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Optimal design of measurement settings for quantum-state-tomography experiments

Jun Li,1,2,* Shilin Huang,3,2,† Zhihuang Luo,1,2 Keren Li,4,2 Dawei Lu,5,2 and Bei Zeng6,2,‡
1Beijing Computational Science Research Center, Beijing 100193, China

2Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
3Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

4Department of Physics, Tsinghua University, Beijing 100084, China
5Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

6Department of Mathematics and Statistics, University of Guelph, Guelph N1G 2W1, Ontario, Canada
(Received 17 May 2017; published 6 September 2017)

Quantum state tomography is an indispensable but costly part of many quantum experiments. Typically, it
requires measurements to be carried out in a number of different settings on a fixed experimental setup. The
collected data are often informationally overcomplete, with the amount of information redundancy depending
on the particular set of measurement settings chosen. This raises a question about how one should optimally
take data so that the number of measurement settings necessary can be reduced. Here, we cast this problem in
terms of integer programming. For a given experimental setup, standard integer-programming algorithms allow
us to find the minimum set of readout operations that can realize a target tomographic task. We apply the method
to certain basic and practical state-tomographic problems in nuclear-magnetic-resonance experimental systems.
The results show that considerably fewer readout operations can be found using our technique than by using the
previous greedy search strategy. Therefore, our method could be helpful for simplifying measurement schemes
to minimize the experimental effort.
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I. INTRODUCTION

The problem of estimating an unknown quantum state
is of fundamental importance in quantum physics [1] and
especially in the field of quantum information processing, such
as quantum computation [2], quantum cryptography [3], and
quantum system identification [4]. Quantum state tomography
aims to determine the full state of a quantum system via a series
of quantum measurements. It has become an indispensable
tool in almost any experimental physical setup. The standard
tomography procedure applied for complete reconstruction
of a d-dimensional quantum state consists of projecting the
density operator with respect to at least (d2 − 1) measurement
operators. A reconstruction based on linear-squares inversion
[5] or maximum-likelihood estimation [6] is then used to
calculate the best-fit density matrix for the experimentally
acquisited data set. Apparently, tomography is not an efficient
process and can be extremely computationally costly for even
modest-sized systems.

In recent years, state tomography has been an increasingly
challenging task as the number of controllable qubits in
quantum experiments is steadily growing. With the rapid
progress of experimental control techniques, the size of
quantum systems with entanglement or coherence prepared
in the laboratory has already grown to 8–10 qubits in pho-
tonic systems [7–9], 12 qubits in nuclear-magnetic-resonance
(NMR) systems [10], and even 14 qubits in ion traps [11].
Needless to say, performing state-estimation tasks on such
systems is tedious and time-consuming. Improved techniques
for quantum state tomography would certainly impact a wide
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range of applications in experimental physics. For example,
Ref. [12] used hundreds of thousands of measurements and
weeks of postprocessing to get a maximum-likelihood estimate
of an entangled state of eight trapped-ion qubits. Later, this
experiment was simplified as there was put forward a much
more economic tomographic scheme, which is based on the
concept of mutually unbiased bases and promises to reduce
about 95% of the number of measurements required [13].
To give another example, in Ref. [14] it was shown that, in
reconstructing a 14-qubit state, using both a smart choice of
the state representation and parallel graphic-processing-unit
programming can speed up the postprocessing by a factor of
104. Besides these technical improvements, there also exist
various theoretical approaches that are devoted to enhancing
the capability of quantum state tomography [15–17]. Most of
them either extract partial information or exploit some prior
information about the state to be reconstructed.

In this paper, we are concerned with the design of the
measurement scheme in a tomographic experiment. Our study
is primarily motivated by a problem which is present in
many experimental platforms; namely, state tomography often
involves informationally overcomplete measurements. The
reason can be stated as follows. Normally, a tomographic
experiment consists of a series of different measurement
settings, and from each single measurement setting a bunch
of data are recorded. Here, a measurement setting refers to
a particular configuration of the experimental measurement
apparatus. For example, in photonic systems one can tune
the wave plates and polarizers to make arbitrary local polar-
ization measurements, so a setting means the choice of one
observable per qubit and repeated projective measurements in
the observables’ eigenbases [18]. In NMR, a measurement
setting corresponds to taking a spectrum. Because NMR
experiments are performed on a large ensemble of molecules,
the expectation values of the observables (not necessarily
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compatible) can be read out from a single spectrum [19]. In
both platforms, there could be considerable overlap between
the experimental outcomes acquired from different measure-
ment settings; that is, there are redundant measurements.
Moreover, switching from one measurement setting to another
could be time intensive or error prone. Therefore, it is desirable
to find out what the minimum number of measurement settings
that suffices to determine the state of the system is. A judicious
experiment design would certainly help improve the efficiency
of tomographic reconstruction. The purpose of this paper is
to address this question via integer-programming techniques.
In the following, we shall first formulate the problem of
optimal tomographic experiment design in terms of integer
programming. Then, we concentrate on optimizing the design
of a readout pulse set in the context of nuclear magnetic
resonance.

II. OPTIMAL EXPERIMENT DESIGN

We restrict our consideration to the case of n qubits; higher-
dimensional systems can be treated similarly. An n-qubit sys-
tem’s state is represented by a 2n-dimensional density matrix
denoted as ρ, which is Hermitian and semipositive definite and
has unit trace. A convenient and equivalent description of the
quantum system is given by the Bloch vector. Let {Bk}4n−1

k=1 be
some orthonormal basis for the space of traceless Hermitian
operators satisfying the condition that for any k,j = 1, . . . ,n,
Tr(BkBj )/2n = δkj . Then decomposed with respect to this
basis, ρ can be viewed as a point r in a (4n − 1)-dimensional
real vector space: ρ = I⊗n/2n + ∑4n−1

k=1 rkBk , with I being
the two-dimensional identity matrix and rk = Tr(ρBk)/2n.
Clearly, full tomography amounts to measuring all of the
quantities {Tr(ρB1), . . . , Tr(ρB4n−1)}.

Experimenters primarily work in two different bases, the
computational basis and the product-operator basis. In the
computational basis the rows and columns of the density
matrix ρ are labeled by the binary expansion of their indices
from |0 · · · 0〉 to |1 · · · 1〉. The product-operator basis, defined
as Pn = {Pk}4n−1

k=1 = {I,X,Y,Z}⊗n/{I⊗n}, where X,Y,Z are
the three Pauli matrices

X =
(

0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)
,

is a commonly used tool in describing pulse-control exper-
iments. It provides at the same time physical insight into
the experimental setup (e.g., in NMR) and computational
convenience [20]. In the following we work on the product-
operator basis P , but there is no problem in extending our
analysis to other bases.

In performing a tomographic experiment, we send multiple
copies of the state ρ to our measurement apparatus. The appa-
ratus can be configured in different settings. Suppose that under
a specific measurement setting, we can read out the information
for the following set of operators: O = {O1, . . . ,Ok, . . . },
where Ok ∈ P . The experimental tomography procedure
employs a series of measurement settings, each corresponding
to the observation of a different set of operators. Here, the
switch between measurement settings is implemented through
either changing the configuration of the detectors or adding
a unitary readout operation before data acquisition. This can
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FIG. 1. Venn diagram visualizing the set cover problem for a
two-qubit state-tomography task. Here, the readout operations are
restricted to the identity operation and single-qubit rotations. This is
a very simple instance that occurs when we want to perform state
tomography for a homonuclear two-spin system in NMR. Clearly,
any and no less than four of the five sets suffice to cover the entire
measurement basis.

be readily seen from the equality Tr(UρU †E) = Tr(ρUEU †),
where E is an arbitrary observable and U ∈ SU (2n). For
instance, in order to measure the three Cartesian components
of a spin, if we can observe only two Pauli operators in one
experimental setting, we will need two readout operations,
which can be selected from the set {I,Rx,Ry}, where Rx and
Ry are the π/2 rotations about the x and y axes, respectively.

Now suppose we have the following experimentally avail-
able set of readout operations: U = {U1, . . . ,Uj , . . . }. We
denote S = {S1, . . . ,Sj , . . . }, where Sj corresponds to the
set of measurement operators generated through Uj : Sj =
{UjOkU

†
j |Ok ∈ O}. We assume that Sj ⊆ P for any j . Here,

some abuse of notation occurs as, actually, we should ignore
the global phase and coefficient. Then S is a collection of |U |
subsets of P , each containing |O| elements. Clearly, to ensure
full state tomography, a necessary condition is that P should
be covered by S, that is, P = ⋃

j Sj . Now, we can state the
central problem of this work, that is, to identify the smallest
subcollection of S whose union equals P . More formally,
we are considering a standard set cover problem, which we
denote by P(P,O,U): given P , O, and U , we want to select
a subset of readout operations {Uj } ⊆ U with the number of
elements as small as possible and such that P is covered by
the set {UjOkU

†
j |Ok ∈ O,{Uj } ⊆ U}. Figure 1 shows a simple

instance of the problem.
The set cover problem is known to be NP-hard in general,

meaning that finding an efficient algorithm that can solve it in a
reasonable amount of time is unlikely. It is worthwhile to study
heuristics for solving the problem with the goal of obtaining
a performance guarantee or approximation guarantee on the
heuristic. Practically, greedy strategy is widely used for set
cover problems. The greedy algorithm proceeds according
to a simple rule: in each step, choose the set Sj containing
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the largest number of uncovered elements. The algorithm
ends until all elements of P are covered. Reference [21]
exploited this method in designing a readout pulse set in
NMR. Note that the greedy algorithm generally does not yield
the optimal result. Different choices for the first few readout
operations in the iteration yield lists that are slightly longer
or shorter than those shown. It is in essence an approximation
algorithm, which achieves an approximation ratio of �(ln |P|)
[22]. It can even be shown that no polynomial-time approx-
imation algorithm can achieve a much better approximation
bound [23].

Here, we attempt to find the optimal solution for relatively
small sized quantum systems. To this end, we resort to
an integer-linear-programming formulation of the set cover
problem [24]. Let x denote a |U |-element column vector, in
which each element xj is a zero-one variable. The intention
is that xj = 1 iff set Sj is chosen in the optimal solution.
Let f (x) = ∑

j cj xj denote the cost function, where cj > 0
is the cost corresponding to the choice of Sj . In the case
of the minimum set cover problem, the cost function is
just f (x) = ∑

j xj = ‖x‖1. Let A be a [(4n − 1) × |U |]-
dimensional matrix with its entries given by Akj = 1 (k =
1, . . . ,4n − 1) if Pk ∈ Sj and zero otherwise. Now we have
the following zero-one integer-programming problem:

min ‖x‖1,

subject to Ax � 1,

xj ∈ {0,1}.
There are a variety of algorithms that can be used to solve
integer linear programs exactly, which we do not intend to
expand here. Interested readers are referred to [25,26] for the
basics. For now, we make several comments:

(1) Choosing readout operations. For a quantum system that
allows for universal control, the readout operation U can be
chosen from the Clifford group C. This is because the Clifford
group is the normalizer of the Pauli group [27]; that is, for any
U , a Clifford operation, and O, a Pauli observable, if we ignore
the global phase and coefficient, UOU † gives again a Pauli
observable. However, the size of the Clifford group is |C(n)| =
8
∏n

k=1 2(4k − 1)4k , which makes the corresponding integer-
programming problem quickly become too huge to handle.
Therefore, it is difficult to consider the entire Clifford group
in the integer-programming approach. More realistically, we
would restrict the problem to just local operations. But notice
that in many practical cases the set of single -qubit rotations is
not sufficient for covering the whole measurement basis, and
then local Clifford operations should be considered.

(2) Cost function. Integer programming allows us to
consider different cost functions. In practice, more often
than not, technical constraints permit only a nonideal set of
measurements. For example, the qubits can be individually
addressed, whereas nonlocal quantities cannot be measured
directly. It is also very common that nonlocal operations
are less accurate than local operations. In such cases, we
would prefer to choose local operations, and this can be
achieved simply through assigning low costs to these preferred
operations.

(3) Symmetry consideration. Many practical tomographic
instances contain a great deal of symmetry. One direct

consequence is that the optimal solution is not unique. A
very useful technique that allows a substantial reduction
of the amount of computation required in running integer-
programming algorithms is to exploit the symmetry of the
problem considered [26,28]. It is desirable to use professional
software (e.g., [29]) to run integer-programming algorithms as
it already takes into account the symmetry issue and so can
behave much faster.

III. NMR TOMOGRAPHY

We first briefly describe the basics of state-tomography
experiments in NMR [30]. We consider weakly coupled liquid-
state NMR systems. An NMR sample is placed in a strong
static magnetic field. The direction of the static field is, by
convention, defined as the z axis. The system Hamiltonian
takes the following form:

H =
n∑

k=1

�kZk/2 + π

n∑
k<j

JkjZkZj/2, (1)

where �k is the precession frequency of the kth spin under
the static field and Jkj is the coupling between the kth and
j th spins. In a NMR experiment, the sample is wound with a
detection coil. The precessing magnetization of the sample
is detected by the coil and constitutes the free-induction
decay (FID). The induced signal is the sum of a number
of oscillating waves of different frequencies, amplitudes,
and phases. In the spectrometer, this is recorded using two
orthogonal detection channels along the x and y axes, known
as quadrature detection. The FID is then subjected to Fourier
transformation, and the resulting spectral lines are fit, yielding
a set of measurement data.

More precisely, let ρ denote the state at the start of the
sampling stage; then the measured time-domain signal F (t)
resulting from the rotating bulk magnetization is essentially a
pair of ensemble averages:

F (t) = Tr

[
e−iH tρeiHt

∑
m

(Xm + iYm)

]

= Tr

[
ρeiHt

∑
m

(Xm + iYm)e−iH t

]
. (2)

From this expression, the record of the FID signal F (t) can
be thought of as the one in which the measured operators are
O = eiHt

∑
k (Xk + iYk)e−iH t , which can be calculated easily

when the Hamiltonian H is specified. Because H is composed
of Z and ZZ terms, the measurement operator set O consists
of only single-quantum coherence operators. When measuring
other operators is desired, readout pulses should be appended
to the experiment.

Now, we give several examples showing how our method
developed in the previous section applies to NMR state
tomography.

(1) Tomography via a single probe qubit. In certain circum-
stances, we can do better than the numerical optimization: we
can write down an analytic expression for an optimal readout
scheme. Here, we develop a provably optimal scheme, where
we intend to perform tomography via just a single probe qubit.
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Of course, to make the scheme work, two conditions must be
assumed in advance: (i) the probe qubit is coupled to each of
the other n − 1 qubits; (ii) the multiplets corresponding to the
probe qubit can be well resolved. As we have described, the set
of measurement operators is just single-quantum coherences,
so we have

O = {X,Y } ⊗ {I,Z}⊗n−1.

As such, we would transfer the information of the other qubits
to the probe qubit before detection. Let Wkj denote the SWAP

operation between qubits k and j . Our candidate readout
operations are

U = {V W1j : V ∈ {I,Rx,Ry}⊗n; j = 1, . . . ,n}. (3)

Let fn denote the number of experiments used. Now we show
that the lower bound for the number of experiments necessary
to construct the density operator is as follows.

Proposition 1. f ∗
n = (3n + 1)/2.

Proof. The correctness of the formula when n = 1 is trivial.
For n > 1, the idea of the proof is to find a recursive relation.

First, we show that (3n + 1)/2 is a lower bound. Notice that
any U ∈ U cannot change the weight of any Pauli element. So
each experiment gives only observation results of two weight-n
Pauli elements. Since there are 3n weight-n Pauli elements in
P , at least (3n + 1)/2 readout operations are needed.

Now we show that this lower bound can be achieved. We
provide a constructive way to find an optimal solution. Divide
P into two parts: P = P (1) ∪ P (2), where

P (1) = {X,Y } ⊗ {I,X,Y,Z}⊗(n−1),

P (2) = {I,Z} ⊗ {I,X,Y,Z}⊗(n−1).

To cover P (1), we select readout operations from

U (1) = I ⊗ {I,Rx,Ry}⊗(n−1);

to cover P (2), we select readout operations from

U (2) = {V W1j : V ∈ {I,Rx,Ry}⊗n; j = 2, . . . ,n}.
As U1 and U2 have no intersections, we get two separate
subproblems.

The subproblem P(P (1),O,U (1)) is equivalent to the
problem P({I,X,Y,Z}⊗(n−1),{I,Z}⊗n−1,{I,X,Y }⊗(n−1)). Since
there are 3(n−1) weight-(n − 1) Pauli elements and each
experiment can measure only one of them, we need 3(n−1)

experiments.
The subproblem P(P (2),O,U (2)) can be reduced to

P({I,Z} ⊗ {I,X,Y,Z}⊗(n−1),

{I,Z} ⊗ {X,Y } ⊗ {I,Z}⊗n−2,

I ⊗ {V W2j : V ∈ {I,Rx,Ry}⊗n−1; j = 2, . . . ,n}).
That is, any solution to the latter problem can be mapped
to a solution to the former by simply changing the probe
qubit from 2 to 1. Note that the latter problem is essentially
P(P(n − 1),O(n − 1),U(n − 1)). Therefore, our construction
has a recursive relation: fn = fn−1 + 3n−1. Starting with
f ∗

1 = 2, we then get fn = (3n + 1)/2. Together with the bound
analysis at the beginning, we conclude that the lower bound
(3n + 1)/2 is exact.

Example 1. Iodotrifluroethylene (C2F3I) dissolved in D-
chloroform was used as a quantum information processor in
Refs. [31,32]. The sample’s molecular structure is

C1 C

F2

F1

I

F3

Here, the 13C (C1) nucleus and the three 19F nuclei (F1, F2,
and F3) constitute a four-qubit system. For this molecule, only
C1 can be adequately observed. Therefore, to observe those
operators that are relevant to the state of the fluorine nuclei it
is necessary to swap the state between them and the carbon
before observation. So readout operations can be chosen from
the set in Eq. (3). According to our proposition, the minimum
number of readout experiments is 41.

(2) Now we consider homonuclear systems, assuming that
all peaks on the spectrum can be adequately resolved and
observed. In homonuclear systems, all the multiplets are
experimentally observed on the same spectrometer channel,
so one readout operation, namely, one spectrum, contains n

well-resolved multiplets and yields n2n expansion coefficients.
In such an ideal case, we can observe all the single-quantum
transition operators from the experimental spectrum. In other
words, we will have the following collection of Pauli measure-
ments that can be accessed in a single experiment:

O =
n⋃

m=1

({I,Z}⊗(m−1) ⊗ {Xm,Ym} ⊗ {I,Z}⊗n−m).

One can choose the following readout operation set:

U = {I,Rx,Ry}⊗n.

Reference [21] referred to U as the canonical tomographic
pulse set and employed a greedy algorithm to search for
a smaller readout pulse set. It turns out that, unlike in the
previous example, it is hard to analytically construct an optimal
scheme for the current problem. Here, we resort to integer
programming. Figure 2 shows our running results, which are
listed together with the methods of canonical tomography and
greedy search. From Fig. 2, we can see that for a six-qubit
system, using the measurement scheme found by integer
programming would save around 20% of the experiment
time compared with using the greedy method. Moreover,
integer programming allows us to confirm that the obtained
solution is indeed optimal for a system size up to 5 (see
Table I). These results clearly demonstrate the usefulness
of the integer-programming technique because we are able
to get appreciable improvements over what was obtained
before.

IV. SUMMARY

Quantum state tomography plays an essential role in
many quantum-information-processing experiments. Devel-
oping techniques that allow simplification of state-tomography
experiments is particularly pressing in regard to the sit-
uation that ever-larger quantum devices are emerging in
laboratories. Studies are often concerned with optimizing
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FIG. 2. Comparison of canonical tomography, the results of the
iterative greedy algorithm in Ref. [21], and the results of the integer-
programming approach for complete tomography on homonuclear
n-qubit systems with n between 1 and 6.

the number of required measurements, e.g., measurement
schemes that are based on symmetric informationally complete
positive operator-valued measures [33]. A bit differently,
the problem that we addressed in this work is to reduce
the number of required measurement settings. This problem
arises when we want to implement a tomographic scheme
in a concrete experimental setup. We studied the applica-
tion of integer programming in solving the problem. The
presented test examples confirmed the usefulness of the
integer-programming approach. Our method can be easily in-
corporated into other existing tomographic strategies [34–36].
Also, it is straightforward to generalize our results to various
quantum-process-tomography experiments [37,38]. It is our
hope that the integer-programming formulation, as developed
in this work, will become a useful tool in future tomo-
graphic experiments for increasingly large quantum systems,

TABLE I. Examples of the optimal pulse set that yields complete
tomography on n-spin homonuclear systems for n between 1 and 5.

n f ∗
n Solution instance

1 2 I , Rx

2 4 II , R2
x , R2

y , R1
xR

2
x

3 7 III , R3
y , R1

y , R2
yR

3
y , R1

xR
2
yR

3
x , R1

xR
2
xR

3
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xR
2
xR

3
x
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xR
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xR
4
y , R1
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overcoming the roadblock against further development in
quantum technologies.
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