
ar
X

iv
:1

80
5.

02
35

1v
2 

 [
cs

.C
C

] 
 3

 N
ov

 2
01

8

Fine-grained Complexity Meets IP = PSPACE

Lijie Chen∗ Shafi Goldwasser† Kaifeng Lyu‡ Guy N. Rothblum§ Aviad Rubinstein¶

Abstract

In this paper we study the fine-grained complexity of finding exact and approximate solutions to

problems in P. Our main contribution is showing reductions from an exact to an approximate solution

for a host of such problems.

As one (notable) example, we show that the Closest-LCS-Pair problem (Given two sets of strings A
andB, compute exactly the maximum LCS(a, b) with (a, b) ∈ A×B) is equivalent to its approximation

version (under near-linear time reductions, and with a constant approximation factor). More generally,

we identify a class of problems, which we call BP-Pair-Class, comprising both exact and approximate

solutions, and show that they are all equivalent under near-linear time reductions.

Exploring this class and its properties, we also show:

• Under the NC-SETH assumption (a significantly more relaxed assumption than SETH), solving any

of the problems in this class requires essentially quadratic time.

• Modest improvements on the running time of known algorithms (shaving log factors) would imply

that NEXP is not in non-uniform NC1.

• Finally, we leverage our techniques to show new barriers for deterministic approximation algorithms

for LCS.

A very important consequence of our results is that they continue to hold in the data structure setting.

In particular, it shows that a data structure for approximate Nearest Neighbor Search for LCS (NNSLCS)

implies a data structure for exact NNSLCS and a data structure for answering regular expression queries

with essentially the same complexity.

At the heart of these new results is a deep connection between interactive proof systems for bounded-

space computations and the fine-grained complexity of exact and approximate solutions to problems in

P. In particular, our results build on the proof techniques from the classical IP = PSPACE result.
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1 Introduction

The study of the fine-grained hardness of problems in P is one of the most interesting developments of the

last few years in complexity theory. The study was initially aimed at the complexity of exact versions of

important problem in P, such as Longest Common Subsequence (LCS), Edit Distance, All Pair Shortest

Path (APSP), and 3-SUM. This was the natural starting point. There are several main thrusts of the study:

establishing equivalence classes of problems that are “equivalent” to each other in the sense that a substantial

improvement in one would imply a similar improvement in the other; showing fine-grained hardness under

complexity assumptions, most notably the SETH1; and showing implications of even slight algorithmic

improvements, such as “shaving-logs” off algorithms for P time problems, to circuit lower bounds.

However, for many of these problems, approximate solutions are of interest as well, as they originate

in natural problems which arise in pattern matching and bioinformatics [AVW14, BI15, BI16, BGL17,

BK18], dynamic data structures [Pat10, AV14, AV14, HKNS15, KPP16, AD16, HLNV17, GKLP17], graph

algorithms [RW13, GIKW17, AVY15, KT17], computational geometry [Bri14, Wil18a, DKL18, Che18]

and machine learning [BIS17]. Thus, studying the hardness of the approximation version of the problems,

soon became the next frontier.

There are two ways one can imagine to attack the hardness of approximation of problems.

1. Show approximation hardness under complexity assumptions. This has been the approach by

the recent breakthrough result of Abboud, Rubinstein and Williams [ARW17] who introduced a

“Distributed PCP” framework and used it to show tight conditional lower bounds, under the SETH

assumption, for several fundamental approximation problems, including approximate Bichromatic

Max-Inner Product, Subset Query, Bichromatic LCS Closest Pair, Regular Expression Matching and

Diameter in Product Metrics.

We remark that the challenge in showing tight lower bounds for the hardness on approximation

problems in P in contrast to exact problems, is that the traditional PCP paradigm can not be applied

directly to fine-grained complexity, due to the super-linear size blow up in the constructed PCP

instances [AS98, ALM+98, Din07], which becomes super-polynomial after reducing to problems in P

(when we care about the exact exponent of the running time, a super-polynomial blow-up is certainly

unacceptable).

2. Show equivalence between the hardness of exact and approximate problems. Namely, the latter is

not substantially easier than the former. This is in essence the original PCP methodology for showing

the hardness of approximation of intractable problems (e.g. NP-hard problems).

This is the focus of the current paper for P-time problems.

Interestingly, in terms of proof techniques, the key to establish our equivalence results is the application

of the classical IP = PSPACE result [LFKN92, Sha92]. In particular, our results are established via

an application of the efficient IP communication protocol for low space computation [AW09]. This

demonstrates that the techniques in interactive proofs can be “scaled down” to establish better results in fine-

grained complexity. Furthermore, it adds yet another example of the connection between communication

complexity and fine-grained complexity (arguably, the most involved one).

1.1 Exact to Approximate Reduction for Nearest Neighbor Search for LCS

We begin with one of our most interesting results: an equivalence between exact and approximate Nearest

Neighbor Search for LCS.

1The Strong Exponential Time Hypothesis (SETH) states that for every ε > 0 there is a k such that k-SAT cannot be solved in

O((2− ε)n) time [IP01].
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• Nearest Neighbor Search for LCS (NNSLCS): Preprocess a database D ofN strings of length D ≪ N ,

and then for each query string x, find y ∈ D maximizing LCS(x, y).

The approximate version only requires to find y ∈ D such that LCS(x, y) is an f(D)-approximation

of the maximum value.

Approximate data structures for the above problem that support fast preprocessing and queries would be

highly relevant for bioinformatics. For the similar NNSEdit-Distance problem, a breakthrough work of [OR07]

used a metric embedding technique to obtain an 2O(
√
logD log logD)-approximate data structure with polyno-

mial preprocessing time, poly(D, log n) query time.

In contrast, our first result shows that exact NNSLCS and approximate NNSLCS are essentially equivalent.

That is, a similar data structure for approximate NNSLCS would directly imply a data structure for exact

NNSLCS with essentially the same complexity!

Theorem 1.1 (Informal). For D = 2(logN)o(1) , suppose there is a data structure for NNSLCS with approxi-

mation ratio 2(logD)1−Ω(1)
, then there is another data structure for exact NNSLCS with essentially the same

preprocessing time/space and query time.

In the following, we first discuss Closest-LCS-Pair (a natural offline version of NNSLCS) to illustrate our

techniques, and then discuss our other results in details.

1.2 Techniques: Hardness of Approximation in P via Communication Complexity and the

Theory of Interactive Proofs

Closest-LCS-Pair is the problem that given two sets of strings A and B, compute the maximum LCS(a, b)
with (a, b) ∈ A × B. We show how to reduce exact Closest-LCS-Pair to approximate Closest-LCS-Pair as

an illustration of our proof techniques.

Theorem 1.2 (Informal). There is a near-linear time2 reduction from Closest-LCS-Pair to 2(logN)1−Ω(1)

factor approximate Closest-LCS-Pair, when A,B are two sets of N strings of length D = 2(logN)o(1) .

We first introduce the concept of A-Satisfying-Pair problem. This problem asks whether there is a pair of

(a, b) from two given setsA andB such that (a, b) is a yes-instance of A. By binary search, Closest-LCS-Pair

can be easily formulated as an A-Satisfying-Pair problem: is there a pair (a, b) ∈ A × B such that

LCS(a, b) ≥ k? The key property we are going to use is that the function A≥k
LCS(a, b) := [LCS(a, b) ≥ k] can

be computed in very small space, i.e., it is in NL (see Lemma 6.4). Indeed, we will show in this paper that

for all A-Satisfying-Pair such that A can be computed in small space, A-Satisfying-Pair can be reduced to

approximate Closest-LCS-Pair.

The Reduction in a Nutshell. First, we consider an IP communication protocol for LCS. In this setting,

Alice and Bob hold strings a and b, and they want to figure out whether LCS(a, b) ≥ k. To do so, they seek

help from an untrusted prover Merlin by engaging in a conversation with him. The protocol should satisfy

that when LCS(a, b) ≥ k, Merlin has a strategy to convince Alice and Bob w.h.p., and when LCS(a, b) < k,

no matter what Merlin does, Alice and Bob will reject w.h.p. The goal is to minimize the total communication

bits (between Alice and Bob, or Alice/Bob and Merlin).

Next, by a result of Aaronson and Wigderson [AW09], it is shown that any function f(a, b) which

can be computed in NL admits an IP communication protocol with polylog(N) total communication bits.

Finally, using an observation from [AR18], an efficient IP communication protocol can be embedded into

approximate LCS, which completes the reduction. In the following we explain each step in details.

2Throughout this paper, we use near-linear time to denote the running time of N1+o(1).
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IP Communication Protocols for Low Space Computation. The key technical ingredient of our results

is the application of IP communication protocols for low space computation by Aaronson and Wigder-

son [AW09]. It would be instructive to explain how it works.

Let us use the sum-check IP protocol for the Inner Product problem as an example. Arthur gets access

to a function f : {0, 1}n → {0, 1} and its multilinear extension f̃ : Fn
q → Fq over a finite field Fq. Let

fi(x) = f(i ◦ x) for i ∈ {0, 1} be the restrictions of f after setting the first bit of the input, Arthur wants

to compute the inner product
∑

x∈{0,1}n−1 f0(x) · f1(x). To do so, he engages in a conservation with an

untrusted Merlin who tries to convince him. During the conversation, Merlin is doing all the “real work”,

while Arthur only has to query f̃ once at the last step, which is the crucial observation in [AW09].

Now, imagine a slightly different setting where f0 and f1 are held by Alice and Bob respectively, which

means each of them holds a string of length N = 2n−1. They still want to compute the inner product with

Merlin, while using minimum communication between each other.

In this setting, Alice (pretending she is Arthur) can still run the previous IP protocol with Merlin. When

she has to query f̃(z) for a point z at the last step, she only needs Bob to send her the contribution of his part

to f̃(z), which only requiresO(log q) bits. In terms of the input size of Alice and Bob, this IP communication

protocol runs in poly(n) = polylog(N) time. The same also extends to any poly(n) = polylog(N) space

computation on f , if we use the IP protocol for PSPACE [LFKN92, Sha92].

In Section 5, we provide a parameterized IP communication protocol for Branching Program3 (Theo-

rem 5.5). Informally, we have:

Theorem 1.3 (IP Communication Protocol for BP (Informal)). Let P be a branching program of length T
and width W with n input bits, equally distributed among Alice and Bob. For every soundness parameter

ε > 0, there is an IP-protocol for P , such that:

• Merlin and Alice exchange Õ
(
log2W log2 T log ε−1

)
bits, and toss the same amount of public coins;

• Bob sends O(log log(WT ) · log ε−1) bits to Alice;

• Alice always accepts if P accepts the input, and otherwise rejects with probability at least 1− ε.

Since A≥k
LCS(a, b) is in NL, the above in particular implies that there is an IP communication protocol for

A≥k
LCS with polylog(D) total communication bits (D is length of strings).

IP Communication Protocols and Tropical Tensors. The next technical ingredient is the reduction

from an IP communication protocol to a certain Tropical Tensors problem [AR18]. We use a 3-round

IP communication protocol as an example to illustrate the reduction. Consider the following 3-round IP

communication protocol Π:

• Alice and Bob hold strings x and y, Merlin knows both x and y.

• Merlin sends Alice and Bob a string z1 ∈ Z1.

• Alice sends Merlin a uniform random string z2 ∈ Z2.

• Merlin sends Alice and Bob another string z3 ∈ Z3.

• Bob sends Alice a string z4 ∈ Z4, and Alice decides whether to accept or reject.

3Informally speaking, a branching program with length T and width W formulates a non-uniform low-space computation with

running time T and space logW , see Definition 2.1 for a formal definition.
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The main idea of [AR18] is that the above IP protocol can be reduced into a certain Tropical Similarity

function. That is, for x and y, we build two tensors u = u(x) and v = v(y) of size |Z1|× |Z2|× |Z3|× |Z4|
as follows: we set uz1,z2,z3,z4 to indicate whether Alice accepts, given the transcript (z1, z2, z3, z4) and input

x; we also set vz1,z2,z3,z4 to indicate whether Bob sends the string z4, given the previous transcript (z1, z2, z3)
and input y. Then, by the definition of IP protocols, it is not hard to see the acceptance probability when

Merlin uses optimal strategy is:

acc(u, v) := max
z1∈Z1

E
z2∈Z2

max
(z3,z4)∈Z3×Z4

uz1,z2,z3,z4 · vz1,z2,z3,z4 .

In the above equality, themax operator corresponds to the actions of Merlin, who wishes to maximize the

acceptance probability, while the E operator corresponds to actions of Alice, who sends a uniform random

string. It can be easily generalized to IP protocols of any rounds, by replacing acc with a series of max and

E operators, which is called Tropical Similarity (denoted by s(u, v)) in [AR18] (see also Definition 2.8).

When the number of total communication bits is d, both u and v are of size 2d.

Applying the above to the polylog(D) bits IP protocol for A≥k
LCS, it means for two strings a, b, we can

compute two tensors u, v of length 2polylog(D) = 2(logN)o(1) , such that when LCS(a, b) ≥ k, s(u, v) is large,

and otherwise s(u, v) is small.

Simulating Tropical Tensors by Composingmax andΣGadgets. While the above reduction is interesting

in its own right, the Tropical Similarity function seems quite artificial. Another key idea from [AR18] is that

s(u, v) can be simulated by LCS. The reduction works by noting that with LCS, one can implement the max
and Σ (which is equivalent to E) gadgets straightforwardly, and composing them recursively leads to gadgets

for Tropical Similarity. That is, for tensors u and v, one can construct strings S(u) and T (v) of similar sizes,

such that LCS(S(u), T (v)) is proportional to s(u, v).
Putting everything together, for two strings a, b, we can compute two other strings S(a) and T (b) of length

2polylog(D) = 2(logN)o(1) , such that LCS(a, b) ≥ k, LCS(S(a), T (b)) is large, and otherwise LCS(S(a), T (b))
is small. This completes our reduction.

Our Results In Detail

1.3 From Exact to Approximate in the Fine-Grained World

More generally, we consider the following four (general flavor) problems.

• The Closest-LCS-Pair problem.

• The Closest-RegExp-String-Pair problem: Given a setA ofN regular expressions of length 2(logN)o(1)

and a setB ofN strings of length 2(log N)o(1) , find (a, b) ∈ A×Bwith maximum Hamming Similarity4.

• The Max-LCST-Pair problem: Given two sets A,B of N bounded-degree trees with size 2(logN)o(1) ,

find a pair (a, b) ∈ A×B such that a and b’s have the largest common subtree.

• The Max-TropSim problem: Given two sets A,B of N binary tensors with size 2(logN)o(1) , find the

pair with maximum Tropical Similarity5.

4Hamming Similarity between two strings are defined as the fraction of positions that they are equal, while the hamming

similarity between a regular expression a and a string b is the maximum of the hamming similarity between z and b where z is in

the language of a.

5see Definition 2.8 for a formal definition.
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Our main theorem shows equivalence between exact and approximation versions of the above problems.

In fact, we show that all these problems, together with the following two closely related decision problems

and a generic satisfying pair problem, are equivalent under near-linear time reductions. See Theorem 3.1

for a formal statement of the equivalence class.

• The RegExp-String-Pair problem: Given a set A of N regular expressions of length 2(logN)o(1) and a

set B of N strings of length 2(logN)o(1) , is there a pair (a, b) ∈ A×B such that b matches a?

• The Subtree-Isomorphism-Pair problem: Given two sets A,B of N bounded-degree trees with size

2(logN)o(1) , is there a pair (a, b) ∈ A×B such that a is isomorphic to a subtree of b?

• The BP-Satisfying-Pair problem: Given a branching program6 P of size 2(logN)o(1) and two sets A,B
of N strings, is there a pair (a, b) ∈ A×B making P accepts the input (a, b)?

We will refer to this set of problems as BP-Pair-Class.

Remark 1.4. Subtree-Isomorphism-Pair and Max-LCST-Pair may seem artificial, but they are nice inter-

mediate problems for showing hardness of the closely related problems Subtree Isomorphism and Longest

Common Subtree, which are extensively studied natural problems (see Section 1.5 and Section 1.9.4).

Equivalence in the Data Structure Setting

These pair problems are interesting as they are natural off-line versions of closely related data structure

problem, which are highly relevant in the practice [Tho68, Mye92, BT09, MM89, WMM95, KM95, MOG98,

Nav04, BR13]. Therefore, a lower bound on the time complexity of these pair problems directly implies

a lower bound for corresponding data structure problems (see Theorem 9.4). In the next section, we will

show under some conjecture which is much more plausible than SETH, these problems requires essentially

quadratic time.

Our equivalence continues to hold in the data structure version, in particular, for the following data

structure problems, any algorithm for one of them implies an algorithm for all of them with essentially the

same preprocessing time/space and query time (up to a factor of No(1)). See Section 9 for the details.

• NNSLCS7: Preprocess a database D of N strings of length D = 2(logN)o(1) , and then for each query

string x, find y ∈ D maximizing LCS(x, y).

• Approx. NNSLCS: Find y ∈ D s.t. LCS(x, y) is a 2(logD)1−Ω(1)
approximation to the maximum value.

• Regular Expression Query: Preprocess a database D of N strings of length D = 2(logN)o(1) , and then

for each query regular expression y, find an x ∈ D matching y.

• Approximate Regular Expression Query: For a query expression y, distinguish between8: (1) there is

an x ∈ D matching y; and (2) for all x ∈ D, the Hamming distance between x and all z ∈ L(y) is at

least (1− o(1)) ·D, where L(y) is the set of all strings matched by y.

That is, a non-trivial data structure for finding approximate nearest point with LCS metric would imply

a non-trivial data structure for answering regular expression query! The latter one is supported by most

modern database systems such as MySQL, Oracle Database, Microsoft SQL etc., but all of them implement

it by simply using full table scan for the most general case.

6see Definition 2.1 for a formal definition

7already discussed in Section 1.1

8behavior can be arbitrary when neither of the two cases hold
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LCS is the Hardest Distance Function for Approximate NNS. In fact, our results also suggest in a formal

sense that LCS is the hardest distance function for approximate Nearest Neighbor Search. We show that for

all distance function dist which is computable in poly-logarithmic space9, exact NNS for dist can be reduced

to approximate NNSLCS.

Theorem 1.5 (Informal). For a distance function dist that is computable in poly-logarithmic space, exact

NNS for dist can be reduced to 2(logD)1−Ω(1)
-approximate NNSLCS in near-linear time.

1.4 Weaker Complexity Assumptions for Approximation Hardness

An important goal in the study of fine-grained complexity is to find more plausible conjectures, under which

to base hardness. For example, although SETH is based on the historically unsuccessful attempts on finding

better algorithms for k-SAT, there is no consensus on its validity (see, e.g. [Wil16, Wil18b]).

This concern has been addressed in various ways. For example, in [AVY15], the authors prove hardness

for several problems, basing on at least one of the SETH, the APSP conjecture, or the 3-SUM Conjecture

being true. In [AHVW16], Abboud et al. introduce a hierarchy of C-SETH assumptions: the C-SETH asserts

that there is no 2(1−ε)n time satisfiability algorithm for circuits from C.10 They show that the quadratic time

hardness of Edit-Distance, LCS and other related sequence alignment problems can be based on the much

weaker and much more plausible assumption NC-SETH. However, this has not been shown for approximation

version of fine-grained problems.

In this work, we show that all problems in BP-Pair-Class require essentially quadratic time under

NC-SETH. Indeed, our hardness results are based on a weaker assumption which we call 2n
o(1)

-size

BP-SETH:11

Hypothesis 1.6 (2n
o(1)

-size BP-SETH). The satisfiability of a given 2n
o(1)

-size non-deterministic branching

program cannot be solved in O(2(1−δ)n) time for any δ > 0.

Theorem 1.7. All problems in BP-Pair-Class require N2−o(1) time if we assume 2n
o(1)

-size BP-SETH.

Note that 2n
o(1)

-size BP-SETH is even weaker than no(1)-depth circuit SETH: satisfiability for no(1)-depth

bounded fan-in circuits cannot be solved in O(2(1−δ)n) time for any δ > 0. This is because by Barrington’s

Theorem [Bar89], no(1)-depth bounded fan-in circuits can be simulated by branching programs of size 2n
o(1)

.

It is worthwhile to compare with [ARW17]. It is shown in [ARW17] that assuming SETH, a 2(logN)1−o(1)
-

approximation to Closest-LCS-Pair (Closest-RegExp-String-Pair) requiresN2−o(1) time forD = No(1). (The

2(logN)1−o(1)
factor is later improved to No(1) in [Rub18, Che18].)

Although our results here are quantitatively worse, it is “qualitatively” better in many ways: (1) the results

in [ARW17] is based on SETH, while our hardness results are based on the assumptions in Theorem 1.7, which

are much more plausible than SETH; (2) we in fact have established an equivalence between Closest-LCS-Pair

and its approximation version, which seems not possible with the techniques in [ARW17]; (3) our framework

allows us to show that even a tiny improvement on the running time would have important algorithmic and

circuit lower bound consequences (see Theorem 1.10), which again seems not possible with the techniques

in [ARW17].

9Which is true for almost all nature distance functions. For example, edit distance and LCS can be computed in NL, thus in

(log2 N) space by Savitch’s Theorem [Sav70].

10In this way, the original SETH assert that there is no 2(1−ε)n time algorithm for satisfiability of CNF with arbitrary constant

bottom fan-in.

11Indeed, results in [AHVW16] are also based on a conjecture about branching programs, which can be seen as O(1)-width and

2o(n)-length BP-SETH or 2o(
√
n)-size BP-SETH using the terminology in Hypothesis 1.6.
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1.5 BP-Pair-Class Hard Problems

We also identify a set of other problems which are at least as hard as any problem in BP-Pair-Class, but not

necessarily in it. We say these problems are BP-Pair-Hard.

Theorem 1.8 (BP-Pair-Hard Problems). There are near-linear time reductions from all the problems in

BP-Pair-Class to any of the following problems:

1. (Subtree Isomorphism) Given two trees a, b of size at most N , determine whether a is isomorphic to a

subtree of b (even if restricted to the case of binary rooted trees);

2. (Largest Common Subtree) Given two trees a, b of size at most N , compute the exact value or a

2(logN)o(1)-approximation of the size of the largest common subtree of a and b (even if restricted to the

case of binary rooted trees);

3. (Regular Expression Membership Testing) Given a regular expression a of length M and a string b of

length N , determine whether b is in the language of a;

Corollary 1.9. All the above BP-Pair-Hard problems require N2−o(1) time (or (NM)1−o(1) time for Regular

Expression Membership Testing) under the same assumption as in Theorem 1.7.

We remark that both Subtree Isomorphism and Largest Common Subtree are studied in [ABH+16].

In particular, they showed that Subtree Isomorphism and Largest Common Subtree require quadratic-time

under SETH, even for binary rooted trees.

Our results improve theirs in many ways: (1) for Subtree Isomorphism, we establish the same quadratic

time hardness, with a much safer conjecture; (2) for Largest Common Subtree, we not only put its hardness

under a better conjecture, but also show that even a 2(logN)o(1)-approximation would be hard; (3) for both

of these problems, we demonstrate that even a tiny improvement on the running time would have interesting

algorithmic and circuit lower bound consequences (see Theorem 1.11).

[BGL17] (which builds on [BI16]) classified the running time of constant-depth regular expression

membership testing. In particular, they showed a large class of regular expression testing requires quadratic-

time, under SETH. Our results are incomparable with theirs, as our hard instances may have unbounded

depth regular expressions. On the bright side, our hardness results rely on a much safer conjecture, and we

show interesting consequences even for a tiny improvement of the running time.

1.6 The Consequence of “shaving-logs” for Approximation Algorithms

There has been a large number of works focusing on “shaving logs” of the running time of fundamental

problems [ADKF70, BW12, Cha15, Yu15] (see also a talk by Chan [Cha13], named “The Art of Shaving

Logs”). In a recent exciting algorithmic work by Williams [Wil14a], the author shaves “all the logs” on the

running time of APSP, by getting an n3/2Θ(
√
logn) time algorithm.

However, the best exact algorithms for LCS and Edit distance [MP80, Gra16] remain O(n2/ log2 n),
which calls for an explanation. An interesting feature of [AHVW16] is that their results show that even

shaving logs on LCS or Edit Distance would be very hard. In particular, they prove that an n2/ logω(1) n time

algorithm for either of them would imply a 2n/nω(1) time algorithm for polynomial-size formula satisfiability,

which is much better than the current state of arts [San10, Tal15]. Such an algorithm would also imply

that NEXP is not contained in non-uniform NC1, thereby solving a notorious longstanding open question in

complexity theory.

The “shaving logs barrier” only has been studied for a few problems. It was not clear whether we can

get the same barriers for some approximation problems.
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In this work we show that slightly improved algorithms (such as shaving all the logs) for any BP-Pair-

Class or BP-Pair-Hard problems, would imply circuit lower bounds which are notoriously hard to prove.

This extends all the results of [AHVW16] to approximation problems.

Theorem 1.10. If there is an O
(
N2 poly(D)/2(log logN)3

)
or O

(
N2/(logN)ω(1)

)
time deterministic

algorithm for any decision, exact value or polylog(D)-approximation problems in BP-Pair-Class, where D
is the maximum length (or size) of elements in sets, then the following holds:

• NTIME[2O(n)] is not contained in non-uniform NC1 and

• Formula-SAT with nω(1) size can be solved in 2n/nω(1) time.

Theorem 1.11. If there is a deterministic algorithm for any decision, exact value orpolylog(N)-approximation

problems among BP-Pair-Hard problems listed in Theorem 1.8 running in O
(
N2/2ω(log logN)3

)
time (or

O
(
NM/2ω(log log(NM))3

)
time for Regular Expression Membership Testing), then the same consequences

in Theorem 1.10 follows.

1.7 Circuit Lower Bound Consequence for Improving Approximation Algorithms for P

Time Problems

Finally, we significantly improve the results from [AR18], by showing much stronger circuit lower bound

consequences for deterministic approximation algorithms to LCS.

Theorem 1.12. The following holds for deterministic approximation to LCS:

1. A 2(logN)1−Ω(1)
-approximation algorithm in N2−δ time for some constant δ > 0 implies that ENP has

no no(1)-depth bounded fan-in circuits;

2. A 2o(logN/(log logN)2)-approximation algorithm in N2−δ time for some constant δ > 0 implies that

NTIME[2O(n)] is not contained in non-uniform NC1;

3. An O(polylog(N))-approximation algorithm in N2/2ω(log logN)3 time implies that NTIME[2O(n)] is

not contained in non-uniform NC1.

In comparison with [AR18], they show that anO(N2−ε) time algorithm for constant factor deterministic

approximation algorithm to LCS would imply that ENP does not have non-uniform linear-size NC1 circuits

or VSP circuits. Our results here generalize theirs in all aspects: (1) we show that a much stronger lower

bound consequence would follow from even a sub-quadratic time 2(logN)1−Ω(1)
-approximation algorithm;

(2) we also show that a modestly stronger lower bound would follow even from a quasi-polylogarithmic

improvement over the quadratic time, for approximate LCS.

More generally, following a similar argument to [AHVW16], we can show that truly-subquadratic time

algorithms for these BP-Pair-Class or BP-Pair-Hard problems would imply strong circuit lower bounds against

ENP.

Corollary 1.13. If any of the problems listed in Theorem 3.1 and Theorem 1.8 admits anN2−ε time algorithm

(or (NM)1−ε time algorithm for Regular Expression Membership Testing) for some ε > 0, then ENP does

not have:

1. non-uniform 2n
o(1)

-size Boolean formulas,

2. non-uniform no(1)-depth circuits of bounded fan-in, and

3. non-uniform 2n
o(1)

-size nondeterministic branching programs.
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1.8 Discussion and Open Problems

Here we discuss some open problems arising from our work.

Find More Members for BP-Pair-Class

One immediate question is to find more natural quadratic-time problems belonging to BP-Pair-Class:

Open Question 1. Find more natural problems which belong to BP-Pair-Class.

It could be helpful to revisit all SETH-hard problems to see whether they can simulate BP-Satisfying-Pair.

In particular, one may ask whether the Orthogonal Vectors problem (OV), the most studied problem in

fine-grained complexity, belongs to this equivalence class:

Open Question 2. Does OV belong to BP-Pair-Class?

If it does, then it would open up the possibility that perhaps all SETH-hard quadratic-time problems are

equivalent. However, some evidence suggests that the answer may be negative, as OV seems to be much

easier than problems in BP-Pair-Class:

• The Inner Function in OV is Much Weaker. When viewing as a Satisfying-Pair problem, the inner

function in OV is just a simple Set-Disjointness, which seems incapable of simulating generic low-space

computation.

• There are Non-trivial Algorithms for OV. We know that for OV withN vectors of lengthD = c log n,

there are algorithms with running time N2−1/O(log c) [AWY15, CW16]. This type of non-trivial

speed up seems quite unlikely (or at least much harder to obtain) for problems in BP-Pair-Class (see

Theorem 1.10).

It would be interesting to show that OV and BP-Satisfying-Pair are not equivalent under certain plausible

conjectures, perhaps ideas from [CGI+16] could help.

Quasi-Polynomial Blow Up of the Dimension

In the reductions between our BP-Pair-Class problems, we get a quasi-polynomial blowup on the dimensions:

that is, a problem with element size (vector dimension, string length or tree size)D is transformed into another

problem with element size 2polylog(D). This is the main reason that we have to restrict the element size to be

small, i.e., D = 2(logN)o(1) .

This technical subtlety arises from the polynomial blow-up in the IP = PSPACE proof: given a language

in NSPACE[S], it is first transformed into a TQBF instance of size O(S2), which is proved by an Õ(S4) time

IP protocols, using arithmetization.

Applying that into our setting, an NL computation on two strings of length D (like LCS), is transformed

into an Õ(log4D) time IP communication protocol, which is then embedded into an approximate problem

with at least 2Õ(log4 D) dimensions (say approximate LCS).

However, if we have an O(logD) time IP communication protocol for NL. The new dimension would

be 2O(logD) = DO(1), only a polynomial blow up. Which motivates the following interesting question:

Open Question 3. Is there an O(logD) time IP communication protocol for every problems in NL?

9



A positive resolution of the above question would also tighten several parameters in many of our results.

For example, in Theorem 1.7, no(1)-depth circuit SETH could be replaced by o(n)-depth circuit SETH, and

Theorem 1.10, Theorem 1.11, Theorem 1.8 and Corollary 1.13 would also have improved parameters.

It is worth noting that IP communication lower bounds are extremely hard to prove—proving a non-trivial

lower bound for AM communication protocols is already a long-standing open question [Lok01, GPW16,

GPW18]. Hence, resolving Open Question 3 negatively could be hard.

1.9 Related Works

1.9.1 Hardness of Approximation in P

In [ARW17] the Distributed PCP framework is introduced, which is utilized and generalized by several

follow up works. Using Algebraic Geometry codes, in a recent work, [Rub18] obtains a better MA protocol

for Set-Disjointness, improving the efficiency of the distributed PCP construction, and shows quadratic-time

hardness for (1 + o(1))-approximation to Bichromatic Closest Pair and several other related problems.

Building on the technique of [Rub18], [Che18] obtains a characterization of what multiplicative/additive

approximation ratios to Maximum Inner Product can be computed in sub-quadratic time. He also shows

a connection between BQP communication protocol for Set-Disjointness and conditional lower bound for

Maximum Inner Product with {−1, 1}-valued vectors.

[KLM18] generalizes the distributed PCP framework by considering multi-party communication proto-

cols, and derive inapproximability results for k-Dominating Set under various assumptions. In particular,

using the techniques of [Rub18], they prove that under SETH, k-Dominating Set has no (log n)1/poly(k,e(ε))

approximation in nk−ε time12.

[AB17] takes a different approach, which makes use of the connection between weak derandomization and

circuit lower bound [Wil13, BV14]. They show that, under a certain plausible complexity assumption, LCS

does not have a deterministic (1 + o(1))-approximation in n2−ε time. They also establish a connection with

circuit lower bounds and prove that such a deterministic algorithm implies ENP does not have non-uniform

linear-size Valiant Series Parallel circuits. In [AR18], the circuit lower bound connection is improved to

that any constant factor deterministic approximation for LCS in n2−ε time implies that ENP does not have

non-uniform linear-size NC1 circuits. See [ARW17] for more related results in hardness of approximation

in P.

1.9.2 Equivalence Classes in P

A partial list of the APSP equivalence class [VW10, BDT16, AGV15, LVW18] includes: Negative Triangle,

Triangle listing, Shortest Cycle, 2nd Shortest Path, Max Subarray, Graph Median, Graph Radius, Wiener

Index (see [Vas18] for more details).

In [GIKW17], it is shown that “medium-dimensional” OV (i.e., OV with no(1) dimensions) is equivalent

to High-dimension Sparse OV, High-dimension 2-Set Cover, and High-dimension Sperner Family. It is also

proved that for every (k + 1)-quantifier first-order property, its model-checking problem can be reduced to

Sparse k-OV.

In [CMWW17], the authors introduce an equivalence class for (min,+)-convolution, including some

variants of classical knapsack problem and problems related to subadditive sequences.

1.9.3 Hardness for Shaving Logs

In [AHVW16], it is shown that an n2/ logω(1) time algorithm for LCS would imply that the Formula-SAT have

a 2n/nω(1) time algorithm. The construction is later tightened in [AB18], which shows that an n2/ log7+ε n

12where e : R+
→ N is some function
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time algorithm for any of LCS, regular expression pattern matching or Fréchet distance is already enough to

imply new algorithm for Formula-SAT.

1.9.4 Related Works for Specific Problems

Longest Common Subsequence. LCS is a very basic problem in computer science and has been studied

for decades [CKK72, BHR98, dM99, CIPR01]. In recent years, a series of works [BI15, ABV15, BK15,

AHVW16, AR18] have shown different evidences that LCS may not have truly sub-quadratic time algorithm,

even for approximation.

Subtree Isomophism and Largest Common Subtree. Subtree Isomorphism has been studied in [Mat68,

Mat78, Lin83, Rey77, Chu87, LK89, GKMS90, ST99]. Largest Common Subtree is an NP-hard problem

when the number of trees is not fixed, and has been studied in [KMY95, AH00, ATMT15]. For (rooted

or unrooted) bounded-degree trees, both the two problems can be solved in O(N2) time, and the fastest

algorithm for Subtree Isomorphism runs in O(N2/ logN) time [Lin83, ST99]. In [ABH+16], these two

problems are shown to be SETH-hard.

Regular Expression. The found of O(NM) algorithm for regular expression matching and membership

testing in [Tho68] is a big sucess in 70s, but after that no algorithm has been found to improve it to truly

sub-quadratic time [Mye92, BT09]. Related works about the hardness of exact regular expression matching

or membership testing include [BI16, BGL17]. There are many works on approximate regular expression

matching in different formulations [MM89, WMM95, KM95, MOG98, Nav04, BR13], and its hardness has

been analyzed in [ARW17].

Organization of this Paper

In Section 2, we introduce the needed preliminaries, as well as the formal definitions of the problems we

studied. In Section 3, we outline the structure of all reductions for our BP-Pair-Class and BP-Pair-Hard

problems (Theorem 3.1 and Theorem 1.8). For ease of presentation, these reductions are presented from

Section 4 to Section 8. In Section 10, we show that tiny improvements on the running time of BP-Pair-Class

or BP-Pair-Hard problems would have important algorithmic and circuit lower bound consequences. In

Section 11, we establish the consequences of faster deterministic approximation algorithms to LCS.

2 Preliminaries

In this section, we define the SAT problem for branching program (BP-SAT), and then we introduce the formal

definitions for each problem in BP-Pair-Class and BP-Pair-Hard.

Definition 2.1 (Branching Program). A (nondeterministic) Branching Program (BP) on n boolean inputs

x1, . . . , xn is defined as a layered directed graph with T layers L1, . . . , LT . Each layer Li contains W nodes.

Except the last layer, every node in Li (1 ≤ i < T ) is asscociated with the same variable xf(i) for some

f(i) ∈ [n]. T and W are called the length and width of the BP.

For every two adjacent layers Li and Li+1, there are edges between nodes in Li to nodes in Li+1, and

each edge is marked with either 0 or 1. The size of a BP is defined as the total number of edges O(W 2T ).
For 1 ≤ i ≤ T, 1 ≤ j ≤ W , the j-th node in the i-th layer Li is labeled as (i, j). ustart = (1, 1) is

the starting node, and uacc = (T, 1) is the accepting node. A BP accepts an input x iff there is a path from

the starting node to the accepting node consisting of only the edges marked with the value of the variable

associated with its starting endpoint.
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Definition 2.2 (BP-SAT). Given a branching program P on n boolean inputs, the BP-SAT problem asks

whether there is an input making P accept.

Like the relationship between k-SAT and Orthogonal Vectors (OV), we can define BP-Satisfying-Pair

problem as the counterpart of BP-SAT in the P world. BP-Satisfying-Pair can be trivially solved in O(N2 ·
poly(W,T )) time, and a faster algorithm for BP-Satisfying-Pair running in O(N2−ε) time implies a faster

algorithm for BP-SAT running in O(2(1−ε/2)n) time.

Definition 2.3 (BP-Satisfying-Pair). Given a branching program P on n boolean inputs (assume n is even)

and two sets of N strings A,B ⊆ {0, 1}n/2, the BP-Satisfying-Pair problem asks whether there is a pair

a ∈ A, b ∈ B such that P accepts the concatenation of a and b.

Throughout this paper, unless otherwise stated, we use BP-Satisfying-Pair to denote the BP-Satisfying-Pair

problem on branching program of size 2(logN)o(1) for convenience.

2.1 Satisfying Pair and Best Pair Problems

Satisfying Pair Problems. Note that problems like Orthogonal Vectors are in the form of deciding whether

there is a “satisfying pair”. In general, we can define the A-Satisfying-Pair problem, where A is an arbitrary

decision problem on two input strings x, y:

Definition 2.4 (A-Satisfying-Pair). Given two sets A,B of N strings, the A-Satisfying-Pair problem asks

whether there is a pair of a ∈ A, b ∈ B such that (a, b) is an Yes-instance of A.

In this work, we study a series of A-Satisfying-Pair problems, including OAPT, RegExp-String-Pair and

Subtree-Isomorphism-Pair, which will be formally defined in later subsections.

Best Pair Problems. For an optimization problemA on two input stringsx, y, we can define the Max-A-Pair

and the Min-A-Pair problems:

Definition 2.5 (Max-A-Pair / Min-A-Pair). Given two setsA,B ofN strings, the Max-A-Pair (or Min-A-Pair)

problem asks to compute the maximum value (or minimum value) of the result of problem A on input (a, b).

In this work, we study a series of Max-A-Pair / Min-A-Pair problems, including Max-TropSim, Min-

TropSim, Closest-LCS-Pair, Furthest-LCS-Pair, Closest-RegExp-String-Pair, Max-LCST-Pair and Min-LCST-

Pair, which will be formally defined in later subsections.

Note that both satisfying pair problems and best pair problems contain two setsA,B in the input. Without

additional explanation, we use N to denote the set size, and D to denote the maximum element size in sets.

2.2 Two Tensor Problems

We introduce two kinds of tensor problems: the Orthogonal Alternating Product Tensors problem (OAPT) and

the Max / Min Tropical Similarity problem (Max-TropSim / Min-TropSim). The former one is an A-Satisfying-

Pair problem, which helps us to prove hardness for decision problems; the latter one is a Max-A-Pair /

Min-A-Pair problem, which helps us proving hardness of approximation for optimization problems.

First we define OAPT. OAPT implicitly appears in the reduction from BP-SAT to LCS in [AHVW16] as

an intermediate problem. In our reductions, OAPT appears naturally, and we show that BP-Satisfying-Pair

and OAPT of certain size are equivalent under near-linear time reduction in Section 5.
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Definition 2.6 (OAPT). Let t be an even number and d1 = d2 = · · · = dt = 2. The Alternating Product

palt(u, v) of two tensors u, v ∈ {0, 1}d1×···×dt is defined as an alternating sequence of logical operators ∧
and ∨ applied to the coordinatewise product of u and v:

palt(u, v) =
∧

i1∈[d1]




∨

i2∈[d2]




∧

i3∈[d3]


· · ·

∨

it∈[dt]
(ui ∧ vi) · · ·






 . (1)

Given two sets of N tensors A,B ⊆ {0, 1}d1×···×dt , the Orthogonal Alternating Product Tensors (OAPT)

problem asks whether there is a pair a ∈ A, b ∈ B such that the Alternating Product palt(a, b) = 0.

Restricted OAPT is a restricted version of OAPT. We mainly use this restricted version in our analysis.

Definition 2.7 (Restricted OAPT). We say that a tensor x ∈ {0, 1}d1×···×dt is ∧-invariant if the value of

xi1···it does not depend on i1, i3, i5, . . . , it−1. The Restricted OAPT problem is a restricted version of OAPT,

where one set of A,B contains only ∧-invariant tensors.

For proving our hardness of approximation results, we further define the Max-TropSim and Min-TropSim

problems. The Max-TropSim problem was firstly proposed by Abboud and Rubinstein in [AR18] under the

name Tropical Tensors in their study of LCS.

Definition 2.8 (Max-TropSim / Min-TropSim). Let t be an even number and d1 = d2 = · · · = dt = 2. The

Tropical Similarity score s(u, v) of two tensors u, v ∈ {0, 1}d1×···×dt is defined as an alternating sequence

of operators E and max applied to the coordinatewise product of u and v:

s(u, v) = E
i1∈[d1]

[
max
i2∈[d2]

{
E

i3∈[d3]

[
· · · max

it∈[dt]
{ui · vi} · · ·

]}]
. (2)

Given two sets ofN tensorsA,B ⊆ {0, 1}d1×···×dt , the Max-TropSim problem asks to compute the maximum

Tropical Similarity s(a, b) among all pairs of (a, b) ∈ A×B, while the Min-TropSim problem asks to compute

the minimum Tropical Similarity s(a, b) among all pairs of (a, b) ∈ A×B.

Restricted OAPT is a restricted version of OAPT. We mainly use this restricted version in our analysis.

Definition 2.9 (Restricted Max-TropSim / Restricted Min-TropSim). We say that a tensor x ∈ {0, 1}d1×···×dt

is max-invariant if the value of xi1···it does not depend on i2, i4, i6, . . . , it. The Restricted Max-TropSim /

Restricted Min-TropSim problem is a restricted version of Max-TropSim/ Min-TropSim, where one set of A,B
contains only ∧-invariant tensors.

Like in [AR18], we also define the following approximation variants of the Max-TropSim and Min-TropSim.

Definition 2.10 (ε-Gap-Max-TropSim). Let t be an even number and d1 = d2 = · · · = dt = 2. Given two

sets of N tensors A,B ∈ {0, 1}d1×···×dt of size D = 2t, distinguish between the following:

• Completeness: There is a pair of (a, b) ∈ A×B with a perfect Tropical Similarity s(a, b) = 1;

• Soundness: Every pair has low Tropical Similarity score, s(a, b) < ε.

Here ε is a threshold value that may depend onN andD. Restricted ε-Gap-Max-TropSim is defined similarly.

Definition 2.11 (ε-Gap-Min-TropSim). Let t be an even number and d1 = d2 = · · · = dt = 2. Given two

sets of N tensors A,B ∈ {0, 1}d1×···×dt of size D = 2t, distinguish between the following:

• Completeness: There is a pair of (a, b) ∈ A×B with a low Tropical Similarity s(a, b) < ε;

• Soundness: Every pair has perfect Tropical Similarity score, s(a, b) = 1.

Here ε is a threshold value that may depend onN and D. Restricted ε-Gap-Min-TropSim is defined similarly.

In this paper we use the proof idea for IP = PSPACE to show that BP-Satisfying-Pair can be reduced to

ε-Gap-Max-TropSim / ε-Gap-Min-TropSim of certain size in near-linear time. The proof is in Section 5.
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2.3 Longest Common Subsequence

We study the hardness of Longest Common Subsequence (LCS) and its pair version in this paper.

Definition 2.12 (LCS). Given two strings a, b of lengthN over alphabet Σ, the LCS problem asks to compute

the length of the longest sequence that appears in both a and b as a subsequence.

Definition 2.13 (Closest-LCS-Pair / Furthest-LCS-Pair). Given two sets ofN strings A,B, the Closest-LCS-

Pair (or Furthest-LCS-Pair) problem asks to compute the maximum (or minimum) length of the longest

common subsequence among all pairs of (a, b) ∈ A×B.

2.4 Subtree Isomorphism and Largest Common Subtrees

We study the hardness for the following two problems on trees:

Definition 2.14. (Subtree Isomorphism) Given two trees G and H , the Subtree Isomorphism problem asks

whether G is isomorphic to a subtree of H , i.e., can G and H be isomorphic after removing some nodes and

edges from H .

Definition 2.15. (Largest Common Subtree) Given two treesG andH , the Largest Common Subtree problem

asks to compute the size of the largest tree that is isomorphic to both a subtree of G and a subtree of H .

In this paper, we focus on the case of unordered trees with bounded degrees. We are interested in both

rooted and unrooted trees. Here “rooted” means that the root of G must be mapped to the root of H in the

isomorphism.

The pair versions of these two problems are defined as follows:

Definition 2.16 (Subtree-Isomorphism-Pair). Given two sets ofN trees A,B, the Subtree-Isomorphism-Pair

problem asks whether there is a pair of trees (a, b) ∈ A× B such that the tree a is isomorphic to a subtree

of the tree b.

Definition 2.17 (Max-LCST-Pair / Min-LCST-Pair). Given two sets of N trees A,B, the Max-LCST-Pair (or

Min-LCST-Pair) problem asks to compute the maximum (or minimum) size of the largest common subtrees

among all pairs of (a, b) ∈ A×B.

2.5 Regular Expression Membership Testing

We study the hardness of testing membership for regular expression. A regular expression over an alphabet set

Σ and an operator setO = { ◦, | , +, ∗} is defined in a inductive way: (1) Every a ∈ Σ is a regular expression;

(2) All of [R | S], R ◦ S, R, [R]+ are regular expressions if R and S are regular expressions. A regular

expression p determines a language L(p) over alphabet Σ. Specifically, for any regular expressions R,S and

any a ∈ Σ, we have: L(a) = {a}; L([R | S]) = L(R) ∪ L(S); L(R ◦ S) = {uv | u ∈ L(R), v ∈ L(S)};

L([R]+) =
⋃

k≥1{u1u2 · · · uk | u1, . . . , uk ∈ L(R)}; and L([R]∗) = L(R+) ∪ {ε}, where ε denotes the

empty string. The concatenation operator ◦ and unnecessary parenthesis is often omitted if the meaning is

clear from the context.

In this paper, we study the Regular Expression Membership Testing problem, which is defined as follows:

Definition 2.18 (Exact Regular Expression Membership Testing). Given a regular expression p of length M
and a string t of length N over alphabet Σ, the Exact Regular Expression Membership Testing problem asks

whether t is in the language L(p) of p.

And its pair version is defined as follows:

14



Definition 2.19 (RegExp-String-Pair). Given a set A of regular expressions of length O(poly(D))and a set

B of N strings of length D, the RegExp-String-Pair problem asks to determine whether there is a pair (a, b)
such that b is in the language L(a) of a.

In [ARW17], Abboud, Rubinstein and Williams studied a problem called RegExp Closest Pair and

showed that it is SETH-hard using their distributed PCP framework. In this work, we study a slightly

different problem.

Definition 2.20 (Closest-RegExp-String-Pair). For two strings x, y of the same length n, the Hamming

Similarity HamSim(x, y) between x and y is defined as the fraction of positions for which the corresponding

symbols are equal, i.e.,

HamSim(x, y) =
1

n

n∑

i=1

1[xi=yi].

Given a set A of N regular expressions of length O(poly(D)) and a set of N strings of length D, the

Closest-RegExp-String-Pair problem asks to compute the maximum Hamming Similarity among all pairs of

(x, b) satisfying x ∈ L(a) is a string of length D for some a ∈ A and b ∈ B.

3 BP-Pair-Class and an Outline of all Reductions

In this section, we first state the equivalence class formally, and outline how it is proved in this paper.

Theorem 3.1 (BP-Pair-Class). There are near linear-time13 reductions between all pairs of following prob-

lems:

1. (Exact or Approximate Closest-LCS-Pair / Furthest-LCS-Pair) Given two sets A,B of N strings of

length D = 2(logN)o(1) , compute the exact value or a 2(logD)1−Ω(1)
-approximation of the maximum

(minimum) LCS among (a, b) ∈ A×B;

2. (Approximate Closest-RegExp-String-Pair) Given a setA ofN regular expressions of length 2(logN)o(1)

and a set of N strings of length D = 2(logN)o(1) , distinguish between the case that there is a pair

(a, b) ∈ A × B such that b ∈ L(a) (the language of a), and the case that every string in B has

Hamming Similarity < 2−(logD)1−Ω(1)
from every string of length D in

⋃
a∈A L(a).

3. (Exact or Approximate Max-LCST-Pair / Min-LCST-Pair) Given two sets A,B of N bounded-degree

trees with size at most D = 2(logN)o(1) , compute the exact value or a 2(logD)1−Ω(1)
-approximation of

the maximum (minimum) size of largest common subtree among (a, b) ∈ A×B;

4. (Exact or Approximate Max-TropSim / Min-TropSim) Given two sets A,B of N binary tensors with

size D = 2(logN)o(1) , compute the exact value or a 2(logD)1−Ω(1)
-approximation of the maximum

(minimum) Tropical Similarity among (a, b) ∈ A×B;

5. Orthogonal-Alternating-Product-Tensors (OAPT): Given two sets A,B of N binary tensors with size

2(logN)o(1) , is there a pair (a, b) ∈ A×B with Alternating Product14 0?

6. BP-Satisfying-Pair;

7. RegExp-String-Pair;

13Throughout this paper, we use near-linear time to denote the running time of N1+o(1).

14see Definition 2.6 for a formal definition
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8. Subtree-Isomorphism-Pair;

Remark 3.2. A technical remark is that our reductions actually have a quasi-polynomial blow-up on the

string length (tensor / tree size) D. That is, the new string length after the transformation would be at most

D′ = 2polylog(D), which is still 2(logN)o(1) assuming D = 2(logN)o(1) . That is the reason we set the size

parameter to be 2(logN)o(1) in the equivalence class.

For the ease of exposition, we break the proofs for Theorem 3.1 and Theorem 1.8 into many sections, each

one dealing with one kind of problems. Here we give an outline of the reductions for proving Theorem 3.1

and Theorem 1.8 (Figure 1).

BP-Satisfying-Pair

OAPT
ε-Gap-Max-TropSim

ε-Gap-Min-TropSim

RegExp-String-Pair

Regular Expression

Membership Testing

Subtree-Isomorphism-Pair

Subtree Isomorphism

Approx.

Closest-RegExp-String-Pair

Approx. Closest-LCS-Pair

Approx. Furthest-LCS-Pair

Approx. Max-LCST-Pair

Approx. Min-LCST-Pair

Approx.

Largest Common Subtree

Figure 1: A diagram for all our reductions. (red means it is BP-Pair-Hard.)

Section 4 BP-Satisfying-Pair. We present a generic reduction from A-Satisfying-Pair and Max-A-Pair / Min-

A-Pair problems to BP-Satisfying-Pair (Theorem 4.1 and Theorem 4.2). This implies all problems in

BP-Pair-Class can be reduced to BP-Satisfying-Pair.

Section 5 Tensors Problems. We show reductions from BP-Satisfying-Pair to tensors problems OAPT, approx-

imate Max-TropSim and Min-TropSim (Theorem 5.1, Theorem 5.6 and Theorem 5.7), putting these

tensor problems into our BP-Pair-Class (Theorem 5.4 and Theorem 5.10).

Section 6 LCS. We show reductions from approximate Max-TropSim (Min-TropSim) to approximate Closest-

LCS-Pair (Furthest-LCS-Pair) (Theorem 6.2 and Theorem 6.3), putting these LCS-Pair problems into

our BP-Pair-Class (Theorem 6.5).
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Section 7 Regular Expression. We show reductions from OAPT to RegExp-String-Pair and from approximate

Max-TropSim to approximate Closest-RegExp-String-Pair (Theorem 7.3 and Corollary 7.2), putting

these regular expression pair problems into our BP-Pair-Class (Theorem 7.5).

We also show a reduction from OAPT to Regular Expression Membership Testing, showing the latter

problem is BP-Pair-Hard (Theorem 7.6).

Section 8 Subtree isomorphism. We show reductions from OAPT to Subtree-Isomorphism-Pair and from ap-

proximate Max-TropSim (Min-TropSim) to approximate Max-LCST-Pair (Min-LCST-Pair) (Theorem 8.1

and Theorem 8.5), putting these problems related to subtree isomorphism into our BP-Pair-Class

(Theorem 8.3 and Theorem 8.10).

We also show reductions from OAPT to Subtree Isomorphism and from approximate Max-TropSim to

approximate Largest Common Subtree, showing that the latter problems are BP-Pair-Hard (Theorem 8.4

and Theorem 8.12).

4 Low-Space Algorithm Implies Reduction to BP-Satisfying-Pair

In this section, we present two important theorems for showing reductions from A-Satisfying-Pair, Max-A-

Pair / Min-A-Pair problems to BP-Satisfying-Pair.

The key observation is a classic result in space complexity: for S(n) ≥ log n, if a decision problem A is

in NSPACE[S(n)], then there is a BP of length T = 2O(S(n)) and width W = 2O(S(n)) that decides A (See,

e.g., [AB09] for the proof). This means that if A can be solved in small space, then we can construct a BP

of not too large size to represent this algorithm.

Now we introduce our first theorem, which shows that a low-space algorithm for a decision problem A
implies a reduction from A-Satisfying-Pair to BP-Satisfying-Pair:

Theorem 4.1. If the decision problem A on inputs a, b of length n can be decided in NSPACE [polylog(n)],

then A-Satisfying-Pair with two sets of N strings of length 2(logN)o(1) can be reduced to BP-Satisfying-Pair

on branching program of size 2(logN)o(1) in near-linear time.

Proof. Let n = 2(logN)o(1) . Since A is in NSPACE [polylog(n)], we can construct a BP P of size

2polylog(n) ≤ 2(logN)o(1) that decides A on inputs a, b of length n. Then to check if there is a pair of

(a, b) ∈ A×B such that (a, b) is an Yes-instance of A, it is sufficient to check if there is a pair of a, bmaking

P accept.

Our second theorem is similar. It shows that a low-space algorithm for the decision problem of an

optimization problem A implies a reduction from Max-A-Pair / Min-A-Pair to BP-Satisfying-Pair:

Theorem 4.2. Let A be an optimization problem. If the answer to A on input a, b of length n is bounded

in [−O(poly(n)), O(poly(n))], and the decision version of A (deciding whether the answer is greater than

a given number k) can be decided in NSPACE [polylog(n)], then Max-A-Pair (or Min-A-Pair) with two sets

of N strings of length 2(logN)o(1) can reduced to 2(logN)o(1) instances of BP-Satisfying-Pair with branching

programs of size 2(logN)o(1) in near-linear time.

Proof. For Max-A-Pair, we enumerate each possible answer k, and then we check if there is a pair of

(a, b) ∈ A×B with answer> k by reducing to BP-Satisfying-Pair via Theorem 4.1. This reduction results in

O(poly(n)) ≤ 2(logN)o(1) instances of BP-Satisfying-Pair, and each branching program is of size 2(logN)o(1) .

Note that NSPACE [polylog(n)] = coNSPACE [polylog(n)], thus deciding whether the answer of A is≤ k is

also in NSPACE [polylog(n)]. Using a similar argument we can reduce Min-A-Pair to BP-Satisfying-Pair.
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5 Tensor Problems

In this section, we show that BP-Satisfying-Pair on branching program of size 2(logN)o(1) is equivalent to

OAPT and (exact or approximate) Max-TropSim/ Min-TropSim problems on tensors of size 2(logN)o(1) under

near-linear time reductions.

5.1 Orthogonal Alternating Product Tensors

First we show the equivalence between BP-Satisfying-Pair and OAPT. To start with, we present the reduction

from BP-Satisfying-Pair to OAPT:

Theorem 5.1. There exists an O(N · 2O(logW logT ))-time reduction from a BP-Satisfying-Pair instance with

a branching program of length T and width W and two sets of N strings to an OAPT problem with two sets

of N tensors of size 2O(logW log T ).

Proof. Let P be a branching program of length T and width W on n boolean inputs x = (x1, . . . , xn).
First, we follow the proof for the PSPACE-completeness of TQBF [SM73] to construct a quantified boolean

formula φ(x), which holds true iff the branching program P accepts x. Then, we construct two setsA′, B′ of

N tensors such that there is a pair (a, b) ∈ A×B satisfying φ(a, b) is true iff there is a pair (a′, b′) ∈ A′×B′

with palt(a
′, b′) = 0.

Construction of Quantified Boolean Formula. We assume that n, T − 1,W are powers of two without

loss of generality. First we construct formulas ψk(x, u, v, i) for all 0 ≤ k ≤ log(T − 1), u, v ∈ [W ], i ∈ [T ]
such that ψk(x, u, v, i) holds true iff the node (i + 2k, v) is reachable from the node (i, u) on the input

x = (x1, . . . , xn).
The construction is by induction on k. For k = 0, we split the n input variables x = (x1, . . . , xn) into

two halves: xa = (x1, . . . , xn/2) and xb = (xn/2+1, . . . , xn). We construct two formulas α(xa, u, v, i) and

β(xb, u, v, i). We construct the formula α to be true iff the variable xf(i) associated with the layer Li is in xa,
and there is an edge that goes from the node (i, u) to the node (i+1, v) and is marked with the value of xf(i).

We define the formula β similarly for xb. Then we construct ψ0(x, u, v, i) = α(xa, u, v, i) ∨ β(xb, u, v, i).
It is easy to see that ψ0(x, u, v, i) holds true iff the node (i + 1, v) is reachable from the node (i, u) on the

input x = (x1, . . . , xn). For k ≥ 1, we construct ψk(x, u, v, i) as:

(∃m)(∀u′)(∀v′)(∀j)[((u′, v′, j) = (u,m, 0) ∨ (u′, v′, j) = (m, v, 1)) ⇒ ψk−1(x, u
′, v′, i+ j · 2k−1)]

where m,u′, v′ ∈ [W ] and j ∈ {0, 1}. It is easy to see that the above formula is equivalent to

(∃m)[ψk−1(x, u,m, i) ∧ ψk−1(x,m, v, i + 2k−1)],

thus it holds true iff the node (i+ 2k, v) is reachable from the node (i, u).
In the end, we construct the formula ϕ(x) = ψlog(T−1)(x, 1, 1, 1), so ϕ(x) holds true iff the branching

program P accepts the input x = (x1, . . . , xn) (Recall that ustart = (1, 1) and uacc = (T, 1)).
We split all the variables m,u′, v′, j occurred in ϕ(x) into t boolean variables z1, . . . , zt ∈ {0, 1} for

some t = O(logW log T ). Without loss of generality we assume t is even. Then we transform ϕ(x) into

the following equivalent formula φ:

φ(x) = (∃z1)(∀z2)(∃z3) · · · (∀zt)(f(z) ⇒ (g1(x
a, z) ∨ g2(xb, z)))

where f(z) is the logical conjunction of all the predicates ((a, b, j) = (u,m, 0) ∨ (a, b, j) = (m, v, 1)) in

ψ1, . . . , ψlog(T−1), and g1(x
a, z), g2(x

b, z) are the innermost α(xa, u, v, i), β(xb, u, v, i). The quantifiers ∀
and ∃ appear alternatively.
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Converting Quantified Boolean Formula into Tensors. Let d1 = · · · = dt = 2. Now we construct two

sets of N tensors A′, B′ ⊆ {0, 1}d1×···×dt to be our OAPT instance. For 1 ≤ k ≤ t, we associate the k-th

dimension of a tensor with the variable zk and associate each index p ∈ [d1]×· · ·× [dt]with an assignment to

z1, . . . , zt. Note that strings in the set A correspond to assigments to xa, and strings in the set B correspond

to assigments to xb. Thus every two strings (a, b) ∈ A×B along with an index p specify an assignment to

x and z.
For each string a ∈ A, we construct a tensor a′ ∈ {0, 1}d1×···×dt where for every index p, a′p is 0 iff the

formula ¬f(z) ∨ g1(xa, z) is true with corresponding assignments to xa and z; for each string b ∈ B, we

construct a tensor b′ ∈ {0, 1}d1×···×dt where for every index p, b′p is 0 iff the formula g2(x
a, z) is true with

corresponding assignments to xb and z.
Note that f(z) ⇒ (g1(x

a, z) ∨ g2(xb, z)) is equivalent to ¬f(z) ∨ g1(xa, z) ∨ g2(xb, z), so we have

a′p ∧ b′p = 0 ⇐⇒ [f(z) ⇒ (g1(x
a, z) ∨ g2(xb, z))].

Then it is easy to see that palt(a
′, b′) = 0 iff φ(a, b) is true, and thus P accepts a pair of (a, b) ∈ A × B iff

palt(a
′, b′) = 0 for their corresponding a′, b′. Note that d1d2 · · · dt = 2t = 2O(logW log T ), so each tensor has

size 2O(logW logT ).

Note that in the above construction, tensors in B are all ∧-invariant, so we have the following corollary

for Restricted OAPT:

Corollary 5.2. There exists anO(N · 2O(logW log T ))-time reduction from a BP-Satisfying-Pair instance with

a branching program of length T and width W and two sets of N strings to an Restricted OAPT problem

with two sets of N tensors of size 2O(logW log T ).

For the other direction, by Theorem 4.1, it is sufficient to show that computing Alternating Product can

be done in SPACE[O(log n)] ⊆ NSPACE[polylog(n)].

Lemma 5.3. Given two tensors a, b of size n = 2t, their Alternating Product palt(a, b) can be computed in

SPACE[O(log n)].

Proof. We compute the Alternating Product recursively according to the definition. There are t levels of

recursion in total. Since t = log n, space O(log n) is enough for our algorithm.

Combining Theorem 5.1 and Lemma 5.3, we can prove the equivalence between BP-Satisfying-Pair and

OAPT.

Theorem 5.4. The OAPT problem on tensors of size 2(logN)o(1) is equivalent to BP-Satisfying-Pair on

branching program of size 2(logN)o(1) under near-linear time reductions.

5.2 A Communication Protocol for Branching Program

Before we turn to show the equivalence between BP-Satisfying-Pair and Max-TropSim / Min-TropSim, we

introduce the following IP-protocol for branching program. Our reduction from BP-Satisfying-Pair to Max-

TropSim (or Min-TropSim) directly follows by simulating the communication protocol using tropical algebra.

Theorem 5.5. Let P be a branching program of length T and width W on n boolean inputs x1, . . . , xn.

Suppose Alice holds the input x1, . . . , xn/2 and Bob holds the input xn/2+1, . . . , xn. For every ε > 0, there

exists a computationally efficient IP-protocol for checking whether P accepts on x1, . . . , xn, in which:

1. Merlin and Alice exchange O(log2W log2 T · (log logW + log log T + log ε−1)) bits;
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2. Alice tosses O(log2W log2 T · (log logW + log log T + log ε−1)) public coins;

3. Bob sends O(log logW + log log T + log ε−1) bits to Alice;

4. Alice accepts or rejects in the end.

If P accepts on the input x1, . . . , xn, then Alice always accepts; otherwise, Alice rejects with probability at

least 1− ε.

Proof. Let ā be the assignment to the input variables held by Alice, and b̄ be the assignment to the input

variables held by Bob. Recall the construction of the tensors in the proof for Theorem 5.1. First Alice

constructs a tensor a = G(ā), and Bob constructs a tensor b = H(b̄). Each tensor here is of shape

d1 × d2 × · · · dt = 2 × 2 × · · · × 2 for t = O(log T logW ). Then the problem reduces to check whether

the Alternating Product palt(a, b) equals 0. Now we show that there exists a communication protocol for

checking palt(a, b) = 0, using the idea for proving IP = PSPACE [LFKN92, Sha92].

Arithmetization. First we arithmetize the computation of Alternating Product. Let q ≥ 1 be a parameter to

be specified. Construct a finite field F2q . Then Alice finds a multilinear extension α over F2q for her tensor a,

i.e., Alice finds a function α(z1, . . . , zt) such that α is linear in each of its variables, and α(z1, . . . , zt) = ai
for all i ∈ [d1]× · · · × [dt] and ik = zk +1 (1 ≤ k ≤ t). Bob finds a multilinear extension β for his tensor b
similarly. Recall that the definition of Alternating Product. pa(a, b) can be rewritten as

palt(a, b) =
∧

z1∈{0,1}




∨

z2∈{0,1}




∧

z3∈{0,1}


· · ·

∨

zt∈{0,1}
(α(z1, . . . , zt) · β(z1, . . . , zt)) · · ·






 .

To arithmetize
∧

zk∈{0,1} and
∨

zk∈{0,1}, we define three kinds of operators acting on polynomials:

1. Πzm operator, which arithmetizes the formula
∧

zm∈{0,1} F (z1, . . . , zm−1, zm).

ΠzmF (z1, . . . , zm) = F (z1, . . . , zm−1, 0) · F (z1, . . . , zm−1, 1)

2. Σzm operator, which arithmetizes the formula
∨

zm∈{0,1} F (z1, . . . , zm−1, zm).

ΣzmF (z1, . . . , zm) = 1− (1− F (z1, . . . , zm−1, 0)) · (1− F (z1, . . . , zm−1, 1)).

3. Rzi operator, which is used for the degree reduction. When acting on a polynomial F (z1, . . . , zm), it

replaces zki for k ≥ 1 by zi in all terms. In this way, any polynomial F (z1, . . . , zm) can be converted

into a multilinear one preserving the values at every (z1, . . . , zm) ∈ {0, 1}m. Rzi operator can be

written as

RziF (z1, . . . , zm) = F (z1, . . . , zi−1, 0, zi+1, . . . zm) + zi · F (z1, . . . , zi−1, 1, zi+1, . . . zm).

Then it is easy to see that

palt(a, b) = Πz1Σz2Πz3 · · ·Σzt(α · β).
Note that in the computation of Alternating Product, we only use the function value at Boolean inputs, thus

we can insert i operators Rz1Rz2 · · ·Rzi right after each πzi or Σzi without changing the final result:

palt(a, b) = Πz1Rz1Σz2Rz1Rz2Πz3Rz1Rz2Rz3 · · ·ΣztRz1 · · ·Rzt(α · β).

In total we use only M = O(t2) ≤ O(log2 T log2W ) operators.
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The Protocol. We introduce our IP-protocol in an inductive way. Suppose that we have an IP-protocol

for some polynomial F (z1, . . . , zm), in which for any given (v1, . . . , vm) ∈ F
m
2q and u = F (v1, . . . , vm),

Merlin can convince Alice and Bob that F (v1, . . . , vm) = u with perfect completeness and soundness

error ε0. We show that for G(z1, . . . , zm′) = OziF (z1, . . . , zm) and given v1, . . . , vm′ and u′ (Ozi ∈
{Σzi ,Πzi ,Rzi}, m′ = m when Ozi = Rzi andm′ = m− 1 otherwise), Merlin can convince Alice and Bob

that G(v1, . . . , vm′) = u′ with perfect completeness and soundness error ε0 +O(2−q):

• First Merlin sends the coefficients of the polynomial F (v1, . . . , vi−1, zi, vi+1, . . . , vm) to Alice (note

that it is a univariate polynomial of zi);

• Alice calculates the value of G(v1, . . . , vm′) using the information sent by Merlin (assuming Merlin

is honest), and reject if G(v1, . . . , vm′) 6= u′;

• Alice randomly draws an element r ∈ F2q . Let vi = r (reset vi = r if vi already exists);

• Alice checks if F (v1, . . . , vi−1, r, vi+1, . . . , vm) = u via the IP-protocol for F .

It is easy to see that the above protocol has perfect completeness. For soundness, notice that F and G are

always ofO(1) degree because our use of degree reduction operators, thus Alice can findG(v1 , . . . , vm′) 6= u′

with probability O(2−q) if Merlin lies. By the union bound, the soundness error of the IP-protocol for G is

ε0 +O(2−q).
Our IP-protocol starts by checking palt(a, b) = 0. Following the inductive process above, there are M

rounds of communication between Merlin and Alice. And after the last round, palt(a, b) = 0 reduces to

check if α(v1, . . . , vt) · β(v1, . . . , vt) = u for given (v1, . . . , vt) ∈ F
t
2q , u ∈ F2q . Note that all the values

of v1, . . . , vt can be inferred by the results of public coins Alice tossed. Thus the IP-protocol for α · β
is as follows: Bob learns the results of public coins and obtains v1, . . . , vt. Then Bob sends the value of

β(v1, . . . , vt) to Alice. Finally, Alice accepts iff α(v1, . . . , vt) · β(v1, . . . , vt) = u.

By induction, we can show that the whole IP-protocol has perfect completeness and soundness error

O(M · 2−q). Setting 2q = c ·M · ε−1 for large enough constant c, we can achieve the soundness error ε.
And in this case we have

q = logM + log ε−1 + log c = O(log logW + log log T + log ε−1).

It can be easily seen that Alice tosses

O(Mq) = O(log2 T log2W (log log T + log logW + log ε−1))

public coins and Bob sends

O(q) = O(log log T + log logW + log ε−1)

bits to Alice in our communication protocol.

In each of theM rounds, Merlin sends O(1) elements in F2q since F is of at most constant degree. Thus

Merlin sends at most

O(Mq) = O(log2 T log2W (log log T + log logW + log ε−1))

bits to Alice.
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5.3 Tropical Tensors

Following from [AR18], we can show a reduction from BP-Satisfying-Pair to ε-Gap-Max-TropSim based on

our IP-protocol for branching program.

Theorem 5.6. There is a reduction from BP-Satisfying-Pair on branching program of length T and width W
and two sets of N strings to ε-Gap-Max-TropSim on two sets of N tensors of size

D = 2O(log2 W log2 T (log logW+log log T+log ε−1)),

and the reduction runs in O(N poly(D)). Here ε is a threshold value that can depend on N .

Proof. For convenience, let

K = log2W log2 T (log logW + log log T + log ε−1).

By Theorem 5.5, there is an IP-protocol using O(K) bits for determining whether a branching program

accepts when Alice knows the first half and Bob knows the second half, with soundness error ε. We can

easily modify the communication protocol such that

• Alice and Merlin interact for m = O(K) rounds, in each round Merlin sends one bit to Alice and

Alice tosses one public coin;

• After the interaction between Alice and Merlin, Bob sends ℓ = O(K) bits to Alice, and after Bob

sending each bit Merlin sends a dummy bit to Alice;

• Alice accepts or rejects in the end.

Let t = 2ℓ + 2m and d1 = · · · = dt = 2. Now we construct two sets of N = 2n/2 tensors

A,B ∈ {0, 1}d1×···×dt as our ε-Gap-Max-TropSim instance. For every 0 ≤ k < m, we associate the

(t− 2k)-th dimension with the result of the public coin Alice tosses at the (k+1)-th round and associate the

(t− 2k − 1)-th dimension with the bit Merlin sends to Alice at the (k + 1)-th round. For every 0 ≤ k < ℓ,
we associate the (2ℓ − 2k)-th dimension of a tensor with the (k + 1)-th bit sent by Bob and associate the

(2ℓ − 2k − 1)-th dimension with the bit Merlin sent to Alice right after Bob sending the (k + 1)-th bit to

Alice. In this way, every index p ∈ [d1]× · · · × [dt] of a tensor can be seen as a communication transcript.

Let A,B ⊆ {0, 1}n/2 be the two sets in the BP-Satisfying-Pair instance. For each assignment a ∈ A to

the first half variables x1, . . . , xn/2, we construct a tensor G(a) ∈ {0, 1}d1×···×dt where for every index p,
G(a)p is 1 iff Alice accepts after seeing the communication transcript p when she holds the assignment a for

x1, . . . , xn/2. For each assignment b ∈ B to the second half variables xn/2+1, . . . , xn, we construct a tensor

H(b) ∈ {0, 1}d1×···×dt where for every index p, H(b)p is 1 iff the bits sent by Bob in the communication

transcript p matches what Bob sends when he holds the assignment b for xn/2+1, . . . , xn and learning the

results of Alice’s public coins in p.
Let D = 2t = 2O(K) be the size of each tensor. It is easy to see that when Alice holds a and Bob holds

b, the maximum probability (over all Merlin’s actions) that Alice accepts in our communication protocol

equals the Tropical Similarity s(G(a),H(b)).

By negating the branching program P , we can also show a similar reduction from BP-Satisfying-Pair to

ε-Gap-Min-TropSim:

Theorem 5.7. There is a reduction from BP-Satisfying-Pair on branching program of length T and width W
and two sets of N strings to ε-Gap-Min-TropSim on two sets of N tensors of size

D = 2O(log2 W log2 T (log logW+log log T+log ε−1)),

and the reduction runs in O(N poly(D)). Here ε is a threshold value that can depend on N .
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Proof. The IP-protocol in Theorem 5.5 can be easily adapted to check the branching program P does

not accept, i.e., if P rejects on the input x1, . . . , xn, then Alice always accepts; otherwise, Alice rejects

with probability 1 − ε. To do this, the only thing we need to change is to check whether the Alternating

Product is 1 rather than 0. Then, using the same reduction as in Theorem 5.6, we can obtain two sets

A′ = {G(a) | a ∈ A}, B′ = {H(b) | b ∈ B} of N tensors of size

D = 2O(log2 W log2 T (log logW+log logT+log ε−1))

such that for every pair of strings (a, b) ∈ A×B, the maximum probability (over all Merlin’s actions) that

Alice accepts in the IP-protocol equals the Tropical Similarity score of the corresponding tensor gadgets

G(a) and H(b). Thus, to decide whether there exists a pair of (a, b) ∈ A × B that can make P accept, it

is sufficient to distinguish from the case that there is a pair of G(a),H(b) such that the Tropical Similarity

score s(G(a),H(b)) ≤ ε and the case that every pair of G(a),H(b) has perfect Tropical Similarity score

s(G(a),H(b)) = 1.

Note that in the above constructions in Theorem 5.6 and 5.7, tensors in B are all max-invariant, so we

have the following corollary for Restricted OAPT:

Corollary 5.8. There is a reduction from BP-Satisfying-Pair on branching program of length T and width

W and two sets of N strings to a Restricted ε-Gap-Max-TropSim / Restricted ε-Gap-Min-TropSim on two sets

of N tensors of size

D = 2O(log2 W log2 T (log logW+log log T+log ε−1)),

and the reduction runs in O(N poly(D)). Here ε is a threshold value that can depend on N .

Theorem 5.6 and 5.7 also imply reductions from BP-Satisfying-Pair to exact Max-TropSim or exact

Min-TropSim. For the other direction of reduction, we have the following lemma:

Lemma 5.9. Given two tensors a, b of size n = 2t, their Tropical Similarity s(a, b) can be computed in

SPACE[O(log2 n)].

Proof. We compute the Tropcial Similarity recursively according to the definition. Note that there are t
levels of recursion in total, and O(t)-bit precision is sufficient in this computation. Thus this algorithm uses

only O(t2) ≤ O(log2 n) space.

Combining Theorem 5.6, Theorem 5.7 and Lemma 5.9, we can establish the equivalence between

BP-Satisfying-Pair and the exact or approximate Tropical Similarity problems:

Theorem 5.10. For the case that the maximum element size D = 2(logN)o(1) , there are near-linear time

reductions between all pairs of the following problems:

• BP-Satisfying-Pair;

• Exact Max-TropSim or Min-TropSim;

• 2−(logD)1−Ω(1)
-Gap-Max-TropSim or 2−(logD)1−Ω(1)

-Gap-Min-TropSim;

• 2(logD)1−Ω(1)
-approximate Max-TropSim or Min-TropSim;

Proof. Let c > 0 be a constant. For any instance of BP-Satisfying-Pair on BP of size S, by Theorem

5.6 with parameter ε = 2−(log S)c , we can reduce it to an ε-Gap-Max-TropSim instance on tensors of size

D = 2Θ(log4 S log ε−1) = 2Θ(log4+c S) (adding dummy dimensions to tensors if necessary).
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Thus, we have ε = 2−Θ(logD)c/(4+c)
. For any 0 < δ ≤ 1, by choosing an appropriate value for c, we can

obtain a reduction from BP-Satisfying-Pair on BP of size S = 2(logN)o(1) to 2−(logD)1−δ
-Gap-Max-TropSim.

2−(logD)1−δ
-Gap-Max-TropSim can be trivially reduced to 2(logD)1−δ

-approximate Max-TropSim, and

2(logD)1−δ
-approximate Max-TropSim can be trivially reduced to Max-TropSim. By Lemma 5.9 and Theorem

4.2, Max-TropSim can be reduced to BP-Satisfying-Pair.

Therefore under near-linear time reductions BP-Satisfying-Pair, exact Max-TropSim, 2−(logD)1−Ω(1)
-Gap-

Max-TropSim and 2(logD)1−Ω(1)
-approximate Max-TropSim are all equivalent. Using a similar argument, we

can also prove the same result for Min-TropSim.

6 Longest Common Subsequence

In this section, we show near-liear time reductions between BP-Satisfying-Pair and (exact or approximate)

Closest-LCS-Pair / Furthest-LCS-Pair.

Our reduction from BP-Satisfying-Pair to Closest-LCS-Pair / Furthest-LCS-Pair relies on the following

LCS gadgets in [AR18].

Theorem 6.1 ([AR18]). Let t be an even number and d1 = · · · = dt = 2. Given two sets of N tensors A,B
in {0, 1}d1×···×dt , there is a deterministic algorithm running in O(N poly(2t)) time which outputs two sets

A′, B′ ofN strings of length 2t over anO(2t)-size alphabet Σ, such that each a ∈ A corresponds to a string

a′ ∈ A′, each b ∈ B corresponds to a string b ∈ B′, and LCS(a′, b′) = 2t/2 · s(a, b) for every a ∈ A, b ∈ B,

where s(a, b) stands for the Tropical Similarity score of two tensors a and b.

Theorem 6.1 directly leads to the following two theorems:

Theorem 6.2. There exists anO(N poly(D))-time reduction from an ε(D)-Gap-Max-TropSim instance with

two sets of N tensors of size D to an instance of the following approximation variant of Closest-LCS-Pair:

Given two sets of N strings of length D, distinguish between the following:

• Completeness: There exists a pair of a, b such that LCS(a, b) =
√
D;

• Soundness: For every pair a, b, LCS(a, b) <
√
D · ε(D).

Thus ε(D)-Gap-Max-TropSim can be O(N poly(D))-time reduced to ε(D)−1-approximate Closest-LCS-

Pair.

Theorem 6.3. There exists an O(N poly(D))-time reduction from an ε(D)-Gap-Min-TropSim instance with

two sets of N tensors of size D to an instance of the following approximation variant of Furthest-LCS-Pair:

Given two sets of N strings of length D, distinguish between the following:

• Completeness: There exists a pair of a, b such that LCS(a, b) <
√
D · ε(D);

• Soundness: For every pair a, b, LCS(a, b) =
√
D.

Thus ε(D)-Gap-Min-TropSim can be O(N poly(D))-time reduced to ε(D)−1-approximate Furthest-LCS-

Pair.

According to Theorem 4.2, in order to reduce Closest-LCS-Pair or Furthest-LCS-Pair problem to BP-

Satisfying-Pair, we only need to show that given a number k, deciding LCS(a, b) ≥ k for two strings a, b of

length n is in NSPACE[polylog(n)]:

Lemma 6.4 (Folklore). Given two strings a, b of length n and a number k, deciding whether LCS(a, b) ≥ k
is in NL.
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Proof. The algorithm consists of k stages. Let c be a longest common subsequence of a and b. In the i-th
stage, we nondeterministically guess which positions of a and b are matched with the i-th character of c, and

then we check if the characters on the two positions of a and b are the same. Also, in each stage we store

the positions being matched in the last stage, so that we can check if the matched positions in each string are

increasing. Finally, we accept if the nondeterministic guesses pass all the checks. The total space for this

nondeterministic algorithm is O(log n) since we only need to maintain O(1) positions in each stage.

Combining Theorem 6.2, 6.3 and Lemma 6.4 together, we can prove the equivalence between BP-

Satisfying-Pair and exact or approximate LCS pair problems:

Theorem 6.5. For the case that the maximum element size D = 2(logN)o(1) , there are near-linear time

reductions between all pairs of the following problems:

• BP-Satisfying-Pair;

• Exact Closest-LCS-Pair or Furthest-LCS-Pair;

• 2(logD)1−Ω(1)
-approximate Closest-LCS-Pair or Furthest-LCS-Pair.

Proof. By Theorem 5.10, the BP-Satisfying-Pair problem on branching program of size 2(logN)o(1) is equiv-

alent to 2(logD)1−δ
-Gap-Max-TropSim under near-linear time reductions. By Theorem 6.2, 2(logD)1−δ

-

Gap-Max-TropSim can be reduced to 2(logD)1−δ
-approximate Closest-LCS-Pair. 2(logD)1−δ

-approximate

Closest-LCS-Pair can be trivially reduced to Closest-LCS-Pair. By Lemma 6.4 and Theorem 4.2, Closest-

LCS-Pair can further be reduced to BP-Satisfying-Pair. Thus BP-Satisfying-Pair, exact Closest-LCS-Pair and

2(logD)1−δ
-approximate Closest-LCS-Pair are equivalent under near-linear time reductions for all δ > 0.

Using a similar argument, we can also prove the same result for exact and approximate Furthest-LCS-

Pair.

7 Regular Expression Membership Testing

In this section, we study the hardness of regular expression problems. First we prove that BP-Satisfying-Pair,

RegExp-String-Pair and Closest-RegExp-String-Pair are equivalent under near-linear time reductions, then

we show the hardness for the Regular Expression Membership Testing problem.

For simplicity, we denote maxx∈L(a),|x|=|b|HamSim(x, b) by MaxSim(a, b) for any regular expression

a and string b. The following theorem gives a construction to implement the Tropical Similarity using

MaxSim.

Theorem 7.1. Let t be an even number and d1 = · · · = dt = 2. Given two sets of N tensors A,B ⊆
{0, 1}d1×···×dt satisfying that all the tensors in B are max-invariant, there is a deterministic algorithm

running in O(N poly(2t)) time which outputs a set A′ of N regular expressions and a set B′ of N strings.

Here strings are of length 2t, regular expressions are of length poly(2t), and both of them are over alphabet

Σ = {0, 1,⊥}. Each a ∈ A corresponds to a regular expression a′ ∈ A′, each b ∈ B corresponds to a

string b′ ∈ B′, and

MaxSim(a′, b′) = s(a, b).

Proof. For each k and each prefix of index i(k) ∈ [d1] × · · · × [dk] , we construct corresponding gadget

a′ = Gi(k)(a) and b′ = Hi(k)(b) for each a ∈ A and b ∈ B (when k = 0, i(k) can only be the empty prefix,

and we simply use G(a) and H(b) for convenience) inductively, mimicking the evaluation of the Tropical

Similarity. For this purpose, we need to construct the following three types of gadgets.
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Bit Gadgets. First we need bit gadgets to simulate the innermost coordinatewise product in the evaluation

of Tropical Similarity. For each coordinate i ∈ [d1]× · · · × [dt], for every a ∈ A and b ∈ B, we construct

Gi(a) =

{
⊥ if ai = 0,

1 if ai = 1,
and Hi(b) =

{
0 if bi = 0,

1 if bi = 1.

It is easy to see that ai · bi = MaxSim(Gi(a),Hi(b)).
Now we combine bit gadgets recursively according to the max and E operators in the evaluation for

Tropical Similarity. Starting from k = t− 1, there are two cases to consider.

Expectation Gadgets. The first case is when E operator is applied to (k + 1)-th dimension. We construct

the corresponding gadgetsGi(k)(a) andGi(k)(b) for any i(k) ∈ [d1]×· · ·× [dk], a ∈ A and b ∈ B as follows:

Gi(k)(a) = Gi(k),0(a) ◦Gi(k),1(a) and Hi(k)(b) = Hi(k),0(b) ◦Hi(k),1(b).

where ◦ stands for concatenation as usual. It is easy to see that

MaxSim(Gi(k)(a),Hi(k)(b)) = E
j∈{0,1}

[
MaxSim(Gi(k),j(a),Hi(k),j(b))

]
.

Max Gadgets. The second case is when max operator is applied to (k + 1)-th dimension. For i(k) ∈
[d1]× · · · × [dk] and a ∈ A, Gi(k)(a) is constructed as follows:

Gi(k)(a) =
[
Gi(k),0(a)

∣∣∣ Gi(k),1(a)
]
,

and we construct Hi(k)(b) for b ∈ B to be

Hi(k)(b) = Hi(k),j(b)

for all j ∈ {0, 1}, which is well-defined since b is max-invariant. It is easy to see that

MaxSim(Gi(k)(a),Hi(k)(b)) = max
j∈{0,1}

[
MaxSim(Gi(k),j(a),Hi(k),j(b))

]
.

Finally, we can obtain tensor gadgets G(a),H(b) for each a ∈ A and b ∈ B.

From Theorem 7.1, we have the following reduction:

Corollary 7.2. Let ε-Gap-Closest-RegExp-String-Pair be the approximation variant of Closest-RegExp-

String-Pair: Given a set of N regular expressions of length O(poly(D)) and a set of N strings of length D,

distinguish between the following:

• Completeness: There exists a pair of a, b such that MaxSim(a, b) = 1 (i.e., b ∈ L(a));

• Soundness: For every pair a, b, MaxSim(a, b) < ε.

There exists an O(N poly(D))-time reduction from a Restricted ε(D)-Gap-Max-TropSim instance on two

sets A,B of N tensors of size D to an instance of ε(D)-Gap-Closest-RegExp-String-Pair on a set of N
regular expressions of length O(poly(D)) and a set of N strings of length D.

This corollary also follows that there is a reduction from ε-Gap-Max-TropSim to RegExp-String-Pair,

which is enough to show that RegExp-String-Pair is no easier than BP-Satisfying-Pair. But actually it is

possible to show a direct reduction from Restricted OAPT to RegExp-String-Pair, without using the reduction

from Restricted OAPT to Restricted ε-Gap-Max-TropSim:
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Theorem 7.3. There exists anO(N poly(D))-time reduction from a Restricted OAPT instance with two sets

A,B of N tensors of size D to an RegExp-String-Pair instance with a set of N regular expressions of length

O(poly(D)) and a set of N strings of length D.

Proof. We use nearly the same reduction as in Theorem 7.1. The bit gadgets are constructed as follows:

Gi(a) =

{
[0 | 1] if ai = 0,

0 if ai = 1,
and Hi(b) =

{
0 if bi = 0,

1 if bi = 1.

for any a ∈ A, b ∈ B. And we construct ∧ gadgets in the same way as the max gadgets, ∨ gadgets in the

same way as the E gadgets. By De Morgan’s laws, we can show that H(b) ∈ L(G(a)) iff palt(a, b) = 0.

For the other direction, we note that the following theorem gives a low-space algorithm for exact and

approximate regular expression membership testing, then we can obtain a reduction by Theorem 4.1. The

following theorem is noted in [JR91]:

Theorem 7.4 ([JR91]). Given a regular expression a and a string b, deciding whether b ∈ L(a) is in NL.

Combining all the above reductions together, we can show the equivalence between all pairs of BP-

Satisfying-Pair, RegExp-String-Pair and ε-Gap-Closest-RegExp-String-Pair.

Theorem 7.5. For the case that the maximum element size D = 2(logN)o(1) , there are near-linear time

reductions between all pairs of the following problems:

• BP-Satisfying-Pair;

• RegExp-String-Pair;

• 2(logD)1−Ω(1)
-Gap-Closest-RegExp-String-Pair.

Proof. By Theorem 7.1 and 7.4, we can show cyclic reductions between these three problems in a similar

way as in the proof of Theorem 6.5.

We can also show a reduction from Restricted OAPT to Regular Expression Membership Testing on two

strings using the same gadgets in Theorem 7.3.

Theorem 7.6. There exists an O(N poly(D))-time reduction from a Restricted OAPT instance with two

sets A,B of N tensors of size D to an instance of Regular Expression Membership Testing on a regular

expression R of length O(N poly(D)) and a string S of length O(N poly(D)).

Proof. We construct the two sets A′, B′ as in Theorem 7.1. For the construction for the regular expression,

let w be the concatenation of all a′ ∈ A separated by “ | ”. Then we construct the regular expression R to be

R =
[
©D

i=1[0 | 1]
]∗ ◦ [w] ◦

[
©D

i=1[0 | 1]
]∗

and we construct the string S by concatenating all b′ ∈ B directly. It is easy to see that there exists a pair

(a, b) ∈ A×B with palt(a, b) = 0 iff S ∈ L(R), by noticing that all the strings x ∈ L(w), b′ ∈ B are of the

same length D.
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8 Subtree Isomorphism and Largest Common Subtree

In this section, we study the hardness of Subtree Isomorphism and Largest Common Subtree. Our reductions

here are inspired by [ABH+16, AR18]. We begin with some notations to ease our construction of trees.

Recall that all trees considered in this paper are bounded-degree and unordered. We are interested in both

rooted and unrooted trees. Here “rooted” means that the root of G must be mapped to the root of H in the

isomorphism.

We use T2 to denote the tree with exactly two nodes. Let T 0
3 be the 3-node tree with root degree 1, and

let T 1
3 be the 3-node tree with root degree 2. For a tree T , let Pk(T ) be the tree constructed by joining a

path of k nodes and the tree T : one end of the path is regarded as the root, the other end of the path is linked

to the root of T by an edge. For two trees Ta and Tb, we use (Ta ◦ Tb) to denote the tree whose root has two

children Ta and Tb.

8.1 Subtree Isomorphism

In this subsection, first we prove that BP-Satisfying-Pair and Subtree-Isomorphism-Pair are equivalent under

near-linear time reductions, then we show the hardness for Subtree Isomorphism on two trees.

For two trees Ta, Tb, we use STI(Ta, Tb) to indicate whether Ta is isomorphic to a subtree of Tb when

Ta, Tb are seen as unrooted trees. Also, we use RSTI(a, b) to indicate whether Ta is isomorphic to a subtree

of Tb when Ta, Tb are seen as rooted trees.

Theorem 8.1. Let t be an even number and d1 = · · · = dt = 2. Given two sets of N tensors A,B in

{0, 1}d1×···×dt satisfying that all the tensors in A are ∧-invariant, there is a deterministic algorithm running

in O(N poly(2t)) time which outputs two sets A′, B′ of N binary trees of size O(2t) and depth O(t), such

that each a ∈ A corresponds to a tree a′ ∈ A′, each b ∈ B corresponds to a tree b ∈ B′, and

palt(a, b) = RSTI(a′, b′) = STI(a′, b′),

where palt(a, b) is the negation of the Alternating Product of a and b.

Proof. For each k and each prefix of index i(k) ∈ [d1]× · · · × [dk] , we construct corresponding tree gadgets

Gi(k)(a) and Hi(k)(b) for each a ∈ A and b ∈ B (when k = 0, i(k) can only be the empty prefix, and we

simply useG(a) andH(b) for convenience) inductively, mimicking the evaluation of the alternating product.

Our gadgets satisfy that

RSTI(Gi(k)(a),Hi(k)(b)) = palt(ai(k) , bi(k))

for any subtensors ai(k) , bi(k) . For this purpose, we need to construct the following three types of tree gadgets.

Bit Gadgets. First we need bit gadgets to simulate the innermost coordinatewise product in the alternating

product. For each coordinate i ∈ [d1]× · · · × [dt], for every a ∈ A and b ∈ B, we construct

Gi(a) =

{
T2 if ai = 0,

T 1
3 if ai = 1,

and Hi(b) =

{
T 1
3 if bi = 0,

T2 if bi = 1.

It is easy to see that RSTI(Gi(a),Hi(b)) iff ai ∧ bi = 0.

Now we combine bit gadgets recursively according to the ∧ and ∨ operators in the Alternating Product.

Starting from k = t− 1, there are two cases to consider.
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AND Gadgets. The first case is when ∧ operator is applied to (k+ 1)-th dimension, then by De Morgan’s

laws, we need to construct our gadgets such that for all i(k) ∈ [d1]× · · · × [dk]

RSTI(Gi(k)(a),Hi(k)(b)) = RSTI(Gi(k),0(a),Hi(k),0(b)) ∨ RSTI(Gi(k),1(a),Hi(k),1(b)).

To do so, for a ∈ A, we construct Gi(k)(a) to be

Gi(k)(a) = P1(Gi(k),0(a)) = P1(Gi(k),1(a)),

which is well-defined since a is ∧-invariant. And we construct Hi(k)(b) to be

Hi(k)(b) =
(
Hi(k),0(b) ◦Hi(k),1(b)

)
.

In any subtree isomorphism, it is easy to see that Gi(k),0(a) (or Gi(k),1(a)) can only be mapped to either

Hi(k),0(b) or Hi(k),1(b), so Gi(k)(a),Hi(k)(b) implement an ∧ operator.

OR Gadgets. The second case is when ∨ operator is applied to (k+1)-th dimension, then by De Morgan’s

laws, we need to construct our gadgets such that for all i(k) ∈ [d1]× · · · × [dk],

RSTI(Gi(k)(a),Hi(k)(b)) = RSTI(Gi(k),0(a),Hi(k),0(b)) ∧ RSTI(Gi(k),1(a),Hi(k),1(b)).

First for any tree T , we define two auxiliary trees U0(T ),U1(T ) to ease our construction:

U0(T ) =
(
P3(T ) ◦ T 0

3

)
and U1(T ) =

(
P3(T ) ◦ T 1

3

)
.

It is easy to verify that for any two trees T1, T2, RSTI(U0(T1),U1(T2)) = RSTI(U1(T1),U0(T2)) = 0 and

RSTI(U0(T1),U0(T2)) = RSTI(U1(T1),U1(T2)) = RSTI(T1, T2).
We construct the corresponding tensor gadgets Gi(k)(a) and Hi(k)(b) for a ∈ A and b ∈ B as follows:

Gi(k)(a) =
(
U0(Gi(k),0(a)) ◦ U1(Gi(k),1(a))

)
,

and

Hi(k)(b) =
(
U0(Hi(k),0(b)) ◦ U1(Hi(k),1(b))

)
.

In any subtree isomorphism, it is easy to see that U0(Gi(k),0(a)) can only be mapped to U0(Hi(k),0(b)), and

U1(Gi(k),1(a)) can only be mapped to U1(Hi(k),1(b)), so Gi(k)(a),Hi(k)(b) implement an ∨ operator.

Correctness. It is not hard to verify that RSTI(G(a),H(b)) = palt(a, b) by De Morgan’s laws. To show

RSTI(G(a),H(b)) = STI(G(a),H(b)), we focus on the case that t > 0 since the case that t = 0 is obvious.

Let the root of GA be r and the height of GA be h. The outermost operator in an Alternating Product is ∧,

so r has only one child which has two subtrees of equal height h− 2. It is easy to see that the height of HB

is also h. Suppose that r is mapped to a node r′ in HB and c is mapped to c′. If we regard c′ as the root of

HB, then after deleting c′, HB should be split into two subtrees of height ≥ h− 2 and a single node r′. The

only possible case is that c′ is of depth 1 w.r.t. the original root of HB (the depth of a root is 0) and r′ is the

original root of HB.

Theorem 8.2. Given two bounded-degree unrooted trees TA and TB , it can be decided in NSPACE[(log n)2]
that whether TA is isomorphic to a subtree of TB .
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Proof. This algorithm works by divide and conquer on trees. At each recursion, we have two trees SA
and SB (implicit representation) as well as a set of node pairs M = {(a1, b1), . . . , (ak, bk)} (initially,

SA = TA, SB = TB and M = ∅). We need to decide whether there is an isomorphism from SA to some

subtree of SB satisfying ai in SA is mapped to bi in SB for all 1 ≤ i ≤ k.

First we find a centroid c of SA, i.e., a node of SA that decomposes SA into subtrees of size at most

⌈|SA|/2⌉ when the node is deleted. Then we nondeterministically guess a node c′ in SB to be the node that

mapped by c in the isomorphism. If c = ai for some i but c′ 6= bi, then we reject; otherwise, we guess an

injective mapping from the neighbors of c in SA to the neighbors of c′ in SB .

For each neighbor v of c, let v′ be the neighbor of c′ mapped by v, Sv
A be the subtree of SA containing v

when the edge between v and c is deleted, Sv′
B be the subtree of SB containing v′ when the edge between v′

and c′ is deleted. We create a new set of node pairs M ′ = {(ai, bi) ∈ M | ai ∈ Sv
A}. If bi /∈ Sv′

B for some

pair (ai, bi) ∈M ′, then we reject; otherwise, we recursively checking if there is an isomorphism from Sv
A to

some subtree of Sv′
B satisfying ai is mapped to bi for all (ai, bi) ∈M ′ and v is mapped to v′.

This algorithm terminates when SA is a single node. There are at most O(log n) levels of recursion by

the property of centroid. At each level, we use only O(log n) space for c, c′ and their neighbors (note that

SA, SB are bounded-degree trees), and SA, SB can always be accessed according to the information stored

at the upper levels of recursion. Thus this algorithm runs in NSPACE[(log n)2].

Combining the above reductions together, we can show the equivalence between BP-Satisfying-Pair and

Subtree-Isomorphism-Pair.

Theorem 8.3. BP-Satisfying-Pair on branching program of size 2(logN)o(1) and Subtree-Isomorphism-Pair

on (rooted or unrooted) trees of size 2(logN)o(1) are equivalent under near-linear time reductions.

We can also show a reduction from OAPT to Subtree Isomorphism on two trees using the same gadgets

in Theorem 8.1.

Theorem 8.4. There exists anO(N poly(D))-time reduction from a Restricted OAPT instance with two sets

A,B of N tensors of size D to an instance of Subtree Isomorphism on two (rooted or unrooted) binary trees

of size O(N poly(D)) and depth 2 logN +O(logD).

Proof. Using the recursive construction in Theorem 8.1 we can obtain tensor gadgets G(a),H(b) for each

a ∈ A and b ∈ B, such that palt(a, b) = RSTI(G(a),H(b)) = STI(G(a),H(b)).
We can assume the set size N is a power of 2 by adding dummy vectors into each set. Now we

combine the tensor gadgets in each set respectively to construct two treesGA,HB as our instance for Subtree

Isomorphism:

a) To construct GA for set A:

• Initialize GA by a complete binary tree of N leaves;

• Associate each leaf with a tensor a ∈ A;

• For all a ∈ A, construct P logN (G(a)) and link an edge from its root to the corresponding leaf of a.

b) To construct HB for set B:

• Initialize HB by a complete binary tree of N leaves;

• Select one leaf node vℓ;

• For every unselected leaf, construct P logN (H(0)) and link an edge from its root to the leaf.

• Construct a complete binary tree of N leaves rooted at vℓ;

• Associate each leaf of the tree rooted at vℓ with a tensor b ∈ B;

• For all b ∈ B, construct P logN (H(b)) and link an edge from its root to the corresponding leaf of b.
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Correctness For any subtree isomorphism, one G(a) can be mapped to any H(b) or H(0). Since there

are only N − 1 gadgets of H(0), there must be some G(a) mapped to some H(b). Thus RSTI(GA,HB)
iff there exists a pair of (a, b) ∈ A × B with palt(a, b) = 0. It is not hard to see that the root of GA

can only be mapped to the root of HB by arguing about the tree height (similar as Theorem 8.1), so

RSTI(GA,HB) = STI(GA,HB).

8.2 Largest Common Subtree

In this subsection, first we prove that under near-linear time reductions between BP-Satisfying-Pair and

(exact or approximate) Max-LCST-Pair / Min-LCST-Pair are equivalent, then we show the hardness for Largest

Common Subtree on two trees.

For two trees a, b, define LCST(a, b) to be the size of the largest common subtree of a and b when a, b
are seen as unrooted trees. Also, we define RLCST(a, b) to be the size of the largest common subtree of a
and b when a, b are seen as rooted trees.

Now we establish a connection between Restricted Max-TropSim and Max-LCST-Pair:

Theorem 8.5. Let t be an even number and d1 = · · · = dt = 2. Given two sets of N tensors A,B in

{0, 1}d1×···×dt satisfying that all the tensors in A are max-invariant, for any L ≥ 2t, there is a deterministic

algorithm running in O(N · poly(2t) · L) time which outputs two sets A′, B′ of N binary trees of size

O(poly(2t) · L) and depth O((2t/2 + logL) · t), such that each a ∈ A corresponds to a tree a′ ∈ A′, each

b ∈ B corresponds to a tree b ∈ B′, and

RLCST(a′, b′) = (2t/2s(a, b) +O(1))L

LCST(a′, b′) = (2t/2s(a, b) +O(1))L

where s(a, b) is the Tropical Similarity score of a and b. In particular, if s(a, b) = 1, then a′, b′ satisfy

RLCST(a′, b′) = LCST(a′, b′) = |a′|.
Proof. For each k and each prefix of index i(k) ∈ [d1] × · · · × [dk] , we construct corresponding gadget

a′ = Gi(k)(a) and b′ = Hi(k)(b) for each a ∈ A and b ∈ B (when k = 0, i(k) can only be the empty prefix,

and we simply use G(a) and H(b) for convenience) inductively, mimicking the evaluation of the Tropical

Similarity. For this purpose, we need to construct the following three types of gadgets.

Bit Gadgets. For each coordinate i ∈ [d1]×· · ·× [dt], let Ci be the tree constructed by join a path of length

2t/2 and a complete binary tree of L nodes: one end of the path is regarded as the root, and we link an edge

between the node of depth binodd(i) and the root of the complete binary tree, where binodd(i) ∈ [0, 2t/2) is

the number whose binary representation is i1i3 · · · it−1.

For every a ∈ A and for each coordinate i ∈ [d1] × · · · × [dt], we construct Gi(a) = Ci if ai = 1, or

simply a path of length 2t/2 if ai = 0. Similarly, for every b ∈ B and for each coordinate i ∈ [d1]×· · ·× [dt],
we construct Hi(b) = Ci if bi = 1, or simply a path of length 2t/2 if ai = 0.

If ai · bi = 0, then RLCST(Gi(a),Hi(b)) = 2t/2; otherwise RLCST(Gi(a),Hi(b)) = 2t/2 +L. Further-

more, for any two coordinates i, j with binodd(i) 6= binodd(j), RLCST(Gi(a),Hj(b)) = 2t/2.

Let K = 2t/2 + ⌈logL⌉ + 1 be the maximum possible height of a bit gadget. Now we combine bit

gadgets recursively according to the E and max operators in the evaluation of Tropical Similarity score.

Starting from k = t− 1, there are two cases to consider.

Expectation Gadgets. The first case is when E operator is applied to (k + 1)-th dimension. For i(k) ∈
[d1]× · · · × [dk] and a ∈ A, we construct Gi(k)(a),Hi(k)(b) as follows:

Gi(k)(a) =
(
PK−1(Gi(k),0(a)) ◦ PK−1(Gi(k),1(a))

)
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and

Hi(k)(a) =
(
PK−1(Hi(k),0(b)) ◦ PK−1(Hi(k),1(b))

)

Max Gadgets. The second case is when max operator is applied to (k + 1)-th dimension. For i(k) ∈
[d1]× · · · × [dk] and a ∈ A, we construct Gi(k)(a),Hi(k)(b) as follows:

Gi(k)(a) = PK(Gi(k),0(a)) = PK(Gi(k),1(a))

and

Hi(k)(a) =
(
PK−1(Hi(k),0(b)) ◦ PK−1(Hi(k),1(b))

)
.

Note that Gi(k)(a) is well-defined since a is max-invariant.

Finally we obtain tensor gadgets G(a),H(b) for every a ∈ A, b ∈ B. It is easy to see that the depth of

trees is O(tK) ≤ O((2t/2 + logL) · t), and the size of trees is O(L · 2t +K · 2t) = O(poly(2t) · L).

Correctness for RLCST. First we show that RLCST(G(a),H(b)) = (2t/2s(a, b) + O(1))L. We fix two

tensors a, b. For every dimension k, let Uk be a set of gadget pairs:

Uk = {(Gi(k)(a),Hj(k)(b)) | i(k), j(k) ∈ [d1]× · · · × [dk], ip 6= jp for some odd p}.

Let εk be the maximum RLCST among the pairs in Uk.

For every i(k) ∈ [d1]× · · · × [dt], let f(i(k)) = RLCST(Gi(k)(a),Hi(k)(b)). For the last dimension t, it

is easy to see that f(i) = 2t/2 + (ai · bi) · L and εt = 2t/2. Now we prove by induction that f(i(k)) ≥ εk
holds for every 0 ≤ k ≤ t and i(k) ∈ [d1]× · · · × [dk].

On the one hand, if an E operator is applied to the (k + 1)-th dimension, by induction hypothesis

we have f(i(k), 0) + f(i(k), 1) ≥ 2εk+1, so f(i(k)) = f(i(k), 0) + f(i(k), 1) + 2(K − 1) + 1. Note that

εk ≤ 2εk+1 + 2(K − 1) + 1, so f(i(k)) ≥ εk holds. On the other hand, If the max operator is applied to

the (k + 1)-th dimension, then we have f(i(k)) = max{f(i(k), 0), f(i(k), 1)} +K and εk ≤ εk−1 +K , so

f(i(k)) ≥ εk holds as well.

Expanding the above recurrence relation of f(i(k)), we have

RLCST(G(a),H(b)) = 2t/2s(a, b)L+O(K) · 2t/2

= 2t/2s(a, b)L+O(2t/2 + logL) · 2t/2

= (2t/2s(a, b) +O(1))L.

Correctness for LCST. Now we show that LCST(G(a),H(b)) = RLCST(G(a),H(b))+O(L). Fix a pair

of (a, b) ∈ A× B. If a node of G(a) or H(b) is in a bit gadget, then we call it bit node. If a node of G(a)
or H(b) is not in any bit gadget, then we call it operator node.

Let IG(a) and IH(b) be the largest isomorphic subtrees in G(a) and H(b). Let ra be the root of IG(a),
i.e., the lowest node when the tree is directed with respect to the root ofG(a), and let rb be the root of IH(b).
Let r′b be the node in G(a) that is mapped to rb, and r′a be the node in H(b) that is mapped from ra.

If ra = r′b, then let q = 1 and u1 = ra, u
′
1 = rb. Otherwise, let u1, . . . , uq be the list of nodes that are

in IG(a) and are adjacent to some node on the path from ra to r′b. Assume u1, . . . , uq is in depth-increasing

order (it is easy to see that no two such nodes are of same depth). Let u′1, . . . , u
′
q be the nodes in IH(b) that

are mapped by u1, . . . , uq, respectively. Each node in u′1, . . . , u
′
q should be adjacent to some node on the

path from r′a to rb in IH(b).
For a node ui, we denote the whole subtree of ui in G(a) as Tui , and we define T ′

u′
i

similarly. We can

decompose the subtree IG(a) into two parts: the first part is the path from ra to r′b, and the second part is
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Figure 2: An illustration of IG(a) and IH(b).

the q rooted subtrees T̃u1 = Tu1 ∩ IG(a), . . . , T̃uq = Tuq ∩ IG(a). Similarly, we can decompose IH(b) into

the path from rb to r′a and q rooted subtrees T̃u′
1
= Tu′

1
∩ IH(b), . . . , T̃u′

q
= Tu′

q
∩ IH(b). Thus we have

LCST(G(a),H(b)) = q +

q∑

i=1

∣∣∣T̃ui

∣∣∣ ≤ O(tK) +

q∑

i=1

RLCST(Tui , T
′
u′
i
)

It is sufficient to obtain a bound for the sum of RLCST of Tui , T
′
u′
i
. If some uj is a bit node, then ui is also

a bit node for all i > j, and all of them are in the same bit gadget, so
∑q

i=j RLCST(Tui , T
′
u′
i
) ≤ O(2t/2 +L).

Similarly, some u′j is a bit node, then u′i is also a bit node for all i < j, and all of them are in the same bit

gadget, so
∑j

i=1 RLCST(Tui , T
′
u′
i
) ≤ O(2t/2 + L).

Now we consider the following three cases when both ui and u′i are operator nodes: (depth(ui) stands

for the depth of ui in G(a), depth(u′i) stands for the depth of u′i in H(b))

Case 1. depth(ui) 6≡ depth(u′i) (mod K), then it is impossible to map some operator node with two

children in Tui to an operator node with two children in Tu′
i
. If depth(ui) > depth(u′i), then at most

one bit gadget in Tui can have nodes being mapped to Tu′
i
, and the case that depth(ui) < depth(u′i)

is similar. Thus RLCST(Tui , T
′
u′
i
) ≤ O(tK) + (2t/2 + L) = O(tK + L).

Note that the depth of parent nodes of ui and u′i should also be different modulo K , so either ui has

no parent in IG(a) (this is the case when ra = r′b) or the parent of ui has only one child in IG(a),
and either case implies i = q.

Case 2. If depth(ui) ≡ depth(u′i) (mod K) but depth(ui) > depth(u′i), then since K is an upper bound

of the height of any bit gadget, all the nodes in Tui can only be mapped to the operator nodes in Tu′
i
,
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which implies RLCST(Tui , T
′
u′
i
) is no more than the number of operator nodes in T ′

u′
i
. The case that

depth(ui) ≡ depth(u′i) (mod K) but depth(ui) < depth(u′i) is similar.

All the trees T ′
u′
i

are disjoint. Thus the sum
∑

i RLCST(Tui , T
′
u′
i
) over all i in this case can be

upper-bounded by the total number of operator nodes in G(a), which is O(K · 2t/2).

Case 3. If depth(ui) = depth(u′i), then there exists two prefixes of index i(k), j(k), such that

RLCST(Tui , Tu′
i
) = RLCST(Gi(k)(a),Hj(k)(b)) +O(K)

Note that u1, . . . , uq are in depth-increasing order, and u′q, . . . , u
′
1 are in depth-decreasing order, so

this case can only happen for at most one pair of nodes.

Summing up all the above cases, we have

LCST(G(a),H(b)) ≤ O(tK) +O(2t/2 + L) +O(tK + L) +O(K · 2t/2) + RLCST(Gi(k)(a),Hj(k)(b))

for any i(k), j(k). Thus LCST(G(a),H(b)) ≤ RLCST(G(a),H(b)) +O(L).

By Theorem 8.5 with L = 2t, we can easily have the following reductions from ε(D)-Gap-Max-

TropSim and ε(D)-Gap-Min-TropSim to approximation variants of Max-LCST-Pair and Min-LCST-Pair. Here

we focus on the case that ε(D) = Ω(D−1/2). It is reasonable since
√
D · s(a, b) is always an integer,

and o(D−1/2)-Gap-Max-TropSim is essentially equivalent to Max-TropSim. This argument also holds for

o(D−1/2)-Gap-Min-TropSim.

Theorem 8.6. For any function ε(D) = Ω(D−1/2), there exists an O(N poly(D))-time reduction from

a Restricted ε(D)-Gap-Max-TropSim instance with two sets of N tensors of size D to an instance of the

following approximation variant of Max-LCST-Pair: Given two sets A,B of N trees of size poly(D) and a

set B of N strings of length D over a constant-size alphabet, distinguish between the following:

• Completeness: There exists a pair of a, b such that LCST(a, b) = |a| = (1 + o(1))D3/2;

• Soundness: For every pair a, b, LCST(a, b) ≤ O(ε(D)D3/2).

And this conclusion also holds for RLCST.

Remark 8.7. Note that Theorem 8.6 also implies a reduction from BP-Satisfying-Pair to Subtree-Isomorphism-

Pair, but the trees constructed by the reduction in Theorem 8.1 have a smaller size and a lower depth.

Theorem 8.8. For any function ε(D) = Ω(D−1/2), there exists an O(N poly(D))-time reduction from

a Restricted ε(D)-Gap-Min-TropSim instance with two sets of N tensors of size D to an instance of the

following approximation variant of Min-LCST-Pair: Given two sets A,B of N trees of size poly(D) and a

set B of N strings of length D over a constant-size alphabet, distinguish between the following:

• Completeness: There exists a pair of a, b such that LCST(a, b) ≤ O(ε(D)D3/2);

• Soundness: For every pair a, b, LCST(a, b) = |a| = (1 + o(1))D3/2.

And this conclusion also holds for RLCST.

By Theorem 4.2, we show reductions from Max-LCST-Pair (or Min-LCST-Pair) to BP-Satisfying-Pair via

the following theorem:
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Theorem 8.9. Given two bounded-degree unrooted trees TA and TB and a number q, it can be decided in

NSPACE[(log n)2] that whether there is an isomorphism between a subtree of TA and a subtree of TB of size

q.

Proof. The algorithm in Theorem 8.2 suffices to fulfill the requirement if modified slightly. At each level of

recursion, we have two trees SA and SB, a number q, and a set of node pairs M = {(a1, b1), . . . , (ak, bk)}.

We need to decide whether there is an isomorphism from a subtree of SA to a subtree of SB satisfying it is

of size q and ai in SA is mapped to bi in SB for all 1 ≤ i ≤ k.

First we find a centroid c of SA, then we guess if there is a subtree of size q that contains c and is

isomorphic to a subtree of SB. If not, then we delete c to decompose SA into subtrees, guess which subtree

contains a subtree that is isomorphic to a subtree of SB of size q, and runs our algorithm to check recursively;

If it is, then follow the same routine as in Theorem 8.2: we guess a node c′ in SB to be the node that mapped

by c in the isomorphism and a bijective mapping from some of the neighbors of c in SA to some of the

neighbors of c′ in SB. Additionally, we guess a number qv for each neighbor v of c and ensure the sum of qv
over all neighbors equals to q − 1. We then check recursively if there is an isomorphism from a subtree of

Sv
A to a subtree of Sv′

B of size q subject to the constraint that some set of node pairs are matched. It is clear

that this algorithm runs in NSPACE[(log n)2].

Theorem 8.10. For the case that the maximum element size D = 2(logN)o(1) , there are near-linear time

reductions between all pairs of the following problems:

• BP-Satisfying-Pair;

• Max-LCST-Pair or Min-LCST-Pair on (rooted or unrooted) trees;

• 2(logD)1−Ω(1)
-approximate Max-LCST-Pair or Min-LCST-Pair on (rooted or unrooted) trees;

Proof. By Theorem 8.6, 8.8 and 8.9, we can show cyclic reductions between these three problems in a

similar way as in the proof of Theorem 6.5.

We can also show a reduction from ε(N)-Gap-Max-TropSim to Largest Common Subtree on two large

trees using the same gadgets in Theorem 8.5.

Theorem 8.11. Let t be an even number and d1 = · · · = dt = 2. Given two sets of N tensors A,B in

{0, 1}d1×···×dt , for L = Θ(2t log2N), there is a deterministic algorithm running in O(N log2N2O(t)) time

which outputs two binary trees A′, B′ of sizeO(N log2N2O(t)) and depthO(log2N poly(t)2t/2), such that

RLCST(A′, B′) = (2t/2smax +O(1))L

LCST(A′, B′) = (2t/2smax +O(1))L

where smax is the maximum Tropical Similarity among all pairs of (a, b) ∈ A×B.

Proof. Using the recursive construction in Theorem 8.5, we can obtain tensor gadgets G(a),H(b) for each

a ∈ A and b ∈ B. Let m be the smallest number such that N ≤ 2m. Now we combine the tensor gadgets in

each set respectively to construct two trees GA,HB as our instance for Largest Common Subtree.

For any number K , we define K-zoomed complete binary tree ZK of 2m as follows: first we construct a

complete binary tree of 2m leaves, then we insert K − 1 internal nodes between every pair of adjacent nodes

(so ZK is of height mK + 1).

Let KD = O((2t/2 + logL)t) be the maximum diameter of any tensor gadget (G(a) or H(b)). Let

KG = 2(m+ 1)KD .

We construct GA = PmKG+1(TA), where TA is the following auxiliary tree:
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• Initialize TA = ZKD
, and arbitrarily select N leaves;

• For each selected leaf, associate it with a tensor a ∈ A;

• Construct G(a) for every a ∈ A, and link an edge from its root to the corresponding leaf of a.

And the tree HB for set B is constructed as follows:

• Initialize HB = ZKG
and arbitrarily select N leaves;

• For each selected leaf, associate it with a tensor b ∈ B;

• Construct PmKD+1(b) for every b ∈ B, and link an edge from its root to the corresponding leaf of b.

Proof for RLCST. Note that all the tensor gadgets are of same depth, and only one gadget G(a) in GA can

be mapped to a gadget H(b) in HB .

For L = Θ(2t log2N), using the fact that RLCST(G(a),H(b)) = (2t/2s(a, b)+O(1))L, one can easily

show that

RLCST(GA,HB) = (2t/2smax +O(1))L +O(mKG +mKD) = (2t/2smax +O(1))L.

Proof for LCST. Now we show that LCST(GA,HB) ≤ LCST(G(a),H(b))+O(L) for some (a, b) ∈ A×B.

If a node of GA or HB is in a tensor gadget, then we call it tensor node. If a node of G(a) or H(b) is not

in any tensor gadget, then we call it assembly node. Let G′
A be the tree GA with all tensor nodes removed,

and we define H ′
B respectively.

We consider the following three cases:

Case 1. If none of tensor node of GA is in the LCST, then

LCST(GA,HB) = LCST(G′
A,HB) ≤ LCST(PA,HB) + LCST(ZKD

,HB),

where PA is the path of length mKG + 1 linked with the root of TA. It is easy to see that

LCST(PA,HB) ≤ mKG + 1. Note that every pair of two tensor node from different tensor

gadgets has distance at least 2KG, which is greater than the diameter of TA, so the isomorphic

subtree of TA in HB cannot contain nodes from more than one tensor gadgets. By noticing

that LCST(ZKD
,H(b)) = O(KD) for all b ∈ B and LCST(ZKD

,ZKG
) = O(KG), we have

LCST(ZKD
,HB) = O(KG). Thus LCST(GA,HB) = mKG +O(KG) = O(mKG).

Case 2. If LCST contains some tensor nodes of GA, and all such tensor nodes are mapped to assembly

nodes of HB , then LCST(GA,HB) is no more than LCST(G′
A,HB) plus the number of tensor

nodes in the LCST. By Case 1, LCST(G′
A,HB) = O(mKG). Note that every two tensor nodes

in GA has distance at most KG and any set of nodes of diameter O(KG) in HB can only have

size O(KG), so the number of tensor nodes in LCST is at most O(KG). Thus LCST(GA,HB) =
O(mKG) +O(KG) = O(mKG).

Case 3. If some tensor node in GA is mapped to a tensor node inHB, then all the tensor nodes of GA in the

LCST are in the same tensor gadget, and it also holds for GB . This can be shown as follows: Let

u1, u2 be two tensor node in GA that are mapped to tensor nodes u′1, u
′
2 in HB, then

• u1, u2 are in the same tensor gadget. This is because that the minimum distance between two

tensor nodes from different tensor gadgets in GA is at least 2KD and at most KG, but the

distance between any two tensor nodes in HB is either ≤ KD or ≥ 2KG.
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• u′1, u
′
2 are in the same tensor gadget. This is because that the minimum distance between two

tensor nodes from different tensor gadgets in HB is at least 2KG, but the distance between

any two tensor nodes in GA is at most KG.

Let G(a) be the unique tensor gadget in GA that has nodes in the LCST, and let H(b) be the unique

tensor gadget in HB that has nodes in the LCST. By Case 1, LCST(G′
A,HB) = O(mKG). Thus

we have

LCST(GA,HB) ≤ LCST(GA \G(a),HB) + LCST(G(a),H(b))

= O(mKG) + LCST(G(a),H(b)).

In any case, we can show that LCST(GA,HB) ≤ LCST(G(a),H(b)) +O(L) for some (a, b) ∈ A×B,

which completes the proof.

Theorem 8.12. There exists an O(N poly(D))-time reduction from an ε(N)-Gap-Max-TropSim instance

with two sets of N tensors of size D to an instance of o(ε(N)−1)-approximate Largest Common Subtrees on

two (rooted or unrooted) binary trees of sizeO(N poly(D, ε(N)−1)) and depthO(log2N poly(D, ε(N)−1)).

Proof. First we add dummy dimensions to each tensor such that the new size C of every tensor is at least

Ω(ε−2(N)). We construct the two trees A′, B′ as in Theorem 8.11. By setting L = C log2N , we have

LCST(A′, B′) = (
√
C · smax +O(1)) · C log2N.

Thus it reduces to distinguish LCST(A′, B′) from being ≥ C3/2 log2N and ≤ O(ε(N)C3/2 log2N),
which can be solved by an o(ε(N)−1)-approximation algorithm for LCST. This conclusion also holds for

RLCST.

9 Equivalence in the Data Structure Setting

In this section, we establish the equivalence between BP-Pair-Class problems in the data structure setting.

Theorem 9.1. For the following data structure problems, if any of the following problems admits an algorithm

with preprocessing time T (N), space S(N) and query time Q(N), then all other problems admits a similar

algorithm with preprocessing time T (N) ·No(1), space S(N) ·No(1) and query time Q(N) ·No(1).

• NNSLCS: Preprocess a database D of N strings of length D = 2(logN)o(1) , and then for each query

string x, find y ∈ D maximizing LCS(x, y).

• Approx. NNSLCS: Find y ∈ D s.t. LCS(x, y) is a 2(logD)1−Ω(1)
approximation to the maximum value.

• Regular Expression Query: Preprocess a database D ofN strings of length D = 2(logN)o(1) , and then

for each query regular expression y, find an x ∈ D matching y.

• Approximate Regular Expression Query: for a query expression y, distinguish between: (1) there is

an x ∈ D matching y; and (2) for all x ∈ D, the hamming distance between x and all z ∈ L(y) is at

least (1− o(1)) ·D.

Proof. We show a reduction from NNSLCS to Approx. NNSLCS for illustration, and the proofs for the other

pairs of problems are essentially the same.

By Lemma 6.4, there is a BP of poly-logarithmic size that accepts (a, b, k) iff LCS(a, b) ≥ k. Then

using a similar argument as in Theorem 6.5, we can show a reduction from an instance φ = (A,B) of the

37



following problem to an Approx. Closest-LCS-Pair instance φ′ = (A′, B′): given a set of strings A and a

set of string-integer pairs, determine whether there are a ∈ A and (b, k) ∈ B such that LCS(a, b) ≥ k.

Moreover, this reduction maps each element separetely, i.e., there exist two maps f, g such that A′ = {f(a) |
a ∈ A}, B′ = {g(b, k) | (b, k) ∈ B}, and both f and g are computable in O(2polylog(D)) = 2(logN)o(1) time

and space for each string of length D.

Now suppose there is a data structure for Approx. NNSLCS with preprocessing time T (N), space S(N)
and query time Q(N). For a set of string A, we construct a data structure for NNSLCS as follows. In the

preprocessing stage, we map all the strings inA via f and store them in a data structureD for Approx. NNSLCS.

For each query string, we do a binary search for the maximum LCS. For every length k encountered, we first

map the query string and the length k via g and then query it in the data structure D. The time cost and space

usage of the new data structure can be easily analyzed.

A direct generalization of the above proof is that NNSLCS is actually the hardest NNS problem among all

distance that can be computed in small space.

Corollary 9.2. For every distance function dist that can be computed in poly-logarithmic space, the exact

NNS problem with respect to dist (NNSdist) can be reduced to 2(logD)1−Ω(1)
-approximate NNSLCS in near-

linear time.

Remark 9.3. Here we assume that when the size parameter for NNSdist isN , the inputs to dist takes 2(logN)o(1)

bits to describe, and the output of dist takes polylog(N) bits to describe.

Furthermore, basing on the hardness of solving BP-SAT, we can show that there may not be an efficient

data structure for NNSLCS in the following sense:

Theorem 9.4. Assuming the satisfiability for branching programs of size 2n
o(1)

cannot be decided in

O(2(1−δ)n) for some δ > 0, there is no data structure for Approx. NNSLCS (or other data structure problems

listed in Theorem 9.1) with preprocessing time O(N c) and query time N1−ε for some c, ε > 0.

Proof. Our proof closely follows the proof for Corollary 1.3 in [Rub18]. We only prove that it is true

for Approx. NNSLCS, the case for other data structures are similar. Assume such a data structure for

Approx. NNSLCS does exist. Now we show that there is an algorithm for approximate Closest-LCS-Pair that

runs in O(N2−δ′) time for some δ′ > 0.

Let (A,B) be an instance of approximate Closest-LCS-Pair. Let γ = 1/(2c). We partition the set A
into M = O(N1−γ) subsets A1, . . . , AM , each of size O(Nγ). Now for each subset Ai, we build a data

structure for Approx. NNSLCS, and query each b ∈ B in the data structure. Finally, we take the maximum

among all the query results. The total time for preprocessing isO(M · (Nγ)c) = O(N3/2) and that for query

is O(N ·M · (Nγ)1−ε) = O(N2−εγ).

10 Faster BP-SAT Implies Circuit Lower Bounds

In [AHVW16], Abboud et al. showed that faster exact algorithms for Edit Distance or LCS imply faster

BP-SAT, and it leads to circuit lower bound consequences that are far stronger than any state of art. Using

a similar argument, strong circuit lower bounds can also be shown if any of BP-Pair-Class or BP-Pair-Hard

problems has faster algorithms, even for shaving a quasipolylog factor.

We apply the following results from [AHVW16] to show the circuit lower bound consequences, which

are direct corollaries from [Wil13, Wil14b]:

Theorem 10.1 ([Wil13, Wil14b]). Let n ≤ S(n) ≤ 2o(n) be a time constructible and monotone non-

decreasing function. Let C be a class of circuits. If the satisfiability of a function of the form

38



• AND of fan-in in O(S(n)) of

• arbitrary functions of fan-in 3 of

• O(S(n))-size circuits from C

can be decided in DTIME[O(2n/n10)] time, then ENP does not have S(n)-size C-circuits.

Theorem 10.2 ([Wil13]). For the complexity class NTIME[2O(n)], we have

1. If for every constant k > 0, there is a satisfiability algorithm for bounded fan-in formulas of size nk

running in DTIME[O(2n/nk)] time, then NTIME[2O(n)] is not contained in non-uniform NC1;

2. If for every constant k > 0, there is a satisfiability algorithm for NC-circuits of size nk running in

DTIME[O(2n/nk)] time, then NTIME[2O(n)] is not contained in non-uniform NC.

First we show the circuit lower bound consequences if truly-subquadratic algorithm exists:

Reminder of of Corollary 1.13 If any of the BP-Pair-Class or BP-Pair-Hard problems admits an N2−ε time

deterministic algorithm (or (NM)1−ε time algorithm for regular expression membership testing) for some

ε > 0, then ENP does not have:

1. non-uniform 2n
o(1)

-size Boolean formulas,

2. non-uniform no(1)-depth circuits of bounded fan-in, and

3. non-uniform 2n
o(1)

-size nondeterministic branching programs.

Furthermore, NTIME[2O(n)] is not in non-uniform NC.

Proof. A truly-subquadratic time algorithm for BP-Pair-Class or BP-Pair-Hard problems implies a 2(1−Ω(1))n -

time algorithm for BP-SAT on branching program of size 2n
o(1)

. Let S(n) = 2n
o(1)

. O(S(n))-size boolean

formulas, O(log S(n))-depth circuits, 2n
o(1)

-size nondeterministic branching programs are all closed under

AND, OR and NOT gates proscribed in Theorem 10.1. Note that any formula of size 2n
o(1)

can be transformed

into an equivalent no(1)-depth circuit [Spi71], and any no(1)-depth circuit can be transformed into 2n
o(1)

-size

branching program by Barrington’s Theorem [Bar89]. Then all the consequences in Item 1, 2, 3 follow from

Theorem 10.1. Combining Item 2 and Theorem 10.2, we can obtain the consequence that NTIME[2O(n)] is

not in non-uniform NC.

We can also obtain results showing that even shaving a quasipolylog factor 2(log logN)3 for problems in

BP-Pair-Class and BP-Pair-Hard can imply new circuit lower bound. First, it is easy to see that shaving a

(logN)ω(1) factor can lead to new circuit lower bound by Theorem 10.2.

Theorem 10.3. If there is a deterministic algorithm for BP-Satisfying-Pair on BP of size S = 2(logN)o(1)

running in O(N2 poly(S)/(logN)ω(1)) time, then the following holds:

1. For any constant k > 0, SAT on bounded fan-in formula of size nk can be solved in O(2n/nω(1))
deterministic time;

2. NTIME[2O(n)] is not contained in non-uniform NC1.
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Proof. By Theorem 10.2, Item 1 implies Item 2, so we only need to show the conclusion in Item 1.

If BP-Satisfying-Pair can be solved in O(N2 poly(S)/(logN)ω(1)) time, then BP-SAT on BP of size

O(poly(n)) can be solved in

O(2n poly(n)/nω(1)) = O(2n/nω(1)).

Note that any formula of size nk can be transformed into an equivalent BP of width W = 5 and length T =
O(n8k) (by rebalancing into a formula of depth 4k log n [Spi71] and using Barrington’s Theorem [Bar89]).

Thus SAT on bounded fan-in formulas of size nk can also be solved in O(2n/nω(1)).

A part of our reductions from BP-Satisfying-Pair to problems in BP-Pair-Class can be summerized below.

In the rest of this section, for each problem in BP-Pair-Class (but except BP-Satisfying-Pair), we use the

variable N to denote the number of elements in each set, and D to denote the maximum length (or size) of

each element. We exclude BP-Satisfying-Pair here because the size S of BP is more important than D in

BP-Satisfying-Pair.

Corollary 10.4. For every problem P in BP-Pair-Class except BP-Satisfying-Pair:

• If P is a decision problem, then there is an O(N poly(D))-time reduction from Restricted OAPT to

P;

• If P is an approximate problem, then for every ε(D) = Ω(D−1/2), there is an O(N poly(D))-time

reduction from Restricted ε(D)-Gap-Max-TropSim or Restricted ε(D)-Gap-Max-TropSim to P with

approximation ratio o(ε(D)−1), and each element has size O(poly(D)).

And any reduction here preserves the value of N .

Reminder of Theorem 1.10 For D = 2(logN)o(1) , if there is an

O
(
N2 poly(D)/2(log logN)3

)
or O

(
N2/(logN)ω(1)

)

time deterministic algorithm for the decision, exact value, or O(polylog(D))-approximation problems in

BP-Pair-Class, then the same consequences in Theorem 10.3 follows.

Proof. By Corollary 10.4 and the fact that exact value problem can be trivially reduced to its approximation

version, we only need to show that this statement is true for OAPT and (logD)c-Gap-Max-TropSim for every

c > 0 (the proof for (logD)c-Gap-Min-TropSim should be similar).

Note that all our reductions here preserve the value of N . If there is an O(N2/(logN)ω(1))-time

algorithm, then BP-Satisfying-Pair can also be solved in O(N2/(logN)ω(1))-time and the consequences in

Theorem 10.3 follows.

Now consider the case that a O(N2 poly(D)/2(log logN)3)-time algorithm exists. Recall that the hard

instances of BP-Satisfying-Pair we constructed in the proof of Theorem 10.3 is on BP of widthW = O(1) and

length T = O(poly(n)) = O(polylog(N)). By Theorem 5.1, we know that this instance can be near-linear

time reduced to an OAPT instance with

D = 2O(logW log T ) = 2O(log logN) = polylog(N).

Thus shaving an O(2(log logN)3) factor to OAPT implies an O(N2/(logN)ω(1))-time algorithm for BP-

Satisfying-Pair.

By Theorem 5.6, for ε = log−3c(T ), we know that a hard instance of BP-Satisfying-Pair can also be

near-linear time reduced to an ε-Gap-Max-TropSim instance with (adding dummy dimensions if necessary)

D = 2Θ(log2 W log2 T (log logW+log log T+log ε−1)) = 2Θ(log2 T log log T ).
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Then we have (logD)c = o(ε−1), and thus shaving an O(2(log logN)3) factor to (logD)c-Gap-Max-TropSim

implies an algorithm for the hard instances of BP-Satisfying-Pair running in the following time:

O(N2 poly(D)/2(log logN)3) = O(N2 · 2Θ(log2 T log log T )/2(log logN)3)

= O(N2/(logN)ω(1)).

For BP-Pair-Hard problems, recall that part of our reduction can be summerized below:

Corollary 10.5. For every problem P in BP-Pair-Hard:

• If P is a decision problem, then there is an O(N poly(D))-time reduction from Restricted OAPT to P
on input of length O(N poly(D));

• If P is an approximate problem, then for every ε(N), there is an O(N poly(D, ε(N)−1))-time

reduction from Restricted ε(N)-Gap-Max-TropSim or Restricted ε(N)-Gap-Max-TropSim to P with

approximation ratio o(ε(N)−1) on input of length O(N poly(D, ε(N)−1)).

Then we can obtain the following result:

Reminder of Theorem 1.11 If there is an deterministic algorithm for any decision, exact value or

polylog(N)-approximation problems among BP-Pair-Hard problems listed in Theorem 1.8 running in run-

ning in

O
(
N2/2ω(log logN)3

)

time (or O
(
NM/2ω(log log(NM))3

)
time for Regular Expression Membership Testing), then the same con-

sequences in Theorem 1.10 follows.

Proof. By Corollary 10.5 and the fact that exact value problem can be trivially reduced to its approximation

version, we only need to show that this statement is true for OAPT and (logN)c-Gap-Max-TropSim for every

c > 0.

The proof for OAPT is similar as in Theorem 1.10. For (logN)c-Gap-Max-TropSim, we know that the

hard instances of BP-Satisfying-Pair in Theorem 10.3 can be reduced to a ε-Gap-Max-TropSim instance with

D = 2O(log2 W log2 T (log logW+log log T+log ε−1)) = 2O(log logN)3

for ε = (logN)c. Thus shaving an O(2ω(log logN)3) factor to (logN)c-Gap-Max-TropSim implies an

algorithm for the hard instances of BP-Satisfying-Pair running in O(N2/(logN)ω(1)) time.

11 Derandomization Implies Circuit Lower Bounds

For the some problemsA like Longest Common Subsequence, despite its approximating for the pair version of

A (Approximate Max-A-Pair) is subquadratically equivalent to Max-TropSim, it is still hard to find a reduction

from approximating A. The main barrier is when trying to construct gadgets to reduce Approximate Max-

A-Pair to Approximate A, the contribution to the final result for just one pair is too small to make a large

approximating gap.

To overcome this barrier, we follows from [AR18] to define ε(N)-Super-Gap-Max-TS, which is a variant

of ε(N)-Gap-Max-TropSim with a large fraction of pairs having perfect Tropical Similarities:
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Definition 11.1 (ε-Super-Gap-Max-TS). Let t be an even number and d1 = d2 = · · · = dt = 2. Given two

sets of tensors A,B ∈ {0, 1}d1×···×dt of size D = 2t, distinguish between the following:

• Completeness: A (1 − 1/ log10N)-fraction of the pairs of a ∈ A, b ∈ B have a perfect Tropical

Similarity, s(a, b) = 1;

• Soundness: Every pair has low Tropical Similarity score, s(a, b) < ε.

where ε is a threshold that can depend on N and D.

In [AR18], Abboud and Rubinstein has shown that o(1)-Super-Gap-Max-TS can be reduced to O(1)-
approximate LCS. Using the same reduction, we have the following corollary for arbitrary approximation

ratio:

Theorem 11.2 ([AR18]). Given an ε(N)-Super-Gap-Max-TS instance on N tensors of size D, we can

construct two strings x, y of length ND in O(N poly(D)) deterministic time such that:

• If (1−1/ log10N)-fraction of the pairs have a perfect Tropical Similarity, then LCS(x, y) > (1/3)ND;

• If every pair has low Tropical Similarity score, then LCS(x, y) < 2ε(N)ND

Thus, if there is an ε(N)−1-approximation algorithm for such kind of (x, y) pairs, then there is a faster

algorithm for (ε(N)/6)-Super-Gap-Max-TS.

Proof. We construct strings G(a),H(b) as tensor gadgets for each tensor a ∈ A, b ∈ B as in the reduction

in [AR18] (stated in Theorem 6.1). Then we construct the final strings x, y by concatenating all the tensor

gadgets. Using a similar argument as in [AR18], we can show that if there are at least (1 − 1/ log10N)N2

pairs of tensors with perfect Tropcial Similarities, then LCS(x, y) > (1− 1/ log10N) ·ND/2; if every pair

has low Tropical Similarity score, then LCS(x, y) < ε(N) · 2ND.

There is no obvious reduction from BP-Satisfying-Pair to ε(N)-Super-Gap-Max-TS, and a randomized

algorithm can even solve ε(N)-Super-Gap-Max-TS in nearly linear time. But finding a deterministic algorithm

for ε(N)-Super-Gap-Max-TS is still hard: as noted by Abboud and Rubinstein in [AR18], a truly-subquadratic

time deterministic algorithm for ε(N)-Super-Gap-Max-TS can imply some circuit lower bound for ENP.

Combining their ideas with the connection between Tropical Tensors and BP-SAT we established, we can

show even stronger circuit lower bounds if such algorithm exists.

We base our proof on the following results in the literature:

Theorem 11.3 ([BV14]). Let Fn be a set of function from {0, 1}n to {0, 1} that are efficiently closed under

projections. If the acceptance probability of a function of the form

• AND of fan-in in nO(1) of

• OR’s of fan-in 3 of

• functions from Fn+O(logn)

can be distinguished from being = 1 or ≤ 1/n10 in DTIME[2n/nω(1)], then there is a function f ∈ ENP on n
variables and f /∈ Fn.

Theorem 11.4 ([Wil13, BV14]). If the acceptance probability of a function from NC1 can be distinguished

from being = 1 or ≤ 1/n10 in DTIME[2n/nω(1)], then NTIME[2O(n)] is not contained in NC1.
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Theorem 11.5. Let AC-BP-SAT be the following problem: given a branching program P of length T and

width W on n inputs, distinguish the acceptance probability of P from being = 1 or ≤ 1/n10.
There is a reduction from AC-BP-SAT to ε-Super-Gap-Max-TS on two sets of N = 2n/2 tensors of

size D = 2O(log2 W log2 T (log logW+log log T+log ε−1)), and the reduction runs in O(N poly(D)). Here ε is a

threshold value that can depend on N (but cannot depend on D).

Reminder of Theorem 1.12 The following holds for deterministic approximation to LCS:

1. A 2(logN)1−Ω(1)
-approximation algorithm in N2−δ time for some constant δ > 0 implies that ENP has

no no(1)-depth bounded fan-in circuits;

2. A 2o(logN/(log logN)2)-approximation algorithm in N2−δ time for some constant δ > 0 implies that

NTIME[2O(n)] is not contained in non-uniform NC1;

3. An O(polylog(N))-approximation algorithm in N2/2ω(log logN)3 time implies that NTIME[2O(n)] is

not contained in non-uniform NC1.

Proof. By Theorem 11.3 and Theorem 11.4, for Item 1, it is sufficient to show AC-BP-SAT on BP of length

2n
o(1)

and width O(1) on n inputs can be solved in 2(1−Ω(1))n time; for Item 2 and 3, it is sufficient to show

AC-BP-SAT on BP of length O(poly(n)) and width O(1) on n inputs can be solved in 2n/nω(1) time (the

former scale of BP is able to simulate no(1)-depth circuit, while the later one is able to simulate NC1 by

Barrington’s Theorem [Bar89]).

Item 1. Assume there exists a 2(logN)1−c
-approximation algorithm for LCS in N2−δ time for some c > 0

and δ > 0. By Theorem 11.5, AC-BP-SAT on BP of length T = 2n
o(1)

and widthW = O(1) on n inputs can

be reduced to (2−(logK)1−c
/6)-Super-Gap-Max-TS on K = 2n/2 tensors of size

D = 2O(no(1)·(o(log n)+(logK)1−c)) = 2n
1−c+o(1)

.

Then by Theorem 11.2, (2−(logK)1−c
/6)-Super-Gap-Max-TS can be reduced to 2(logK)1−c

-approximate LCS

for strings of length

N = KD = 2n/2+n1−c+o(1)
= 2(1/2+o(1))n.

By our assumption, the last problem can be solved in N2−δ time, so AC-BP-SAT on branching program of

length 2n
o(1)

and width O(1) on n inputs can be solved in 2(1−δ/2+o(1))n time. Applying Theorem 11.3

completes the proof.

Item 2. Assume there exists a 2f(logN)-approximation algorithm for LCS in N2−δ time for some constant

δ > 0 and some function f(k) = o(k/ log2 k). Let g(k) = 2f(k) + log k. Then we have g(logN) =
o(logN/(log logN)2) and

2f((1+o(1)) logK) ≤ 2(1+o(1))f(log K) ≤ 22f(logK) = o(2g(logK)).

By Theorem 11.5, AC-BP-SAT on BP of length T = O(poly(n)) and width W = O(1) on n inputs can be

reduced to 2−g(logK)-Super-Gap-Max-TS on K = 2n/2 tensors of size

D = 2O(log2 n·(log logn+g(logK))) = 2O(log2 n·o(logK/(log logK)2)) = 2o(n).

Then by Theorem 11.2, 2−g(logK)-Super-Gap-Max-TS can be reduced to o(2g(logK))-approximate LCS

for strings of length N = KD = 2(1/2+o(1))n . Note that 2f(log(K
1+o(1))) = o(2g(logK)). Thus by our

assumption, the last problem can be solved in N2−δ time, which means AC-BP-SAT on branching program

of length 2n
o(1)

and width O(1) on n inputs can be solved in 2(1−δ/2+o(1))n time. Applying Theorem 11.4

completes the proof.
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Item 3. Assume there exists a logc(N)-approximation algorithm for LCS inN2/2ω(log logN)3 time for some

c > 0. Using a similar calculation as in Theorem 1.11, we know that AC-BP-SAT on branching program of

length O(poly(n)) and width O(1) on n inputs can be solved in

N2/2ω(log logN)3 ≤ 2n+O(log3 n)/2ω(log
3 n) ≤ 2n/nω(1)

time. Applying Theorem 11.4 completes the proof.
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