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Andreev bound states in a few-electron quantum dot coupled to superconductors
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A direct measurement of the density of Andreev bound states (ABSs) is experimentally investigated in a
superconductor–quantum dot–superconductor hybrid nanowire system. A hard proximity-induced superconduct-
ing gap is observed, arising from superconducting correlations, in the transport spectrum of the hybrid system.
Conductance peaks observed inside the superconducting gap reveal that the subgap states participate in the
transport of the hybrid junction. We explore the evolution of low-energy Andreev bound states in a few-electron
quantum dot (QD) coupled to superconductors, by probing the magnetic field dependence of exquisite detailed
conductance spectra with a small bias voltage applied on the superconducting lead. In the presence of low
magnetic fields, the resonance current is enhanced and broadened, attributed to the transport through Andreev
bound states in QD, as the energy of ABSs reaches the threshold set by the applied bias voltage with the increase
of the magnetic field. The simulated transport spectrum matches the experimentally observed evolution patterns
of conductance, further implying the superconducting correlation nature of the observed electron transport.
At high magnetic fields, the conductance maxes as the Fermi level reaches the degeneration point of Landau
levels, leading to conductance peaks shown in the alternating narrow and wide patterns of Coulomb blockade
oscillations.
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I. INTRODUCTION

InAs nanowires continue to attract much attention as an
interesting one-dimensional material for nanoscale circuits
[1], single electron charge sensing [2], and potentially for
spin-based [3] and topological quantum information pro-
cessing [4]. Electron transport behavior in one-dimensional
(1D) quantum wires is of fundamental and practical interest.
Nanoscale electronic devices in contact with superconducting
leads exhibit a large variety of fundamental physical phenom-
ena. When two superconductors are coupled by a weak link, a
dissipationless supercurrent can flow through the junction as
a result of the proximity effect [5,6], which has a microscopic
origin in Andreev reflection. The nature of the weak link can
be of many different kinds including an insulator, a normal
conductor, or a semiconducting nanowire. The semiconduct-
ing nanowire version of the weak link offers a possibility
to tune the coupling strength with a gate voltage, and thus,
allows for control of the magnitude of the supercurrent and
implementation of a frequency tunable gmon superconducting
qubit [7,8]. In addition, the unique properties of such hybrid
nanodevices make them promising platforms to study funda-
mental phenomena such as quantum interference effects [9]
and Majorana fermions [4,10–13]. The proximity effect has
been recently demonstrated in one-dimensional semiconduct-
ing nanowires, where strong spin-orbit interactions can give
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rise to Majorana bound states [4,10,11,13]. Among a variety
of nanowires tested in experiments, InAs nanowires have high
electron mobilities [14] and can easily form ohmic contacts
[15]. The quasi-one-dimensional nature of electron transport
at low temperatures [16] together with a strong spin-orbit
coupling makes InAs nanowire an attractive material for the
development of spintronic devices such as electron spin qubits
in gate-defined quantum dots [3].

When a quantum dot is connected to superconducting
electrodes, the proximity effect drastically modifies the elec-
tronic structure of the quantum dot and forms new sub-
gap eigenstates, which are known as Andreev bound states
(ABSs) [12,17–20]. ABSs carry a supercurrent in Josephson
junctions, and thus, constitute a model system to investigate
the superconducting proximity effect in QDs. The Josephson
current in nanowires has been recently investigated at zero
bias, and multiple Andreev reflections have been observed
at a finite bias voltage [18–20]. It shows that quantum dots
connected to superconducting electrodes can be tuned from a
Coulomb blockade regime, to a Kondo regime, by changing
local gate voltages [18–21]. When such hybrid structures are
exposed to magnetic fields, the proximity effect allows for
interplay between superconductivity and magnetism, giving
rise to a variety of interesting effects. However, many as-
pects of the dependency of magnetic field have not been
explored yet in superconductor–quantum dot–superconductor
(S-QD-S) hybrid structures. In this paper, we report an ex-
perimental approach to measure a direct spectroscopy of
the density of Andreev bound states in a S-QD-S hybrid
nanowire system, and demonstrate the evolution of low-
energy Andreev bound states, featuring an enhancement and
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broadening of resonance current in the presence of a magnetic
field.

II. RESULTS AND DISCUSSION

A. Device Fabrication

The intrinsic donor-like surface states of InAs play a major
role in determining transport properties [22], leading to re-
duced electron mobilities at low temperatures due to the ion-
ized impurity scattering [14]. Fluctuations due to charge traps
can vary in time due to carrier trapping and detrapping events,
resulting in the random telegraph noise in the device conduc-
tance [23]. The presence of shell structures in InAs nanowires
strongly reduces the random telegraph noise and smoothes
out the distortions of local potential inside the core nanowire.
InAlAs epitaxial shells could offer significant improvement to
the quality of nanoelectronic devices, leading to a coherence
transport in InAs nanowires [24]. Thus, we used core-shell
InAlAs/InAs nanowires to fabricate S-QD-S junction devices.
Core-shell nanowires were grown in a gas source molecular
beam epitaxy system using Au seed particles. Transmission
electron microscopy images of typical nanowires reveal that
the nanowires have an inner core and an outer shell structure
with low stacking fault densities. Both core and shell exhibit
wurtzite single-crystal structure. In general, nanowires have
a core diameter of 20∼100 nm and a shell with 10∼15 nm
thickness, independent of the core diameter. The energy-
dispersive x-ray spectroscopy line scan analysis along the
radial direction shows In and As in the core region and In, As,
and Al in the shell region with about 20% Al concentration
(In0.8Al0.2As). The S-QD-S devices were fabricated using a
standard e-beam lithography technique. As-grown nanowires
were mechanically deposited onto a 300-nm-thick SiO2 layer
above a n++-Si substrate. Selected nanowires were located
relative to prefabricated markers by scanning electron mi-
croscopy (SEM), with care taken to minimize the electron
dose. The contact areas were etched with citric acid to re-
move the shell material, followed by room temperature sulfur
passivation to prevent regrowth of the oxide layer during the
transfer of the sample to an e-beam metal evaporator [15].
An Nb superconducting film (100 nm) was sputtered on the
etched areas to yield ohmic contact. The device structure is
shown schematically in Fig. 1(a), and the SEM image of a
typical hybrid device is shown in Fig. 1(b). After fabrica-
tion, the device chip was wire-bonded and loaded onto the
mix chamber of a dilution refrigerator. Transport measure-
ments were carried out at a base temperature about 10 mK
unless otherwise mentioned. RC, π , and copper powder filters
in the measurement circuit were used to filter out measure-
ment noise. Upon applying a DC source-drain voltage Vsd,
the device current Isd was measured using a current-voltage
preamplifier at a noise floor of 0.5 pA/Hz. A voltage Vg

applied to the degenerately doped Si substrate provided a
global back gate.

B. Superconducting Correlations in the S-QD-S Hybrid Device

We investigated eight devices, with a source-drain channel
length in a range between 300 to 570 nm, to varying levels of
detail. We found that Coulomb blockade behaviors are present

FIG. 1. (a) Schematic cross section of the S-QD-S hybrid
nanowire device. (b) SEM image of a measured hybrid device.
The scale bar is 500 nm. (c) Schematics of a S-QD-S device with
tunnel couplings to the superconducting probe (�l) and reservoir
(�r ), respectively. �0 is the superconducting energy gap, μs is the
chemical potential of the superconducting lead, ε0 is the orbital
energy of the dot, Ec is the charging energy of the dot, ±ε represents
the energy levels of Andreev bound states in the subgap, Vsd is the
bias voltage applied on the superconducting lead. In tunnel spec-
troscopy measurements, an electric current measured at |Vsd| < �0/e
is carried by Andreev bound states, transferring quasiparticles from
the superconducting probe, to a Cooper pair in the superconducting
reservoir. The alignment of μs to an energy level of ABSs yields a
conductance peak.

in three devices. Figure 2(a) shows typical conductance curves
versus the back gate for a device with a source-drain voltage
Vsd = 1.0 mV, in the presence of a perpendicular magnetic
field 0 and 5 T for the black and red curves, respectively. We
have also measured Coulomb blockade peaks with different
source-drain voltages at the magnetic field B = 0 T, as shown
in Fig. S2 in the Supplemental Material [25]. The measured
device has a nanowire with a core diameter of 89 nm, a shell
diameter of 119 nm, and a channel length of 510 nm, with
uncertainties ±2 nm. The conductance of the hybrid device
decreases with decreasing back gate voltages. At a zero mag-
netic field, the conductance emerges into a Coulomb block-
ade regime below Vg = −2.95 V, and is completely pinched
off when Vg < −3.2V. A serial of resonance current peaks
develops in the region of −3.20 V < Vg < −2.95 V. In the
presence of a perpendicular magnetic field, the conductance is
overall suppressed compared to the case at the zero magnetic
field. The Coulomb blockade oscillations are well developed
in the entire sweep range of the back gate voltage −3.20 V
< Vg < −2.80 V. Differential conductance was measured for
the device as a function of source-drain voltage Vsd, as shown
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FIG. 2. (a) Typical conductance curves versus back gate for a
device measured at 10 mK with a source-drain voltage Vsd = 1.0 mV,
in the presence of a perpendicular magnetic field 0 and 5 T for the
black and red line, respectively. The curve in black is shifted up 0.8
y-axis unit for clarity. (b) Differential conductance as a function
of source-drain voltage Vsd with different back gate voltages Vg

at a zero magnetic field. Eight conductance curves from bottom
to top are measured at Vg = −3.009, −3.008, −3.007, −3.006,
−3.005, −3.004, −2.986, and −2.985 V, respectively. For clarity, the
conductance curves in dark yellow, magenta, cyan, blue, green, red,
and black are shifted up 5, 10, 15, 20, 25, 30, and 35 y-axis units,
respectively. Conductance peaks inside the superconducting gap,
marked by red arrows, reveal that the subgap states participate in the
transport of the S-QD-S hybrid junction. (c) Differential conductance
as a function of source-drain voltage Vsd with different back gate
voltages Vg at B = 3.078 T. Six conductance curves from bottom
to top are measured at Vg = −2.9994, −3.0046, −3.011, −3.0144,
−3.0238, and −3.0324 V, respectively. For clarity, the curves in red,
green, blue, dark yellow, and magenta are shifted up 20, 40, 70, 95,
and 115 y-axis units, respectively.

in Fig. 2(b), at zero magnetic field with different back gate
voltages Vg . A hard proximity-induced superconducting gap,
marked by two black arrows indicating the vanishing of the
conductance, can be seen in the transport spectrum. The width
of the gap in bias voltage is given by 2�0/e, where �0 is
the effective superconducting gap. The value of �0 is found

to be about 1.3 meV, which is consistent with the reported
value for evaporated thin Nb films [26,27]. Each conductance
curve features two peaks, illustrated by red arrows, positioned
nearly symmetrically with respect to the zero-bias point in
the superconducting gap. Peak positions vary slightly with
changes in back gate voltages. For instance, the peak shifts
consistently from −1.14 to −1.27 mV by sweeping the back
gate voltage from −2.985 to −3.009 V. These conductance
peaks inside the superconducting gap unambiguously reveal
that the subgap states participate in the transport of S-QD-S
hybrid junction. However, when a perpendicular magnetic
field of 3.078 T is applied, the measured conductance gap has
a strong dependency on gate voltages, as shown in Fig. 2(c),
referring to a gate-voltage modulation of typical Coulomb
blockade patterns. No subgap resonance patterns are observed
for the conductance curves. This reveals the vanishing of
the superconductivity in Nb contact leads at such a strong
magnetic field.

To clarify these superconducting correlation features in the
conductance spectrum, we measured differential conductance
for the device as a function of bias voltage Vsd and back
gate voltage Vg . Figures 3(a) and 3(b) show the differential
conductance for the measured device with varying the back
gate voltage Vg and bias voltage Vsd at a magnetic field B =
0 T and B = 3.078 T, respectively. In the presence of the high
magnetic field, we have observed regular Coulomb oscillation
patterns. The charging energy extracted from the measure-
ment is about Ec ∼ 3.1 meV, corresponding to a dot capac-
itance, c ∼ 51.6 aF . The addition energy is around 21.9 meV.
Thus, the lever arm is estimated to be 14.2% for conversion
of gate voltages into energies. The gate capacitance per unit
length cg can be estimated as the capacitance of a wire above
an infinite conducting plane (c′

g) in series with the cylindrical
capacitance between the core and shell (c′

s), i.e., 1
cg

= 1
c′
g

+
1
c′
s
. c′

s = 2πε0εr (shell)

ln( Rs
Rc

)
, where Rs , Rc is the radius of nanowire

shell and core, respectively, and εr (shell) is taken as 12.46
for the dielectric constant of the In0.8Al0.2As shell [28]. The
parameter c′

g = 2πε0εr/cosh−1( Rs+tox

Rs
), where εr is the SiO2

dielectric constant and tox the thickness of SiO2 layer [29,30].
The equation above assumes that the nanowire is embedded
in SiO2. To compensate for the fact that the nanowire actually
sits atop the SiO2 and is surrounded by the vacuum, it was
shown by Wunnicke that a modified dielectric constant εr =
2.2 can be taken [29]. The calculated gate capacitance per unit
length cg is 48.3 pF/m for a nanowire with 2Rc = 89 nm and
2Rs = 119 nm sitting on an oxide layer of 300 nm. The lever
arm can be estimated by the ratio of gate capacitance to total
capacitance of QD, i.e.,cg · d/c, where d is an effective gating
length associated with the QD size. The distance between
the two confinement barriers along the nanowire axis may be
larger than the QD size. Furthermore, except for the electric
field underneath the QD, the fields distributed nearby the QD
location also contribute the electrical gating effect for the QD.
Thus, the effective gating length should be larger than the QD
size. To do a rough order-of-magnitude estimation, we used
a parameter d = 119 nm, which is the shell diameter of the
nanowire, to estimate the lever arm to be about 11.1%. Based
on a simple model of a spherical QD, the size of quantum dot
can be estimated to be R = c

4πε0εr (core)
∼ 31 nm, where R is
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FIG. 3. Differential conductance of the measured device as a function of the back gate voltage Vg and bias voltage Vsd with a perpendicular
external magnetic field B = 0 T (a) and B = 3.078 T (b), respectively. Coulomb diamond patterns in (b) are significantly modulated at a
zero magnetic field. Resonance patterns of Andreev bound states, marked by yellow arrows, emerge inside the superconducting gap arising
from superconducting correlations. (c) The spectrum of transport current as a function of the back gate voltage and magnetic field with
Vsd = 1.0 mV. The resonance current peak is enhanced and broadened at a particular magnetic field. The overall trend of the transition value of
magnetic field increases as sweeping the back gate voltage to more negative. (d) A simulation of conductance resonant patterns corresponding
to the odd occupation valley at Vg = −2.982 V in (c). The simulated conductance peak is broadened as the magnetic field goes up to 0.38 T.
The dimensionless gate voltage x = 1 + 2ε0

Ec
. x = 0 marks the center of the odd valley. The parameters used for the calculation are taken as

Ec = 3.1 meV, �0 = 1.3 meV, Vsd = 1.0 mV, φ = π/3, �α

Ec
= 0.135, gce = 0, gd = 10. (e) Energy levels of Andreev bound states (the energy

difference between |D〉 and |S〉) at different magnetic fields B = 0, 0.4, 0.8, 1.2, and 1.6 T for the black, red, green, blue, and magenta curve,
respectively. The parameters used for simulation are Ec = 3.1 meV, �0 = 1.3 meV, Vsd = 1.0 mV, φ = π/3, �α

Ec
= 0.135, gce = 0, gd = 10.

The black dashed line at 1.0 meV marks the bias window in the measurement.

the radius of the dot, and εr (core) is 15.15 for the dielectric
constant of the InAs core [31]. Given the channel length
L = 510 nm, this estimated value indicates that the quantum
dot is small compared to the channel length, revealing an un-
intentional quantum dot forming inside the nanowire channel.
We attribute this QD confinement to the spatial electrostatic
potential fluctuations along the nanowire. It is known that
charged surface states produce a random spatial electrostatic
potential along the nanowire, which may contribute to the
spontaneous formation of quantum dots at low temperature
[32]. These fluctuations may be due to surface defects [33],
stacking faults [32], or charge traps in the native oxide layer
of nanowire [23].

At zero magnetic field, the Coulomb diamond patterns
are significantly modulated. Compared to the well-defined
Coulomb diamond patterns shown in Fig. 3(b), clear reso-
nance current patterns, indicated by yellow arrows in Fig. 3(a),

emerge inside the superconducting gap arising from supercon-
ducting correlations. The superconducting gap is marked by
two yellow dashed lines in the figure. The subgap resonance
pattern has a dependency on gate voltages, which is consis-
tent with the gate-voltage dependence of subgap conductance
peaks shown in Fig. 2(b). We attribute subgap resonance
patterns to Andreev bound states associated with the quantum
dot, induced by superconducting correlations of the Nb leads
with its proximity to the nanowire channel. Our device can be
implemented as the elements of two superconducting leads
(S) with an energy gap �0, each tunnel coupled to a QD
with a coupling strength �α via a normal semiconductor
section (N), in a configuration of S-N–QD–N-S, where α =
l, r labels the left and right contacts. The InAs nanowires used
in devices have a typical elastic mean free path of le ∼ 50 nm
[20], significantly shorter than the junction length, indicating
that the transport is in the diffusive regime in the device.
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We can characterize the diffusive transport in such a device
with a Thouless energy, Eth = h̄D

L2 ∼ 0.042 meV, where D is
the diffusion coefficient, D = leVe/3 ∼ 166 cm2 · s−1, Ve ∼
106 m/s is the Fermi velocity of electrons in InAs [20,34], L is
the channel length. Considering the measurement temperature
10 mK and electron temperature of measurement circuits
around 80 mK, we estimated the thermal length to be lT =
(h̄D/kBT )1/2 ∼ 1.26 μm, where T is the temperature and
kB is the Boltzmann constant. At such a low measurement
temperature, the phase coherence length of InAs nanowire can
be on the order of lφ ∼ 500 nm [16,34]. Within the context
of this model, the presence of normal sections results in a
rescaling of the S–QD coupling strength �α . For our measured
device, the normal semiconductor section between the QD
and superconducting lead is assumed to be shorter than the
thermal length but close to the phase coherence length. The
normal sections can transfer superconducting correlations to
the QD through the Andreev refection process. However,
since the proximity effect originates from the phase coherent
Andreev reflections at S-N interfaces, the energy scales of
the coherent states in the normal region would decay as the
length of the normal section increases. This may be the reason
why subgap resonance patterns in Fig. 3(a) are relatively
weak, as discussed further below. We have also measured the
differential conductance of the device as varying the back
gate voltage Vg and bias voltage Vsd over a different sweep
range at the magnetic field B = 0 T, as shown in Fig. S1 in
the Supplemental Material [35]. The reproducible resonance
patterns presented in Figs. 3(a) and S1 reveal that the quantum
dot is stable although it is formed unintentionally inside the
nanowire channel.

An effective Hamiltonian can be used to implement a
quantum dot coupled to two superconducting leads Heff =
HQD + HS + HT [17,18,20]. Here HQD, HS, and HT rep-
resent the Hamiltonian for the uncoupled quantum dot, two
superconducting leads, and the coupling between the leads
and QD, respectively. The Hamiltonian of the QD is given
by HQD = ∑

σ=↑,↓ ε0d
+
σ dσ + Ecn↑n↓, where ε0 is the orbital

energy of the dot, Ec is the charging energy, dσ is the annihi-
lation operator of an electron in the dot with spin state σ . The
coupling Hamiltonian is HT = ∑

αkσ (tαc+
αkσ dσ + t∗αd+

σ cαkσ ),
where tα denotes the lead-dot tunneling amplitudes and the
lead index α refers to the two superconducting leads. When
the charging energy is small compared to the superconducting
gap, Ec < �0, in the absence of an external magnetic field
the eigenstates of Heff are two degenerate spin 1/2 doublet
states |↑〉, |↓〉 and two singlet states |+〉, |−〉 which are su-
perpositions of the doubly occupied |↑↓〉 and empty |0〉 states
of the quantum dot [18,20]. In our case, the charging energy
Ec > �0, instead of forming a singlet state with the empty and
doubly occupied states, the unpaired spin in the quantum dot
forms a Yu-Shiba-Rusinov singlet with quasiparticles in the
superconducting leads [17,19,20,36], because it has a much
lower required energy compared to the previous case. When
the QD is tuned in an even valley, the ground state is always
singlet. However, in an odd valley, the system has two possible
ground states, a doublet |D〉 or a singlet |S〉, determined by the
competition between the local energy Ec, �0, and �α . A small
ratio of �α/Ec leads to a singlet excitation state and a doublet
ground state [19,36]. In Fig. 3(a), 11 electrons, counting

from the zero electron regime determined by the pinch-off
threshold voltage, occupy the quantum dot in an odd valley
with −2.998 V < Vg < −2.980 V. The Yu-Shiba-Rusinov
states hosted in this odd valley have a strong dependency on
the gate voltage. The energy of singlet |S〉 trends to lower as
the gate voltage is swept towards the odd-even transition at
Vg = −2.998 V, as indicated by the yellow arrow in Fig. 3(a).
We calculated the energy of the Andreev bound states using a
method [17,37] discussed in more detail in the Supplemental
Material [38]. The simulation result, as shown in Fig. 3(e),
reveals that the energy of Andreev bound states (the energy
difference between |D〉 and |S〉) has a dependency on the gate
voltage, trending to lower and taking a singlet-doublet switch
at the odd-even valley transition [10,18]. The parameter x is a
dimensionless gate voltage defined as x = 1 + 2ε0

Ec
, and x = 0

marks the center of the odd valley. The parameters used for
the calculation are taken as Ec = 3.1 meV, �0 = 1.3 meV,
Vsd = 1.0 mV, φ = π/3, �α

Ec
= 0.135, gce = 0, gd = 10 [20],

where φ is the phase difference between superconducting
leads.

C. Evolution of Low-energy Andreev Bound States
at Low Magnetic Fields

When such a hybrid structure is exposed to a magnetic
field, the proximity effect allows for interplay between super-
conductivity and magnetism. Magnetoconductance signatures
of sub-band structures have been experimentally investigated
in InAs nanowires with normal metal source-drain contacts
and an axial magnetic field [39]. Instead of focusing on
the InAs nanowire, we explored the evolution of low-energy
Andreev bound states in a single quantum dot coupled to
superconductors, by probing the conductance as a function
of a back gate voltage and a magnetic field perpendicular
to the substrate. We used Nb as the superconducting leads,
which allow us to apply the magnetic field higher than that
in previously referenced studies [20] without destroying the
superconductivity. Therefore, we can observe the evolution
of the low-energy Andreev bound states into Landau states
upon the increase of the magnetic field. In Fig. 3(c), we show
resonance current patterns in the S-QD-S device as varying
the back gate voltage and magnetic field from 0 to 1.35 T,
below the critical magnetic field of Nb leads [40]. Instead
of sweeping the bias voltage and gate voltage at only certain
magnetic fields [10], we fixed a small bias voltage of 1.0 mV
applied to the device to consistently probe the magnetic field
dependence of the exquisite detailed energy-level spectra in
the superconductor contacted InAs QD. In such a measure-
ment, an electric current measured at |Vsd| < �0/e is carried
by the Andreev bound states, transferring quasiparticles from
the superconducting probe, to a Cooper pair in the supercon-
ducting reservoir, as depicted in Fig. 1(c) in the schematics
of a QD with tunnel couplings to the superconducting probe
and reservoir. A quasiparticle tunneling from the edge of the
filled negative energy states of the left superconductor can
become an electron in the normal section. The electron enter-
ing the QD from the normal section induces a single-electron
transition from the ABS ground state doublet |D〉, to the first
excited state singlet |S〉. The excited state relaxes back to the
ground state and an Andreev reflection at the superconductor–
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FIG. 4. (a) Energy spectroscopy of the S-QD-S hybrid system
in a high magnetic field up to 5 T in a range of back gate volt-
age −3.2 V < Vg < −2.8 V with Vsd = 1.0 mV. (b) The simulated
magnetic field dependence of the energy spectrum of Landau levels
for n from one to ten with l = 1 ∼ 10. A parabolic confinement of
4.85 meV is used for calculation.

QD interface generates a Cooper pair in the superconducting
reservoir and reflects a hole. The process yields a resonance
current when an Andreev level at ε = eVsd, where ε is the
energy difference between |D〉 and |S〉 [19,36]. The energies
of Andreev bound states, ±ε, can be tuned by the dot chemical
potential μ through the applied back gate voltage Vg . When a
magnetic field is applied, the energy of singlet states remains.
However, the two doublets, |↑〉 and |↓〉, gain Zeeman energies
of ± 1

2gdμBB respectively, where gd is the Landé g factor
in the quantum dot and μB is the Bohr magneton. Only the
transition from the ground doublet state |↑〉 to the excited
singlet state is allowed. Unique resonance current patterns
emerge corresponding to the transport through the Andreev
bound states in the QD, as shown in Fig. 3(c). The spin parity
alternates for the adjacent resonance patterns of current by
switching the even or odd occupation of electrons in the QD.
The resonance current peak at Vg = −2.982 V, marked by
a red arrow in the figure, attributes to a transition from the
excited state |S〉 to the ground state |D〉, where 11 electrons are
estimated to occupy the quantum dot. As the magnetic field
increases from zero, the resonance current peak is enhanced
and broadened at a particular magnetic field. Moreover, except
for the first three Coulomb oscillation peaks in a range of
−3.2 V < Vg < −3.15 V [see Fig. 4(a)], the overall trend of
the transition value of the magnetic field increases as the back
gate voltage is swept to the more negative side, as indicated

by a yellow dashed line in the figure. For instance, the
current resonance peak at Vg = −2.958, −2.982, −3.004 V
is enhanced and broadened as the magnetic field reaches the
transition value of 0.2414, 0.3234, and 0.5344 T, respectively.
These unique features of enhancement and broadening of
resonance currents in the presence of a magnetic field have
not been observed previously. The observation cannot be
explained by the magnetic field dependence of quantized
energy levels in a quantum dot. It should be related to
the superconducting correlations of electron transport in the
S-QD-S hybrid junction. The resonance current is enhanced
and restored to the regular Coulomb oscillation patterns as
the magnetic field is above the transition value, revealing
that the energy of the Andreev bound state involved in the
transport goes beyond the superconducting gap. To elucidate
the evolution of resonance current patterns, we calculated the
magnetic field dependence of the energy-level spectrum of
Andreev bound states in the QD (see the simulation method
in the Supplemental Material for details [38]). Figure 3(e)
shows energy levels of Andreev bound states at different
magnetic fields B = 0, 0.4, 0.8, 1.2, and 1.6 T, respectively.
The simulation of energy spectrum is corresponding to the odd
valley at Vg = −2.982 V, labeled by a red arrow in Fig. 3(c).
A dashed line at 1.0 meV in the figure marks the bias window
in the measurement. It can be seen that the energy of Andreev
bound states goes up as the magnetic field increases, which is
consistent with previous studies [10]. The applied bias voltage
of 1.0 mV sets a threshold for the maximum point of the
energy spectrum to approach. Once the energy of Andreev
bound states reaches the threshold, intersections of the energy
spectrum and the threshold falls apart as the Andreev bound
state energy goes up further, resulting in an enhancement and
broadening of the current resonant peak. At low temperatures
and small applied voltages (small compared to the spacing
of the bound states �E), conduction through the quantum
dot occurs via resonant tunneling through a single Andreev
bound state. We used the Breit-Wigner formula [41,42] to
calculate the conductance through the S-QD-S hybrid junc-
tion, i.e., G = 2e2

h

�l�r

ε2
R+ 1

4 �2 , where εR is the energy of ABSs,

relative to the chemical potential μs in the reservoirs; �l , �r

are the tunnel coupling of the QD to the superconducting
probe and reservoir, respectively. We denote � = �l + �r .
This formula holds under the condition � � kBT � �E.
A simulation of conductance resonant patterns is shown in
Fig. 3(d). The parameters used for the simulation are taken
as Ec = 3.1 meV, �0 = 1.3 meV, Vsd = 1.0 mV, φ = π/3,
�α

Ec
= 0.135, gce = 0, gd = 10 [20]. The resonant pattern is

enhanced and broadened as the magnetic field goes up to
about 0.38 T. The more negative back gate voltage lowers the
energy of Andreev bound states, and thus, it requires a higher
magnetic field to reach the threshold to broaden the resonance
current. The overall trend of the simulated low-magnetic
field dependence is consistent with experimental observations,
further implying the superconducting correlation nature of
the observed electron transport. It is worth noting that we
used a fixed phase difference for the simulation. In fact,
the magnetic field slightly affects the superconducting phase
difference, and thus, changes the energy level of ABS states.
Taking into account the effect of phase difference [43], we
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calculated the energy of Andreev bound states and simulated
the conductance resonant patterns. The results are presented
in Figs. S3 and S4 in the Supplemental Material [44].

D. Energy Spectroscopy at Higher Magnetic Fields

To investigate the energy spectroscopy of the hybrid system
in a higher magnetic field, we swept the magnetic field up
to 5 T with the back gate voltage −3.2 V < Vg < −2.8 V
and Vsd = 1.0 mV, as shown in Fig. 4(a). The current is
completely pinched off when Vg < −3.2 V, where the thresh-
old voltage Vth is defined. By weeping the gate voltage
from −3.2 V to −2.8 V, the electron tunnels into QD one
by one. Counting up from zero, 18 electrons occupy the
quantum dot at Vg = −2.8 V. The conductance is overall
suppressed as the magnetic field is swept to the high-field
region. As the energy of Andreev bound states goes beyond
the superconducting gap by increasing the magnetic field,
the Coulomb blockade oscillations dominate the transport.
Coulomb blockade oscillations are modulated by the magnetic
field, presenting alternating narrow and wide patterns with
increasing the magnetic field. The most prominent alternating
patterns are highlighted in a rectangle with yellow dashed
lines in Fig. 4(a). Furrows of alternating patterns located
at B ∼ 0.66, 1.42, and 1.92 T, marked by red arrows, are
corresponding to conductance peaks with changes of the
magnetic field. To analyze this measurement observation, we
calculated the magnetic field dependence of energy spectrum
in a higher magnetic field up to 5 T. For a quantum dot defined
by a two-dimensional parabolic confinement h̄ω0, the en-
ergy spectrum of noninteracting electrons in a magnetic field

is given by En,l = 1
2 (n − l)h̄ωc + 1

2 (n + l − 1)h̄
√

ω2
c + 4ω2

0,
n, l = 1, 2, 3 . . . [45], where ωc = eB/m∗ is the cyclotron
frequency in a magnetic field B and m∗ = 0.023m0 is the
electron effective mass in InAs [31]. Each state has twofold
spin degeneracy, which is gradually lifted as the magnetic
field is increased. Neglecting the spin splitting, we plotted the
energy-level spectrum in Fig. 4(b), for n from one to ten with

l = 1 ∼ 10. The magnetic length, lB =
√

h̄
eB

, is estimated to
be smaller than the dot size when B > 0.195 T, thus we expect
the density of states to converge towards the Landau levels at
a large magnetic field. The calculated energy spectrum indeed
reveals some characteristics of low-energy Landau levels. The
parabolic confinement h̄ω0 is the only fitting parameter used
for the simulation. We find that a value of h̄ω0 = 4.85 meV
yields a serial of degenerations of energy levels positioned
at B ∼ 0.67, 1.43, and 1.95 T, which best matches the

experimental observation of conductance peaks located at
B ∼ 0.66, 1.42, and 1.92 T. The dot size can be estimated
to be R∼29 nm (radius) based on the parabolic confinement
parameter [46], which is close to the value estimated from the
dot capacitance. These degenerations of energy levels yield a
maximum density of the energy spectrum. Thus, the conduc-
tance maximizes as the Fermi level reaches the degeneration
point of Landau levels, leading to conductance peaks shown in
the alternating narrow and wide patterns of Coulomb blockade
oscillations.

III. CONCLUSIONS

In summary, we have investigated the evolution of low-
energy Andreev bound states in a few-electron quantum dot
coupled to superconductors, by probing the conductance as
a function of the back gate voltage and magnetic field. We
have observed a hard proximity-induced superconducting gap,
arising from the superconducting correlation features, in the
transport spectrum of the hybrid system. Conductance peaks
observed inside the superconducting gap reveal that the sub-
gap states participate in the transport of the hybrid junction.
In the presence of a high magnetic field, the conductance
maximizes as the Fermi level reaches the degeneration point
of Landau levels, leading to conductance peaks shown in the
alternating narrow and wide patterns of Coulomb blockade
oscillations. At a low magnetic field, the resonance cur-
rent is enhanced and broadened, attributed to the transport
through Andreev bound states in QD, as the energy of ABSs
reaches the threshold set by the applied bias voltage with
the increase of the magnetic field. The simulated transport
spectrum matches the experimentally observed evolution pat-
terns of conductance, further implying the superconducting
correlation nature of the observed electron transport. More
positive back gate voltage could manifest the superconductor–
QD–superconductor hybrid nanowire system in a topologi-
cally nontrivial regime. Potential application would be highly
desirable, including the search for Majorana fermions and
topological superconductivity in such a hybrid system.
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