subset of the variable nodes
undecoded.

For a given decoding graph G, let G0 = G. Label by
L1 all the decodable check nodes in G0 and label by L2
all the variable nodes in G0 connected to the check nodes
with label L1. We repeat the above procedure as follows. For
i = 1, 2, . . ., let Gi be the subgraph of G obtained by removing
all the nodes with labels L j for j ≤ 2i , as well as the adjacent
edges. (The generator matrices of the check nodes are also
updated.) Label by L2i+1 all the decodable check nodes in Gi

and label by L2i+2 all the variable nodes in Gi connected to
the check nodes with label L2i+1. This procedure stops when
Gi has no more decodable check nodes. Let i0 be the index
where the procedure stops. The above labelling procedure is
deterministic and generates unique labels for each decodable
variable nodes and check nodes.

With the labels, we can generate a layered subgraph G′ of G.
In G′, layer j , j = 1, 2, . . . , 2i0, contains all the check/variable
nodes with label L j . Only the edges connecting two nodes
belonging to two consecutive layers are preserved in G′.
By the assigning rule of the labels, it is clear that a variable
node on layer 2i must connect to one check node on layer
2i − 1, i = 1, . . . , i0, because otherwise the variable node is
not decodable. Further, a check node on layer 2i + 1 must
connect to some variable nodes on layer 2i , i = 1, . . . , i0 − 1,
because otherwise the check node should be on layer 2i − 1.

By the definition of decodability, a decoding strategy must
process the variable/check nodes in G′ following an order
such that a variable/check node is processed after all its lower
layer descendant variable/check nodes have been processed.
The two random decoding strategies we have discussed in
Section II-C and Section III-A both can process all the nodes
in G′ before stopping.

APEENDIX C
SOLVING THE SYSTEM OF DIFFERENTIAL EQUATIONS

We solve the following system of differential equations
given in (10) and (11), which is reproduced as follows:

dρd,r(τ )

dτ
= (αd+1,rρd+1,r (τ ) + ᾱd+1,r+1ρd+1,r+1(τ )

−ρd,r(τ ))
d

θ − τ
, 1 ≤ r ≤ M, r < d ≤ D,

dρ0(τ )

dτ
=

∑D−1
r=1 rαr+1,rρr+1,r (τ ) − ρ0(τ )

θ − τ
− 1
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with initial values ρd,r (0) = ρd,r and ρ0(0) = ∑
r ρr,r .

Let yd,r(τ ) = (1 − τ/θ)−dρd,r (τ ). We have

dyd,r(τ )

dτ
= d

θ
(αd+1,r yd+1,r(τ ) + ᾱd+1,r+1 yd+1,r+1(τ )).

We see that yd,r (0) = ρd,r (0). Define

ρ
(0)
d,r � ρd,r , (42)

ρ
(i+1)
d,r � αd−i,r ρ

(i)
d,r + ᾱd−i,r+1ρ

(i)
d,r+1; (43)

We can verify that

yd,r(τ ) =
D∑

j=d

(
j − 1

d − 1

)

(τ/θ) j−dρ
( j−d)
j,r .

Thus

ρd,r (τ ) = (1 − τ/θ)d
D∑

j=d

(
j − 1

d − 1

)

(τ/θ) j−dρ
( j−d)
j,r . (44)

Using the general solution of linear differential equations,
we obtain that

ρ0(τ ) = (1 − τ/θ)

(∫ τ

0

∑M
r=1 rαr+1,rρr+1,r (t)

θ − t
(1 − t/θ)−1dt

+ θ ln(1 − τ/θ) + ρ0(0)

)

= (1 − τ/θ)

( M∑

r=1

rαr+1,r

∫ τ

0

ρr+1,r (t)

θ − t
(1 − t/θ)−1dt

+ θ ln(1 − τ/θ) + ρ0(0)

)

. (45)

The integral in (45) can be further calculated as follows:
∫ τ

0

ρr+1,r (t)

θ − t
(1 − t/θ)−1dt

=
∫ τ

0

∑D
j=r+1 ρ

( j−r−1)
j,r

( j−1
r

)
(1 − t/θ)r+1(t/θ) j−r−1

(θ − t)(1 − t/θ)
dt

=
∫ τ

0

D∑

j=r+1

ρ
( j−r−1)
j,r

(
j − 1

r

)

(1 − t/θ)r−1(t/θ) j−r−1 dt

θ

=
D∑

j=r+1

ρ
( j−r−1)
j,r

(
j − 1

r

)∫ τ/θ

0
(1 − t)r−1t j−r−1dt

=
D∑

j=r+1

ρ
( j−r−1)
j,r

(
j − 1

r

)
( j − r − 1)!(r − 1)!

( j − 1)! I j−r,r (τ/θ)

= 1/r
D∑

j=r+1

ρ
( j−r−1)
j,r I j−r,r (τ/θ),

where the first equality is obtained by substituting ρr+1,r (t)
in (44), and the second last equality is obtained by the
definition of incomplete beta function (cf. (34)). Therefore,
the solution for ρ0(τ ) is

ρ0(τ ) =
(

1 − τ

θ

)( M∑

r=1

αr+1,r

D∑

d=r+1

ρ
(d−r−1)
d,r Id−r,r

(τ

θ

)

+
M∑

r=1

ρr,r + θ ln(1 − τ/θ)

)

.

The above formula of ρ0(τ ) can be simplified by substitut-
ing the quantities defined in (42) and (43) recursively. Denote
by Gd a totally random d × M matrix and let H be an M-row
random matrix with rk(H ) following the distribution of the
probability vector h. Let G(0)

d be Gd and for t > 0, G(t)
d be

the submatrix of G(t−1)
d with a row deleted. We now show that

ρ
(t)
d,r = d�d Pr{rk(G(t)

d H ) = r}. (46)

By (3), we have

ρ
(0)
d,r = ρd,r = d�d Pr{rk(Gd H ) = r}.

Assume that (46) holds for all times up to t − 1. By the
definition of αd,r in Lemma 2, we have

αd−t+1,r = Pr{rk(G(t)
d H ) = r |rk(G(t−1)

d H ) = r},
ᾱd−t+1,r+1 = Pr{rk(G(t)

d H ) = r |rk(G(t−1)
d H ) = r + 1}.

Then,

ρ
(t)
d,r = αd−t+1,rρ

(t−1)
d,r + ᾱd−t+1,r+1ρ

(t−1)
d,r+1

= αd−t+1,r d�d Pr{rk(G(t−1)
d H ) = r}

+ ᾱd−t+1,r+1d�d Pr{rk(G(t−1)
d H ) = r + 1} (47)

= d�d Pr{rk(G(t)
d H ) = r},

where (47) follows from the induction hypothesis.
In the expression for ρ0(τ ), we have

αr+1,rρ
(d−r−1)
d,r = d�dαr+1,r Pr{rk(G(d−r−1)

d H ) = r}
= d�dαr+1,r Pr{rk(Gr+1 H ) = r}
= d�d Pr{rk(G(1)

r+1 H ) = rk(Gr+1 H ) = r}

= d�d

M∑

i=r

ζ i
r

qi−r
hi ,

where the last equality is obtained by

Pr{rk(G(1)
r+1 H ) = rk(Gr+1 H ) = r}

=
∑

k≥r

Pr{rk(G(1)
r+1 H ) = rk(Gr+1 H ) = r |rk(H ) = k}hk

=
∑

k≥r

Pr{rk(Gr+1 H ) = r |rk(G(1)
r+1 H ) = r, rk(H ) = k}

× Pr{rk(G(1)
r+1 H ) = r |rk(H ) = k}hk =

∑

k≥r

ζ k
r

qk−r
hk .

Define (h̄r = h̄r (h), r = 1, . . . , M) for a rank distribution
h as

h̄r (h) =
M∑

i=r

ζ i
r

qi−r
hi .

Since
M∑

k=r

ζ k
r hk = Pr{rk(Gr H ) = r}

= Pr{rk(G(1)
r+1 H ) = r, rk(Gr+1 H ) = r}

+ Pr{rk(G(1)
r+1 H ) = r, rk(Gr+1 H ) = r + 1}

= h̄r + Pr{rk(Gr+1 H ) = r + 1}

=
M∑

s=r

h̄s , (48)
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we can write ρr,r = r�r
∑M

s=r h̄s . Using the above notations,
we can simplify the expression for ρ0(τ ) as

ρ0(τ ) =
(

1 − τ

θ

)( M∑

r=1

D∑

d=r+1

d�d h̄r Id−r,r

(τ

θ

)

+
M∑

r=1

r�r

M∑

s=r

h̄s + θ ln(1 − τ/θ)

)

.
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