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We study the nonequilibrium dynamics of two-component bosonic atoms in a one-dimensional optical lattice
in the presence of spin-orbit coupling. In the Mott-insulating regime, the two-component bosonic system at unity
filling can be described by the quantum spin XXZ model. The atoms are initially prepared in their lower spin
states. The system becomes out of equilibrium by suddenly introducing spin-orbit coupling to the atoms. The
system shows the relaxation and nonstationary dynamics, respectively, in the different interaction regimes. We
find that the time average of magnetization is useful to characterize the many-body dynamics. The effects of even
and odd numbers of sites are discussed. Our result sheds light on nonequilibrium dynamics due to the interplay
between spin-orbit coupling and atomic interactions.
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I. INTRODUCTION

Nonequilibrium dynamics of a closed many-body system is
of fundamental importance [1,2] in quantum physics and sta-
tistical mechanics. For example, the local observables appear
to be in thermal states even if the entire many-body system
is in a pure state. The eigenstate thermalization hypothesis
[3–5] was proposed to explain such phenomena for complex
quantum systems. However, it cannot be applied to integrable
systems. In fact, a general mechanism of thermalization is
still lacking [2]. It is important to study the dynamics of an
isolated many-body system in experiments. This may help to
understand the behavior of nonequilibrium dynamics and the
thermalization mechanism.

Ultracold atoms offer experimental platforms to study
many-body dynamics of closed systems [6]. For instance,
ultracold atoms can provide a relatively long accessible time
to study the nonequilibrium dynamics and the high level
of controllability to adjust the interaction parameters for
initiating the many-body dynamics. In addition, ultracold
atoms have been exploited to simulate a lot of intriguing
quantum phenomena, such as quantum phase transition [7]
from a Mott-insulating regime to a superfluid. The advanced
detection techniques have been invented to enable one to
individually address a single atom [8,9]. Therefore, this can be
used for probing the dynamics in the microscopic description
[10]. Recently, the relaxation dynamics of closed ultracold
atomic systems have been observed [11,12].

In this paper, we consider a system of two-component
bosonic atoms in a one-dimensional (1D) optical lattice.
In the Mott-insulating regime, the system with unit filling
can be described by a quantum spin XXZ model [13]. We
consider all atoms to be initially prepared in their lower
spin states. To study the nonequilibrium dynamics, the spin-
orbit (SO) coupling [14] is suddenly turned on. In fact,
SO coupling, which produces the interaction between the
particle’s spin and the particle’s momentum, naturally exists
in solid-state materials. It gives rise to a number of intriguing
effects, such as topological insulators and superconductors,
etc. [15,16]. Spin-orbit coupling in atomic Bose-Einstein
condensates [17] can be produced by inducing two-photon
Raman transition using a pair of lasers [18]. Alternatively, the

SO coupling between the atoms in the lattice can be induced
by periodically shaking the lattice potential [19,20]. More
recently, the techniques for adjusting SO coupling have been
shown [21,22]. The SO coupling gives rise to pair interactions
between two neighboring atoms and Dzyaloshinskii-Moriya
(DM) interactions [23–27] in the lattice. The DM interaction
leads to rich magnetic phase diagrams [23], for example, it can
induce spin spirals.

We consider the magnetization as an observable to study
the many-body dynamics. We find that the time average
of magnetization is useful for characterizing the nonequi-
librium dynamics. The system exhibits the relaxation and
nonstationary dynamics in the different interaction regimes
which depend on the SO-coupling strength and the ratio
of intercomponent interaction to intracomponent interaction.
Indeed, the dynamical behaviors relate to the overlap between
the initial state and the eigenstates. The interplay between the
SO coupling and the atomic interactions leads to the changes
in this overlap and results in the different dynamical behaviors.

Thermalization [28–31] occurs when a subsystem evolves
to a mixed state even if the system is in a pure state. In the
relaxation regime, the spins rapidly relax just after the SO
coupling is turned on. The degree of quantum coherence of
local spins can be measured by using the purity. An atom in
each site will evolve to a nearly completely mixed state in a
sufficiently long time.

The transition from the relaxation dynamics to nonsta-
tionary evolution occurs when the SO-coupling strength is
strong and the intercomponent interaction strength becomes
sufficiently larger than the intracomponent interaction. In the
nonstationary regime, we find that the distinct dynamics are
displayed for the even and odd numbers of sites, respectively.
For even-number cases, the effective two-level dynamics is
shown. This forms a superposition of two distinct states [32]
during the time evolution. These superposition states are useful
for quantum metrology [33]. On the other hand, the spin system
becomes ferromagnetic in the odd-number cases.

This paper is organized as follows: In Sec. II, we introduce
the system. In Sec. III, we study the nonequilibrium dynamics
of this system. We characterize the many-body dynamics
by using the time average of magnetization. We discuss the
relaxation dynamics of local spins and nonstationary dynamics
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in the different interaction regimes. The effects of even and odd
numbers of sites on the dynamics are discussed. We provide
a discussion and a conclusion in Secs. IV and V, respectively.
In the Appendix, we derive the effective Rabi frequency.

II. SYSTEM

We consider the two-component bosonic atoms to be
trapped in a one-dimensional optical lattice. We assume
that this system has open boundary conditions. The two-
component Bose-Hubbard model can be used to describe the
interactions of two-component bosons in an optical lattice. The
Hamiltonian HBH can be written as (� = 1),

HBH =
∑
α,i

[
Jα(α†

i αi+1+H.c.)+Uα

2
nα

i (nα
i −1)+Uabn

a
i n

b
i

]
,

(1)
where αi and α

†
i are the annihilation and creation operators of

an atom in the atomic spin state |α〉, nα
i is the number operator

at site i, and α = a,b. The parameter Jα is the tunnel coupling,
and Ua(b) and Uab are the intra- and intercomponent interaction
strengths of atoms, respectively. We assume that the tunnel
coupling and atom-atom interaction strength of each compo-
nent are nearly equal, i.e., Ja ≈ Jb ≈ J and Ua ≈ Ub ≈ U .

We consider that the atom-atom interaction strengths U and
Uab are repulsive, and they are much larger than the parameters,
such as J and tso. In this strongly interacting regime with
unit filling, it is convenient to write the two-mode bosonic
operators in terms of angular momentum operators, i.e., S+

i =
a
†
i bi, S−

i = b
†
i ai and Sz

i = (b†i bi − a
†
i ai)/2. The Hamiltonian

can be written in terms of spin operators as

HXXZ = λ

N−1∑
i=1

[2(1 − 2Ur )Sz
i S

z
i+1 − (S+

i S−
i+1 + S−

i S+
i+1)],

(2)
where λ = 2J 2/Uab and Ur = Uab/U . The system can be
described by the quantum XXZ model [34].

To study the nonequilibrium dynamics, we consider the
SO coupling to be suddenly applied to the atoms. For a
noninteracting single-particle Hamiltonian, it is given by

Hs
SO = k2

2m
I + βkxσy + δkyσx, (3)

where k = (kx,ky,kz) is the momentum of a particle with a
mass m, β and δ are the SO-coupling strengths, and I and
σx,y are the identity and the Pauli spin operators, respectively.
If δ equals −β, then it is called the Rashba SO coupling
[17]. The Dresselhaus SO coupling [17] is an alternative form
of spin-orbit coupling where β equals δ and they are both
negative [17]. Recently, the SO coupling with an equal weight
of Rashba and Dresselhaus couplings has been realized in a
87Rb Bose-Einstein condensate [17], i.e., β �= 0 and δ = 0. By
inducing a two-photon Raman transition via the laser beams,
the equal weight of Rashba and Dresselhaus SO couplings can
be produced ∝kxσy . The Hamiltonian, which describes such
SO coupling in a 1D optical lattice, can be written as [35,36]

HSO = tso
∑

i

(a†
i bi+1 − a

†
i bi−1 + H.c.), (4)

where tso is the strength of spin-orbit coupling.

In the presence of SO coupling, the effective Hamiltonian
is written as [25,26]

Hs
eff = λ

N−1∑
i=1

{
2

[(
tso

J

)2

− 1

]
(2Ur − 1)Sz

i S
z
i+1

+
(

tso

J

)2(
S+

i S+
i+1 + S−

i S−
i+1

) − (
S+

i S−
i+1 + S−

i S+
i+1

)

− 4
Uab

U

(
tso

J

)(
Sz

i S
x
i+1 − Sx

i Sz
i+1

)}
. (5)

The last terms in Eq. (5) are called the DM interactions [25,26].
Now the total system can be described by the XYZ spin model
with the DM interactions [25–27].

Let us briefly discuss the various terms in the effective
Hamiltonian in Eq. (5). The first term Sz

i S
z
i+1 favors preserving

the same polarization of two neighboring spins with their initial
states. This gives rise to bound magnons in the XXZ chain
[10]. The second term S+

i S+
i+1 + S−

i S−
i+1 describes the interac-

tion which excites and deexcites the two neighboring spins in
pairs simultaneously. The third term S+

i S−
i+1 + S−

i S+
i+1 leads to

spin exchange between two nearest neighbors. The fourth term
Sz

i S
x
i+1 − Sx

i Sz
i+1 causes spin rotation in which the rotation

direction depends on the spin states of their nearest neighbors.
When tso/J and Ur are roughly equal to 1, all terms equally

contribute to the dynamics. All the terms are in competition.
This results in eigenstates with the different combinations of
spin states. On the contrary, when both parameters tso/J and
Ur are large, the first term becomes dominant. All spins tend
to have the same polarization. This leads to the very different
dynamics in these two interaction regimes.

III. MANY-BODY DYNAMICS

We investigate the quantum dynamics of the system by
suddenly applying the SO coupling to the atoms. Initially, all
atoms are prepared in their lower spin states, i.e.,

|�(0)〉 = |↓↓ · · · ↓↓〉. (6)

This state is indeed an eigenstate in Eq. (2) for tso = 0. To
initiate nonequilibrium dynamics, a quantum quench has to
be introduced. By suddenly turning on the SO coupling, the
system is described by the Hamiltonian in Eq. (5). The initial
state is no longer an eigenstate of the Hamiltonian of the
system. If the SO coupling is suddenly turned on, then the
system becomes out of equilibrium. We numerically simulate
the dynamics of this spin chain by using exact diagonalization
(see Ref. [37] and references therein).

We study the dynamics of magnetization, which is given by

M = 2

N

N∑
i=1

〈
Sz

i

〉
. (7)

The magnetization M is equal to +1(−1) when all spins are
in up(down) states. We take the average of magnetization |M|
within a period of τ = 10λ, i.e.,

M̄ = 1

τ

∫ τ

0
|M(t)|dt. (8)

By taking the absolute sign of the magnetization, we can ensure
that M̄ is positive. Here we set the period τ to be 10λ. This
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FIG. 1. (Color online) Contour plot of the average of magnetiza-
tion |M| versus parameters tso and Ur where the total time taking for
the average is τ = 10λ. The system’s sizes N = 11 and N = 12 are
shown in (a) and (b), respectively.

period is sufficiently long until the local spins become steady. It
enables us to characterize the dynamics by using M̄ in Eq. (8).

In Fig. 1, we plot the time average of magnetization M̄

versus the parameters tso and Ur . When tso/J ranges from
0.75 to 2, M̄ is close to zero. Note that the initial magnetization
is −1. After taking the average, it becomes nearly zero. This
means that the system reaches a steady state and the magnitude
of magnetization is small for a long time.

As both tso and Ur increase, M̄ gradually increases. The
system is no longer stationary for a long time. This shows the
different layers in Fig. 1. When both parameters tso/J and
Ur become sufficiently large, M̄ can reach nearly 0.5 and 1,
respectively, for the even and odd numbers of sites. In this
regime, this shows the different behaviors of even and odd
numbers of sites.

It should be noted that the average magnetization is close
to 1 in Fig. 1 if tso/J is less than 0.75. In fact, we cannot
characterize the dynamics of this interaction range because
the time evolution is too slow and they do not reach the steady
state within the period of τ = 10λ.

According to Fig. 1, the many-body dynamics can be mainly
classified into the two different types, which are relaxation
dynamics and nonstationary evolution, respectively. We will
discuss them in the following subsections.

A. Relaxation dynamics

Now we study the quantum dynamics of local spins
in the parameter region where the long-time average of

FIG. 2. (Color online) Magnetization M versus time t/λ for tso =
J and Ur = 1. The odd and even numbers of sites are shown in (a) and
(b). The different sizes of the system are denoted with the different
lines: N = 11 and 12 (red-dotted line), N = 13 and 14 (blue-dashed
line), and N = 15 and 16 (black-solid line), respectively.

magnetization M̄ is about zero in Fig. 1. In Figs. 2(a) and
2(b), we plot the dynamics of magnetization M for the odd and
even numbers of sites, respectively. Initially, the magnetization
M is equal to −1. When the SO coupling is turned on, the
magnetization swiftly increases for a short time. Then, it
becomes saturated to around zero for a longer time. This shows
that the spins nearly relax to the steady states. As the system
size increases, the magnetization becomes steadier. Besides,
the relaxation dynamics shows no difference in the odd- and
even-number cases.

To study the relaxation of local spins, we examine their
purities. The purity is a quantity which measures the degree of
quantum coherence of a system. It is defined as

	pur = Tr(ρ2), (9)

where ρ is the density matrix of a system. If the system is in a
pure state, then the purity is equal to 1. Otherwise, the purity
is less than 1.

We investigate the purity 	i
pur of ion i, where 	i

pur = Tr(ρ2
i )

and ρi is the reduced density matrix of ion i. The reduced
density matrix ρi can be obtained by tracing out the rest of
the other spins in the chain. In Fig. 3(a), we plot the purities
of local spins versus time. The initial purity is equal to 1.
Afterwards, the purities rapidly drop, and the purity 	i

pur of a
local spin decreases to about 0.5 for a long time. The purity of
a spin-half particle in a completely mixed state is 0.5 where all
diagonal elements of ρi are equally weighted and off-diagonal
elements are zero. This implies that the spins are nearly fully
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FIG. 3. (Color online) Purities of local spins and half of a spin
chain versus time t/λ. In (a), the purity of local spin i versus
dimensionless time t/λ is shown. The different lines are denoted
for the purities of different ions i: i = 4 (solid-black line), i = 6
(blue-dashed line), and i = 8 (red-dotted line), respectively. In (b),
the purity of the left part of a spin chain versus time is plotted. The
parameters used are as follows: N = 12, tso = J , and Ur = 1.

relaxed. Additionally, we study the purity 	half
pur = Tr(ρ2

half) of
a half of the spin chain in Fig. 3(b) where the reduced density
matrix ρhalf can be obtained by tracing out another half of
the chain. The purity becomes saturated at a value 0.018. It
is very close to the totally mixed state which gives the purity
	̃half

pur = 2N/2−N ≈ 0.015 625 in our case. This means that the
half of a spin chain can be approximately described by a totally
mixed state.

Then, we compare the relaxation dynamics with the dif-
ferent strengths of parameters Ur . The average magnetization
M̄ increases when Ur becomes larger. In Fig. 4(a), we plot
the magnetization M as a function of time for Ur = 1 and 1.5,
respectively. The magnetization M in Eq. (7) fluctuates around
zero with a larger magnitude if Ur becomes larger. Therefore,
this will give a larger value of M̄ in Eq. (8), which is obtained
by taking the average of the absolute value of M . We study the
purity of a local spin in Fig. 4(b). The purity increases when Ur

increases. This means that this local spin has a higher degree of
quantum coherence. This suggests that M̄ is a useful quantity
to characterize the relaxation dynamics of this system.

Indeed, the occurrence of relaxation can be understood
by examining the overlap between the initial state and the
eigenvectors of the system. We consider the probability
coefficients of the initial state and eigenvectors,

Pn = |〈�(0)|En〉|2, (10)

FIG. 4. (Color online) Magnetization M and purity 	6
pur of the

sixth spin versus time t/λ are plotted in (a) and (b), respectively, for
N = 12 and tso = 8J . The different parameters Ur = 1 and Ur = 1.5
are denoted with the black-solid and blue-dotted lines, respectively.

where |�(0)〉 and |En〉 are the initial state and the nth
eigenvectors.

In Fig. 5(a), we plot the overlap probabilities Pn versus n,
where tso/J = Ur = 1 and n is an index of the nth eigenstate.
This corresponds to the previous case in Fig. 2. We can see
that the initial state has a large overlap with the eigenstates.
The initial state overlaps with almost the entire eigenspectrum.
In Fig. 5(b), the overlap probabilities Pn are plotted versus n.
It corresponds to the case in Fig. 4 where the magnetization
shows stronger fluctuations in the dynamics. Obviously, the
overlap between the initial state and the eigenstates is much
smaller than that in Fig. 5(a). Here the off-diagonal terms of the
observables are suppressed if there is a large overlap between
the initial states and the eigenstates of the system.

B. Even-odd effect

When both parameters tso/J and Ur are sufficiently large,
the dynamics of the system becomes nonstationary. We find
that the dynamical behaviors are totally different between the
even and the odd numbers of sites. For even-number cases, the
system undergoes an effective two-level dynamics. In contrast,
the system becomes ferromagnetic if the number of sites is odd.

1. Even number case: Effective two-level dynamics

When tso/J and Ur are both larger than 1, the first
term in the Hamiltonian in Eq. (5) becomes dominant, i.e.,
H0 ∝ ∑

i S
z
i S

z
i+1, and the other terms in the Hamiltonian

are perturbations. Obviously, the states (|↑ ↑ · · · ↑↑〉 ± | ↓↓
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FIG. 5. (Color online) Overlap probability Pn versus the index n

of the nth eigenstate for N = 12. In (a), the parameters tso = J and
Ur = 1 are used. The different parameters Ur = 1 and 2 are used in
(b) and (c), respectively, but with the same SO coupling tso = 8J .

· · · ↓↓〉)/√2 are two nearly degenerate eigenstates of the
Hamiltonian H0. In this regime, the entire many-body dy-
namics can be effectively described by these two degenerate
states if the system starts with |↓↓ · · · ↓↓〉 in Eq. (6). We
plot the time evolution of the magnetization in Fig. 6(a). The
magnetization shows periodic oscillations. The effective Rabi
frequency decreases as the parameter Ur increases and a larger
magnitude can be attained. In fact, the superposition of the two
degenerate ground states can be produced, i.e.,

|�(t)〉 ≈ c1|↑↑ · · · ↑↑〉 + c2|↓↓ · · · ↓↓〉, (11)

where |c1|2 + |c2|2 = 1.
The two degenerate states can be coupled via the high-

order virtual transitions. The effective Rabi frequency can be
approximately obtained which can be derived by using the
high-order perturbation theory in the Appendix. Since this
effective Rabi frequency inversely scales with the power N , the
rate of evolution becomes slow as the system’s size increases.
This hinders the creation of the superposition of two spin states
when the system goes large.

FIG. 6. (Color online) Magnetization M̃ versus time t/λ for even
(N = 12) and odd (N = 11) numbers in (a) and (b), respectively, and
tso = 8J . The different lines for the different Ur ’s are shown: Ur = 4
(black-solid line), Ur = 3 (blue-dashed line), and Ur = 2 (red-dotted
line), respectively.

In Fig. 5(c), we plot the overlap between the initial state in
Eq. (6) and the eigenstates. The overlap is much smaller than
the two previous cases in Figs. 5(a) and 5(b), which shows
the relaxation dynamics. We have presumed that the system
is strictly contained in the degenerate subspace which can be
described by the two degenerate states only. Therefore, there
are only two degenerate states involved in the entire dynamics.
In the limit of strong interaction, the dynamics cannot be
thermalized.

2. Odd number case: Ferromagnetic

In Fig. 6(b), we plot the magnetization versus time for odd-
number cases. The spins tend to remain in their ground states
when Ur increases. The spin system is ferromagnetic. Indeed,
the initial state in Eq. (6) is an eigenstate if the parameters tso
and Ur go large. Therefore, the magnetization is about −1 for
the large values of tso and Ur . The small fluctuations around
−1 are shown due to the virtual transitions from the perturbed
terms.

The odd- and even-number cases are totally different from
each other. In even-number cases, the effective two-level
dynamics occurs due to the virtual fluctuations of the pertur-
bation terms

∑
i S

+
i S+

i+1 + H.c. However, these perturbation
terms alter the spin state in pair only, and therefore they
cannot contribute to the dynamics between the two degenerate
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states | ↑↑ · · · ↑〉 and | ↓↓ · · · ↓〉 for odd-number cases. Also,
the DM terms cancel the contributions from the spin states
and their reflection states. For example, state |001〉 and its
reflection state |100〉 will be canceled in the perturbation series.
Therefore, the DM terms cannot lead to the effective two-level
dynamics in this case.

IV. DISCUSSION

We have investigated the nonequilibrium dynamics of a
closed quantum system by suddenly applying the SO coupling.
It is necessary to produce and tune the required SO couplings to
the atoms. There are several ways to create SO coupling, such
as two-photon Raman transition [17,18] and the shaking lattice
[19,20]. Recently, the techniques for tuning SO coupling [21]
have been demonstrated by using Raman coupling with laser
fields. However, this method may produce unwanted heating
due to spontaneous emissions of the atoms.

Alternatively, the SO coupling can be exploited by shaking
the lattice periodically. This shaking method has been used
to successfully generate the artificial gauge potential for cold
atoms in lattices [38]. More recently, the theoretical proposals
for the realization of SO coupling have been put forward
[19,20]. This method is able to create SO coupling without
heating if the appropriate driving conditions are met [19]. The
other scheme, which overcomes the problems of spontaneous
emissions, has also been proposed [39]. Apart from that,
it is also required to adjust the inter- and intracomponent
interaction strengths for observing the different kinds of
dynamics. This can be performed by using Feshbach resonance
[40]. The scattering length between the different components
of atoms can be modified by applying the appropriate magnetic
fields to the atoms [41].

In addition, we make a rough estimation of the relaxation
time scale in realistic experiments. We take the typical value of
the tunnel coupling J to be about 100–200 Hz in optical-lattice
experiments [10,42]. Since the ratio Uab/J is tunable [7],
we assume that it ranges between 5 and 10 to enter the
Mott-insulator regime. This gives the parameter λ = 2J 2/Uab

to be roughly about 40–80 Hz. In Fig. 2, we can see that
the system takes the period λ for relaxation, which is about
10–20 ms. To observe the intrinsic effect of relaxation in an
isolated system, the relaxation time must be much shorter
than the damping time from the external noise sources.
The typical heating time of atoms in an optical lattice is
several hundreds of milliseconds [10]. This suggests that the
relaxation of local spins can be detected in experiments. To
take the time average of magnetization, the required time is
about 10λ–100 ms, which is comparable to the heating time.
In realistic experiments, the average time of extracting the
magnetization can be chosen to be shorter than the heating
time to characterize the dynamical properties of the system.

V. CONCLUSION

To summarize, we have studied the many-body dynamics
of two-component bosonic atoms in a 1D optical lattice by
suddenly introducing the SO coupling. In the Mott-insulating
regime, the system can be described by a quantum spin
system. We study the dynamics of magnetization of the

system. We find that the time average of magnetization is
useful for characterizing the nonequilibrium dynamics. The
system shows the relaxation and nonstationary dynamics in
the different interaction regimes. In the relaxation regime, the
magnetization becomes nearly stationary for a long time, and
the local spins become nearly fully relaxed. When the SO
coupling is strong and the intercomponent interaction strength
is sufficiently larger than the intracomponent strength, the
system becomes nonstationary. The totally different dynamical
behaviors are shown for the even and odd numbers of sites in
the nonstationary regime.
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APPENDIX A: DERIVATION OF THE EFFECTIVE RABI
FREQUENCY

We study the effective Rabi frequency between the two
degenerate states from the perturbation theory. We consider
the pair-excitation interaction V to be perturbation. The
Hamiltonian Hs

eff ≈ H0 + V , where H0 and V are given by

H0 = λ

N−1∑
i=1

{
2

[(
tso

J

)2

− 1

](
2
Uab

U
− 1

)
Sz

i S
z
i+1

}
,

(A1)

V = λ

(
tso

J

)2

(S+
i S+

i+1 + S−
i S−

i+1),

where H0 is treated as an unperturbed Hamiltonian and V is
treated as a perturbation.

To calculate the effective Rabi frequency, we need to
evaluate the virtual transition from |↑↑ · · · ↑〉 and |↓↓ · · · ↓〉.
The perturbation term V can make the transitions for two
neighboring spins in a pair. It takes N/2 virtual transitions
from |↑↑ · · · ↑〉 and |↓↓ · · · ↓〉 only. We can then perform
the approximation by using the (N/2)-th order perturbation
theory. However, the DM terms will take N virtual transitions
to connect these two states. The N th order perturbation theory
has to be used. The correction from the DM terms is much
smaller than that from the term V . Therefore, we can safely
ignore the DM terms in calculating the perturbation theory if
tso/J is comparable with Uab/U .

We can obtain the leading terms of the (N/2)-th order
eigenenergy,

E(N/2)
n1,n2

=
Ñc∑

j=1

Vn2kN/2−1

( ∏N/2−1
i=1 V

j

ki+1ki

)
V

j

k1n1∏N/2−1
i=1 E

j

lDki

+ other terms, (A2)

where V
j

lk = j 〈l|V |k〉j , E
j

lk = E
(0)
lD

− E
(0)
kj

, D denotes the de-
generate subspace for n1 = |↑↑ · · · ↑〉 and n2 = |↓↓ · · · ↓〉,
and Ñc is the number of possible terms that connect the two
degenerate states via virtual fluctuations. The number Ñc can
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be obtained numerically by counting all possibilities to connect
the two states. The leading term of E

(N/2)
n1,n2 can be written as

E(N/2)
n1,n2

≈ λ

(
tso

J

)
21−N/2(2Ur − 1)1−N/2Ñc. (A3)

We compare the effective Rabi frequency between the
numerics and the approximation from the perturbation theory
in Table I for the different sizes N . The percent error η

shows the error between the exact numerical value and the
approximation. It is defined as

η = |�R − �̃R|
|�R| × 100%. (A4)

Here we denote �̃R = E
(N/2)
n1,n2 as the approximation from the

perturbation theory. This approximation is fairly good when
N is small. However, as N increases, the error grows. In fact,

TABLE I. This table shows the effective Rabi frequencies from
the numerical results and the perturbation theory for the different
system sizes and the percent error η.

N �R/λ �̃R/λ η (%)

6 8.9760 8.1633 9.1
8 2.7013 2.3324 13.7
10 0.83642 0.66639 20.3
12 0.25964 0.19040 26.7

we have taken account of the leading term from the (N/2)-th
order perturbation only. When N increases, the calculation
should include the higher-order perturbation terms to improve
the accuracy.
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Rev. A 89, 063618 (2014).

[26] J. Z. Zhao, S. J. Hu, J. Chang, F. W. Zheng, P. Zhang, and X. Q.
Wang, Phys. Rev. B 90, 085117 (2014).

[27] H. T. Ng, Phys. Rev. A 90, 053625 (2014).
[28] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghı̀, Phys.

Rev. Lett. 96, 050403 (2006).
[29] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2, 754

(2006).
[30] S. Genway, A. F. Ho, and D. K. K. Lee, Phys. Rev. Lett. 105,

260402 (2010).
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