A Remark on One-Wayness versus Pseudorandomness ${ }^{\star}$

Periklis A. Papakonstantinou and Guang Yang
Institute for Theoretical Computer Science, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
papakons@tsingua.edu.cn, yangguang10@mails.tsinghua.edu.cn

Abstract

Every pseudorandom generator is in particular a one-way function. If we only consider part of the output of the pseudorandom generator is this still one-way? Here is a general setting formalizing this question. Suppose $G:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ is a pseudorandom generator with stretch $\ell(n)$. Let $M_{R} \in\{0,1\}^{m(n) \times \ell(n)}$ be a linear operator computable in polynomial time given randomness R. Consider the function

$$
F(x, R)=\left(M_{R} G(x), R\right)
$$

We obtain the following results.

- There exists a pseudorandom generator s.t. for every positive constant $\mu<1$ and for an arbitrary polynomial time computable $M_{R} \in$ $\{0,1\}^{(1-\mu) n \times \ell(n)}, F$ is not one-way.

Furthermore, our construction yields a tradeoff between the hardness of the pseudorandom generator and the output length $m(n)$. For example, given $\alpha=\alpha(n)$ and a $2^{c n}$-hard pseudorandom generator we construct a $2^{\alpha c n}$-hard pseudorandom generator such that F is not one-way, where $m(n) \leq \beta n$ and $\alpha+\beta=1-o(1)$.

- We show this tradeoff to be tight for 1-1 pseudorandom generators. That is, for any G which is a $2^{\alpha n}$-hard 1-1 pseudorandom generator, if $\alpha+\beta=1+\epsilon$ then there is $M_{R} \in\{0,1\}^{\beta n \times \ell(n)}$ such that F is a $\Omega\left(2^{\epsilon n}\right)$-hard one-way function.

Keywords: cryptographic hardness, one-way function, pseudorandom generator.

1 Introduction

A one-way function is a function easy to compute but hard to invert. A pseudorandom generator is an efficient deterministic algorithm that stretches a short random seed to a longer one which is hard to distinguish from random. They are both fundamental primitives in private-key cryptography.

[^0]We tend to believe that one-wayness is a weaker notion than pseudorandomness. One reason is that every pseudorandom generator is in particular a one-way function, but the other direction fails dramatically. In this paper we consider the effect on the one-wayness of a pseudorandom generator when "hashing" its output. A natural way to formalize this is to consider the application of an efficiently sampleable linear operator, which also captures (but a minor issu® ${ }^{11}$) universal families of hash functions and certain randomness extractors. Formally, let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}, \ell(n)>n$ be a pseudorandom generator, and fix an arbitrary polynomial time algorithm that on input R it outputs a matrix $M_{R} \in\{0,1\}^{m(n) \times \ell(n)}$. Consider the following "hashing method":

$$
F^{G}(x, R)=\left(M_{R} G(x), R\right)
$$

We study the effect of the size of $m(n)$ on the one-wayness of F^{G}. In fact, all of our results hold for affine $\mathbf{F}(\mathbf{x}, \mathbf{R})=\left(\mathbf{M}_{\mathbf{R}} \mathbf{G}(\mathbf{x})+\mathbf{b}_{\mathbf{R}}, \mathbf{R}\right)$ as well.

1.1 Previous Work and Motivation

Studying relations among basic cryptographic primitives is fundamental for cryptography. Since the seminal work of Håstad-Impagliazzo-Levin-Luby HILL89, the first to construct a pseudorandom generator from any one-way function, there is a line of excellent works (e.g. [HRV10, HHR06a, HHR06b]) improving its efficiency. Questions regarding the other direction have so far been neglected ${ }^{2}$.

Instead of asking whether one-wayness is preserved when hashing the output of every pseudorandom generator, we can ask the weaker question of whether there exists a pseudorandom generator that has this property. Suppose that it was possible to apply a simple length-shrinking hash (e.g. a projection) on the output of an NC^{0} pseudorandom generator, then via the work of Applebaum-Ishai-Kushilevitch AIK04, AIK05 we can build several cryptographic primitives in a streaming fashion. Streaming Cryptography [KGY89, BJP11, not to be confused with stream ciphers, concerns the computation of cryptographic primitives with a device that has small working memory, e.g. logarithmic or sub-linear, and it makes a small number of passes, e.g. poly-logarithimic, over its input. Our results rule out a natural class of constructions in Streaming Cryptography.

1.2 Our Results

We have obtained both negative and positive results. We show that there exists a pseudorandom generator where if we apply a length-shrinking, even by a constant factor, linear operator on its output then this is not a one-way function. Our construction (Theorem1) yields a tradeoff between the hardness of this generator and the shrinkage factor. Theorem \dagger is also, in particular, about universal families

[^1]of hash functions. In Theorem 2 we show that our construction is optimal, in the sense that if instead we use any generator which is a little harder, or if the shrinkage factor is a little bigger, then the resulting function is one-way.
Theorem 1. Suppose G is a pseudorandom generator with hardness $s_{G}(\cdot)$. Then for every constant $\mu>0$ and $\delta>0$, and for an arbitrary polynomial $\ell(n)$, there is a pseudorandom generator
$$
G^{*}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}
$$
such that $F^{G^{*}}(x, R)=\left(M_{R} G^{*}(x), R\right)$ is not one-way, where $M_{R} \in \mathbb{F}_{2}^{m(n) \times \ell(n)}$ is polynomial time computable using randomness R with $m(n) \leq(1-\mu) n$. Moreover, G^{*} preserves the injectivity of G and has hardness at least $s_{G}\left(\mu n-n^{\delta}\right)$.

The "moreover" part makes the theorem stronger. Also, preserving injectivity in this theorem finds application in explaining a subtle issue regarding the optimal output length of hash functions in the first step of HILL89] construction (see Section 4 in HILL89, or p. 138 in Gol01]).

A variant of Theorem 1 shows that when M_{R} is restricted to random projections with $m(n)=O\left(\frac{n}{\log (n)}\right)$ (i.e. just sampling $m(n)$ bits from the output of G), then there exists (another) G^{*} s.t. $F^{G^{*}}$ is invertible in non-uniform NC^{2}.

On the other hand, we prove that when hashing a $2^{c n}$-hard pseudorandom generator to a little more than $(1-c) n$ bits then its one-wayness is preserved.
Theorem 2. Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ is a $2^{c n}$-hard 1-1 pseudorandom generator. Let $F:=F^{f}(x, h)=(h(f(x)), h)$, where $h:\{0,1\}^{\ell(n)} \rightarrow\{0,1\}^{m(n)}$ is a hash function from a universal family of hash functions $S_{\ell(n)}^{m(n)}$. If $m(n) \geq$ $(1-c+\epsilon) n$ for constant $\epsilon \in\left(0, \frac{c}{5}\right)$, then F is one-way with hardness $2^{\epsilon n}$.
In fact, the above theorem holds true if instead of a pseudorandom generator we consider f to be an injective one-way function.

1.3 Outline

In Section2, we introduce notations, definitions, and basic facts. In Section 3, we construct G^{*} from a pseudorandom generator G such that $F^{G^{*}}$ is not one-way when hashing down its output by a constant factor. In Section 4 we show that for every 1-1 pseudorandom generator f with hardness $2^{c n}$ and $m(n) \geq(1-c+\epsilon) n$, F^{f} preserves the one-wayness and has hardness at least $2^{\epsilon n}$. We conclude in Section 5 with some further research directions.

2 Preliminary

2.1 Notation and Definitions

Probability Notation. For probability distributions X, Y, we denote by $X \sim Y$ that X and Y are identically distributed. $x \leftarrow X$ denotes that x is sampled from X, and $x \in_{R} S$ denotes that x is sampled uniformly from $S . U_{n}$ denotes the uniform distribution over $\{0,1\}^{n}$. The statistical distance between two distributions X and Y is defined as $\Delta(X, Y)=\frac{1}{2} \sum_{z}|\operatorname{Pr}[X=z]-\operatorname{Pr}[Y=z]|$.

Universal Families of Hash Functions. Let S_{n}^{m} denote a set of functions from $\{0,1\}^{n}$ to $\{0,1\}^{m}$. Let H_{n}^{m} be a random variable uniformly distributed over S_{n}^{m}. S_{n}^{m} is called a universal family of hash functions if following conditions hold:

- S_{n}^{m} is a pairwise independent family of mappings: for every $x \neq y, H_{n}^{m}(x)$ and $H_{n}^{m}(y)$ are independent and both identically to U_{m}.
- S_{n}^{m} has a succinct representation: $\forall h \in S_{n}^{m}$, the description of h is poly (n, m).
- S_{n}^{m} can be efficiently evaluated: there is a polynomial time algorithm \mathcal{H} such that for every $h \in S_{n}^{m}, x \in\{0,1\}^{n}, \mathcal{H}(h, x)=h(x)$.

Specifically, $h(x)=M \cdot x+b$ is a universal family of hash functions when the matrix M and vector b are uniformly distributed. Actually, $h(x)=M \cdot x$ satisfies all above conditions except that $H_{n}^{m}(x)$ is not uniformly distributed when $x=\mathbf{0}$.

Cryptographic Primitives. Here are the definitions of one-way functions, pseudorandom generators, and k-wise independent distributions. The definitions are for uniform adversaries, however our results hold in the non-uniform setting as well (c.f. Gol01, Vad11]).

A one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a polynomial time computable function where no probabilistic polynomial time algorithm A inverts f with non-negligible probability; i.e. for every k and any polynomial time algorithm $A, \operatorname{Pr}_{x \leftarrow U_{n}}\left[A\left(f(x), 1^{n}\right) \in f^{-1}(f(x))\right]<n^{-k}$ holds for sufficiently large n.

Furthermore, we say that f has hardness $s(n)$ if for every sufficiently large input of length n, f cannot be inverted with probability $\geq \frac{1}{s(n)}$ by any adversary A which runs in time $\leq s(n)$. Obviously, f is a one-way function if f has superpolynomial hardness $s(n)$.

A pseudorandom generator G is a polynomial time computable function which stretches every n-bit input to an output of length $\ell(n)>n$, such that no probabilistic polynomial time algorithm D can distinguish between $U_{\ell(n)}$ and $G\left(U_{n}\right)$; i.e. for every k and $D,\left|\operatorname{Pr}\left[D\left(G\left(U_{n}\right), 1^{n}\right)=1\right]-\operatorname{Pr}\left[D\left(U_{\ell(n)}, 1^{n}\right)=1\right]\right|<n^{-k}$ when n is sufficiently large. We call ℓ the stretch of G. Similar to one-way functions we define an $s(n)$-hard pseudorandom generator.

We subscript a string $\sigma \in\{0,1\}^{n}$ with $R \subseteq\{1, \ldots, n\}$, and we write σ_{R}, to denote the substring of σ keeping exactly the bits indexed by R. In this notation, a function h is called k-wise independent if for every $K \subseteq\{1, \ldots, n\}$ where $|K|=k$ we have that $h\left(U_{n}\right)_{K} \sim U_{k}$.

Circuit Classes. We denote by NC 2 the functions computed by non-uniform families of poly-size boolean circuits with multiple outputs, where the gates are of constant fan-in and the depth of the circuit is $O\left(\log ^{2} n\right)$ for input length n.

2.2 Basic Facts and Lemmas

Below is a well-known fact (implicitly shown in [R87, also see e.g. Gol01]).
Lemma 1. Let G be a pseudorandom generator. Then, G is a one-way function.

The following lemma states that a uniform randomly chosen matrix has a good chance of being row independent. In fact, more general results hold for $n \times n$ matrices (see e.g. BKW97, Muk84). The proof of the following lemma is an easy exercise and is omitted here.

Lemma 2. Uniformly at random pick a $p \times q$ matrix N over \mathbb{F}_{2}; i.e. $N \in_{R} \mathbb{F}_{2}^{p \times q}$. Then, N has full row-rank with probability at least $1-2^{p-q}$.

A deep result due to Mulmuley Mul87 (which derandomizes BvzGH82) states that Gaussian elimination for linear systems over \mathbb{F}_{2} can be done in uniform NC^{2}. Later on, when applying this lemma in our paper, we introduce non-uniformity for a different reason.

Lemma 3 ([Mul87]). Gaussian elimination can be done in uniform NC^{2}.

3 Length-Shrinking Linear Operators Destroy One-Wayness: A Shrinkage-Hardness Tradeoff

We prove Theorem 1. That is, given a pseudorandom generator G of hardness $s_{G}(n)$ we construct a pseudorandom generator G^{*} of almost the same hardness $s_{G^{*}}(n)=s_{G}((\mu-o(1)) n)$ for some constant μ, such that an application of any efficiently sampled linear operator, which outputs $(1-\mu) n$ bits, on the output of G^{*} does not preserve one-wayness.

First we introduce the construction of G^{*}. It is easy to see that it preserves pseudorandomness and injectivity; i.e. if G is 1-1 then G^{*} is also 1-1.

Construction 1. Construct G^{*} as

$$
\begin{equation*}
G^{*}\left(x_{1}, x_{2}, x_{3}\right)=\left(\hat{G}\left(x_{1}\right)+\left(P_{G}\left(x_{3}\right) \cdot x_{2}\right), x_{2}, x_{3}\right) \tag{1}
\end{equation*}
$$

$\left|x_{1}\right|=n_{1},\left|x_{2}\right|=n_{2},\left|x_{3}\right|=n_{3}, n_{1}+n_{2}+n_{3}=n . \hat{G}\left(x_{1}\right)=\left.G^{(z)}\left(x_{1}\right)\right|_{\left\{1,2, \cdots, \ell^{\prime}(n)\right\}}$ where $G^{(z)}$ means z iterated compositions of G with itself such that $\left|G^{(z)}\left(x_{1}\right)\right| \geq$ $\ell^{\prime}(n)=\ell(n)-n_{2}-n_{3} . P_{G}\left(x_{3}\right)$ is an $\ell^{\prime}(n) \times n_{2}$ pseudorandom matrix whose entries are generated by iteratively applying G on x_{3}. All operations are over \mathbb{F}_{2}.

By definition of $\hat{G},\left|\hat{G}\left(x_{1}\right)\right|=\ell^{\prime}(n)$. That is, $\left|G^{*}\left(x_{1}, x_{2}, x_{3}\right)\right|=\ell^{\prime}(n)+n_{2}+n_{3}=$ $\ell(n)$. Since we XOR $\hat{G}\left(x_{1}\right)$ with $P_{G}\left(x_{3}\right) \cdot x_{2}$, then $s_{G}\left(n_{1}\right)$ lower bounds the hardness of $G^{*}(x)$. We can choose n_{3} to be an arbitrarily small polynomial in n. The parameters n_{1} and n_{2} determine a tradeoff between the hardness of the pseudorandom generator G^{*} and the shrinking length. This tradeoff is not a minor issue. If we were to choose arbitrarily close to 1 the constants in the hardness and in the shrinking length then a modification of HILL89] would have shown that exponentially hard pseudorandom generators, unconditionally, do not exist (this is not an immediate argument).

The following lemma is the main ingredient of the proof of Theorem 1

Lemma 4. Let $F^{G^{*}}(x, R)=\left(M_{R} G^{*}(x), R\right)$ and let $G^{*}\left(x_{1}, x_{2}, x_{3}\right)$ be as in Construction 1, Let $M_{R} \in\{0,1\}^{m(n) \times \ell(n)}, m(n)<n_{2}$, be computable in polynomial time given R. Then, there is a probabilistic polynomial time algorithm A s.t.

$$
\underset{y, R}{\operatorname{Pr}}\left[F^{G^{*}}(A(y, R))=(y, R)\right]>1-2^{-\left(n_{2}-m(n)\right)}-\operatorname{poly}\left(\frac{1}{s_{G}\left(n_{3}\right)}\right)
$$

Proof. Recall that $G^{*}\left(x_{1}, x_{2}, x_{3}\right)=\left(\hat{G}\left(x_{1}\right)+\left(P_{G}\left(x_{3}\right) \cdot x_{2}\right), x_{2}, x_{3}\right)$, where $x=$ $\left(x_{1}, x_{2}, x_{3}\right)$ and x_{1}, x_{2}, x_{3} has length n_{1}, n_{2}, n_{3} respectively. Then,

$$
F^{G^{*}}(x, R)=\left(M_{R} G^{*}(x), R\right)=\left(M_{R}\left(\hat{G}\left(x_{1}\right)+\left(P_{G}\left(x_{3}\right) \cdot x_{2}\right), x_{2}, x_{3}\right), R\right)
$$

Therefore for the goal $F^{G^{*}}(x, R)=(y, R)$, it suffices to find an x such that

$$
\begin{equation*}
M_{R}\left(\hat{G}\left(x_{1}\right)+\left(P_{G}\left(x_{3}\right) \cdot x_{2}\right), x_{2}, x_{3}\right)=y \tag{2}
\end{equation*}
$$

We analyze further the structure of the above matrix equation. Without loss of generality, we may assume that M_{R} is already in reduced row echelon form, after applying Gaussian elimination, and it has full row-rank (easy to guarantee by deleting all zero rows). To match the form of the column vector $\left(\hat{G}\left(x_{1}\right)+\left(P_{G}\left(x_{3}\right)\right.\right.$. $\left.\left.x_{2}\right), x_{2}, x_{3}\right)$, we partition M_{R} into $M_{R}=\left(M_{1}\left|M_{2}\right| M_{3}\right)$ where the sub-matrices M_{1}, M_{2}, M_{3} have $\ell^{\prime}(n), n_{2}$ and n_{3} columns respectively. Then

$$
M_{R}=\left(\begin{array}{lll}
M_{1} & M_{2} & M_{3}
\end{array}\right)=\left(\begin{array}{ccc}
M_{1}^{\prime} & M_{2}^{\prime \prime} & M_{3}^{\prime \prime \prime} \\
0 & M_{2}^{\prime} & M_{3}^{\prime \prime} \\
0 & 0 & M_{3}^{\prime}
\end{array}\right)
$$

where $M_{1}^{\prime}, M_{2}^{\prime}$ and M_{3}^{\prime} have full row-rank. Note that depending on M_{R}, it is possible that $M_{2}^{\prime}, M_{3}^{\prime}$ and $M_{3}^{\prime \prime}$ are empty (i.e. size 0 , instead of having 0 -entries). Equation (2) can be rewritten as a linear system in x_{2},

$$
\left\{\begin{align*}
\left(M_{1}^{\prime} P_{G}\left(x_{3}\right)+M_{2}^{\prime \prime}\right) & x_{2}=y_{1}+M_{3}^{\prime \prime \prime} x_{3}+M_{1}^{\prime} \hat{G}\left(x_{1}\right) \tag{3}\\
M_{2}^{\prime} & x_{2}=y_{2}+M_{3}^{\prime \prime} x_{3} \\
\mathbf{0} & =y_{3}+M_{3}^{\prime} x_{3}
\end{align*}\right.
$$

Now the problem reduces to finding a solution x to (3). We present an adversary A which finds a solution to the above system.
A : Inverting $F^{G^{*}}$ (on input (y, R)):
1 Compute M_{R} with input R;
2 Do Gaussian elimination on the left of $\left(M_{R} \mid y\right)$;
3 Delete zero-rows and return "No answer" if detecting a row $(0,0, \cdots, 0,1)$;
4 Compute $M_{1}^{\prime}, M_{2}^{\prime}, M_{2}^{\prime \prime}, M_{3}^{\prime}, M_{3}^{\prime \prime}, M_{3}^{\prime \prime \prime}$;
5 Set x_{1} to a fixed value u, say n_{1} zeros;
6 Uniformly at random pick v from $\left\{x_{3} \mid M_{3}^{\prime} x_{3}=y_{3}\right\} \subseteq\{0,1\}^{n_{3}}$ $\left(v \leftarrow U_{n_{3}}\right.$ if M_{3}^{\prime} is empty);
7 Compute $P_{G}(v)$ and $\hat{G}(u)$;
8 Consider: $\binom{M_{1}^{\prime} P_{G}(v)+M_{2}^{\prime \prime}}{M_{2}^{\prime}} x_{2}=\binom{y_{1}+M_{1}^{\prime} \hat{G}(u)+M_{3}^{\prime \prime \prime} v}{y_{2}+M_{3}^{\prime \prime} v}$;
9 Solve x_{2} and output $(x, R)=\left(\left(u, x_{2}, v\right), R\right)$.
Output "Fail" if there is no solution.

It is easy to verify that A runs in polynomial time and the output is a preimage of (y, R). Now, we analyze the probability that A succeeds. It suffices to calculate the probability that A outputs "Fail", which is upper bounded by the probability that $\mathcal{M}=\binom{M_{1}^{\prime} P_{G}(v)+M_{2}^{\prime \prime}}{M_{2}^{\prime}}$ does not have full row-rank. Let $\mathcal{M}^{\prime}=$ $\binom{M_{1}^{\prime} \cdot U_{\ell^{\prime}(n) \times n_{2}}+M_{2}^{\prime \prime}}{M_{2}^{\prime}}$. Since $M_{1}^{\prime}, M_{2}^{\prime}$ have full row-rank, $\mathcal{M}^{\prime} \sim\binom{U_{r_{1} \times n_{2}}}{M_{2}^{\prime}}$ does not have full row-rank with probability at most $\sum_{1 \leq i \leq r_{1}} \frac{2^{r_{2}+i-1}}{2^{n_{2}}}<\frac{2^{r_{1}+r_{2}}}{2^{n_{2}}}=$ $2^{-\left(n_{2}-r_{1}-r_{2}\right)}$ by Lemma 2 where r_{1}, r_{2} is the number of rows in $M_{1}^{\prime}, M_{2}^{\prime}$ respectively. Moreover, the gap between the probability $\operatorname{Pr}[\mathcal{M}$ has full row-rank $]$ and $\operatorname{Pr}\left[\mathcal{M}^{\prime}\right.$ has full row-rank $]$ is bounded by $\operatorname{poly}\left(\frac{1}{s_{G}\left(n_{3}\right)}\right)$, since otherwise there exists a polynomial time distinguisher for $P_{G}(v)$ and $U_{\ell^{\prime}(n) \times n_{2}}$ with advantage $\operatorname{poly}\left(\frac{1}{s_{G}\left(n_{3}\right)}\right)$. So we have

$$
\begin{aligned}
\operatorname{Pr}[\mathcal{M} \text { has full row-rank }] & \geq \operatorname{Pr}\left[\mathcal{M}^{\prime} \text { has full row-rank }\right]-\operatorname{poly}\left(\frac{1}{s_{G}\left(n_{3}\right)}\right) \\
& \geq 1-2^{-\left(n_{2}-r_{1}-r_{2}\right)}-\operatorname{poly}\left(\frac{1}{s_{G}\left(n_{3}\right)}\right)
\end{aligned}
$$

Since M_{R} has $m(n)$ rows in total, which implies $r_{1}+r_{2} \leq m(n)$,

$$
\underset{y}{\operatorname{Pr}}[A \text { succeeds }] \geq \operatorname{Pr}[\mathcal{M} \text { has full row-rank }] \geq 1-2^{-\left(n_{2}-m(n)\right)}-\operatorname{poly}\left(\frac{1}{s_{G}\left(n_{3}\right)}\right)
$$

Thus complete our proof of Lemma 4.
Corollary 1. If $m(n) \leq n_{2}-\omega(\log (n))$ and $n_{3}=n^{\Omega(1)}$, then $F^{G^{*}}(x, R)=$ $\left(M_{R} G^{*}(x), R\right)$ is not (even weakly) one-way.

Let $n_{1}=\mu n-n^{\delta}, n_{2}=(1-\mu) n+\log ^{2}(n)$, and $n_{3}=n-n_{1}-n_{2}=n^{\delta}-\log ^{2}(n)$ in Construction 1 and $m(n)=n_{2}-\log ^{2}(n)=(1-\mu) n$. Applying Lemma 4 and Corollary 1 we conclude the proof of Theorem 1 In general, hashing down the output of a pseudorandom generator by a constant factor does not preserve one-wayness, even if the pseudorandom generator is exponential hard.

Regarding the roles of n_{1}, n_{2}, n_{3} in above argument, we first notice that n_{3} is the least important one since we only need $s_{G}\left(n_{3}\right)$ super-polynomial. In most common cases of interest $s_{G}(\cdot)$ is monotonically increasing (hence, s_{G}^{-1} is well defined), it suffices to set $n_{3}=s_{G}^{-1}\left(n^{\omega(1)}\right)$ which could be as small as $\log ^{O(1)}(n)$ for exponential s_{G}. Meanwhile, the difference $n_{2}-m(n)$ is also negligible. It turns out $n_{1}+m(n)=n-o(n)$. Recalling that G^{*} has hardness $s_{G}\left(n_{1}\right)$, there is the tradeoff between the hardness of G^{*} and the output length of M_{R}. Letting $n_{1}=\alpha n, m(n)=\beta n$, we get $\alpha+\beta=1-o(1)$ as stated in the abstract.

Special Case of Random Projections. When M_{R} is a projection of length $O\left(\frac{n}{\log n}\right)$ we construct a simpler pseudorandom generator G^{*} where $F^{G^{*}}$ is invertible in NC^{2}. For this we combine the "strong pseudorandom" (cryptographic) object G with a "weak pseudorandom" object, a k-wise independent generator. Specifically, let $G^{*}\left(x_{1}, x_{2}\right)=\left(\hat{G}\left(x_{1}\right)+H x_{2}\right)$ where H realizes a k-wise generator with $k=\Theta\left(\frac{n}{\log (n)}\right)$. See Proposition 6.5 in ABI86 and Chap. 7.6 in MS77 for details.

Lemma 5. Let $m(n) \leq k$, where k as above. Then, $F^{G^{*}}(x, R)=\left(M_{R} G^{*}(x), R\right)$ can be inverted in NC^{2}.

The adversary is a modification of A which appears in the proof of Lemma 4 In particular, in Step 4, only M_{1}^{\prime} matters since other matrices are 0 -sized; in Step $6,7,8, P_{G}(v)$ is replaced by H and the linear system in Step 8 becomes $M_{1}^{\prime} H x_{2}=y_{1}+\hat{G}(u)$. Although \hat{G} is polynomial time computable, we can nonuniformly hardwire the value of \hat{G} on a constant one for each input length. Since u can be fixed, then by Lemma 3 we have that $M_{1}^{\prime} H$ is invertible in NC^{2}.

4 Tightness of the Construction

Even if we assume that a pseudorandom generator of hardness $2^{0.99 n}$ exists, Theorem 11 says that then there is a generator of hardness $2^{0.99 \alpha n}$ such that when applying a linear map on its output shrinking it down to βn many bits then this is not one-way, for $\alpha+\beta=1-o(1)$. We show that this tradeoff between α and β is tight, i.e. when $\alpha+\beta=1+\epsilon$ and a 1-1 generator f has hardness $2^{\alpha n}$, then F^{f} forms a $2^{\epsilon n}$-hard one-way function.

For the proof of Theorem 2 we apply the following well-known lemma, but in a non-uniform setting.

Lemma 6 ([Gol01], also [HILL89, Sip83, GL89]). Let $m<\ell$ be integers, S_{ℓ}^{m} be a universal family of hash functions, and b, δ be two reals such that $m \leq$ $b \leq \ell$ and $\delta \geq 2^{-\frac{b-m}{2}}$. Suppose that X_{ℓ} is a random variable distributed over
$\{0,1\}^{\ell}$ such that for every x, it holds $\operatorname{Pr}\left[X_{n}=x\right] \leq 2^{-b}$. Then for every $\xi \in$ $\{0,1\}^{m}$ and for all but at most $2^{-(b-m)} \delta^{-2}$ fraction of the h 's in S_{ℓ}^{m}, it holds that

$$
\underset{X_{\ell}}{\operatorname{Pr}_{\ell}}\left[h\left(X_{\ell}\right)=\xi\right] \in(1 \pm \delta) 2^{-m}
$$

Proof (Proof of Theorem 图). We present the proof for a non-uniform adversary, simpler to present but already a rather involved argument. Fix one efficient construction of sampling from a universal family of hash functions (e.g. choose one from Vad11). Now F is well-defined for a given f. Assume that F is not a $2^{\epsilon n}$-hard one-way function. Let A be a probabilistic algorithm which runs in time $T_{A}=O\left(2^{\epsilon n}\right)$ and inverts F with probability $p_{A}(n)$, i.e.

$$
\operatorname{Pr}_{x \leftarrow U_{n}, h \leftarrow R S_{\ell(n)}^{m(n)}}\left[A(h(f(x)), h) \in F^{-1}(h(f(x)), h)\right]=p_{A}(n)>\frac{1}{2^{\epsilon n}}
$$

We show that f is not $2^{c n}$-hard with oracle access to A. That is, we construct a non-uniform adversary A_{f} that given $y \leftarrow f\left(U_{n}\right), A_{f}$ computes x^{\prime} such that $f\left(x^{\prime}\right)=y$ in time $O\left(2^{c n}\right)$ and with probability at least $\Omega\left(2^{-c n}\right)$.
A_{f} is defined as follows: with the non-uniform advice $h_{0} \in S_{\ell(n)}^{m(n)}$, A_{f} first computes $\left(h_{0}(y), h_{0}\right)$, then applies A to compute x^{\prime} such that $h_{0}\left(f\left(x^{\prime}\right)\right)=h_{0}(y)$.

Therefore, A_{f} runs in time $O\left(T_{A}\right)=O\left(2^{\epsilon n}\right)=O\left(2^{c n}\right)$. In what follows we denote by $x^{\prime}=x^{\prime}(h(y), h)$ the output of A on input $(h(y), h)$. Now, we calculate the probability that A_{f} outputs x^{\prime}. We will determine later how to find h_{0}, and in fact why h_{0} exists.

$$
\begin{align*}
& \operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[A_{f} \text { inverts } f \text { on } y\right]=\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[x^{\prime}=A\left(h_{0}(y), h_{0}\right), f\left(x^{\prime}\right)=y\right] \tag{4}\\
= & \operatorname{Pr}_{x \leftarrow U_{n}}\left[f\left(x^{\prime}\right)=f(x)\right] \tag{5}
\end{align*}
$$

where in the last equation we omit how x^{\prime} is derived and its dependence.

$$
\begin{aligned}
& \operatorname{Pr}_{x \leftarrow U_{n}}\left[f\left(x^{\prime}\right)=f(x)\right] \\
= & \sum_{z \in h_{0}\left(f\left(\{0,1\}^{n}\right)\right)} \operatorname{Pr}_{x \leftarrow U_{n}}\left[h_{0}(f(x))=z\right] \operatorname{Pr}_{x \leftarrow U_{n}}\left[f\left(x^{\prime}\right)=f(x) \mid h_{0}(f(x))=z\right] \\
= & \sum_{z \in h_{0}\left(f\left(\{0,1\}^{n}\right)\right)} \operatorname{Pr}_{x \leftarrow U_{n}}\left[h_{0}(f(x))=z\right] \operatorname{Pr}_{x \in_{R}\left(h_{0} \circ f\right)^{-1}(z)}\left[x=x^{\prime}=x^{\prime}\left(z, h_{0}\right)\right]
\end{aligned}
$$

$f\left(x^{\prime}\right)=f(x)$ is equivalent to $x^{\prime}=x$ since f is 1-1. From this point on, $x^{\prime}\left(z, h_{0}\right)$ is uniquely defined from z and h_{0}. So we can take it out of the probability.

$$
\begin{align*}
& =\sum_{z \in h_{0}\left(f\left(\{0,1\}^{n}\right)\right)} \frac{\left|\left(h_{0} \circ f\right)^{-1}(z)\right|}{2^{n}} \cdot\left(\frac{1}{\left|\left(h_{0} \circ f\right)^{-1}(z)\right|} \cdot I\left[h_{0}\left(f\left(x^{\prime}\left(z, h_{0}\right)\right)\right)=z\right]\right) \\
& =\frac{1}{2^{n}} \sum_{z \in h_{0}\left(f\left(\{0,1\}^{n}\right)\right)} I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right]=\frac{1}{2^{n}} \sum_{z \in\{0,1\}^{m}} I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right] \tag{6}
\end{align*}
$$

where $I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right]$ is the indicator of the event " $h_{0}\left(f\left(x^{\prime}\right)\right)=z$ for $x^{\prime}=$ $A\left(z, h_{0}\right)^{\prime}$. Note that the sum $\sum_{z \in\{0,1\}^{m}} I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right]$ corresponds to the number of z 's that A inverts $\left(z, h_{0}\right)$.

However, when fixing h_{0}, the probability " A succeeds" is

$$
\begin{equation*}
\operatorname{Pr}_{x \leftarrow U_{n}}\left[A \text { inverts }\left(h_{0}(f(x)), h_{0}\right)\right]=\sum_{z \in\{0,1\}^{m}} \operatorname{Pr}_{x \leftarrow U_{n}}\left[h_{0}(f(x))=z\right] I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right] \tag{7}
\end{equation*}
$$

Notice that (7) is the probability of " A succeeds on $\left(h_{0}\left(f\left(U_{n}\right)\right), h_{0}\right)$ ", while (6) counts the number of z 's that A inverts $\left(z, h_{0}\right)$. These two are related in the following sense. Remember that hashing down a weak random source smooths the distribution, hence $h_{0}\left(f\left(U_{n}\right)\right)$ seems close to U_{m}. In this sense, we make an estimation with error upper bounded by their statistical distance.

$$
\begin{align*}
& \left.\left\lvert\, \operatorname{Pr}_{x \leftarrow U_{n}}\left[A \text { inverts }\left(h_{0}(f(x)), h_{0}\right)\right]-\frac{1}{2^{m}} \sum_{z \in\{0,1\}^{m}} I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right]\right. \right\rvert\, \\
= & \left|\sum_{z \in\{0,1\}^{m}} \operatorname{Pr}_{x \leftarrow U_{n}}\left[h_{0}(f(x))=z\right] \cdot I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right]-\sum_{z \in\{0,1\}^{m}} \frac{1}{2^{m}} I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right]\right| \\
\leq & \sum_{z \in\{0,1\}^{m}}\left|\operatorname{Pr}_{x \leftarrow U_{n}}\left[h_{0}(f(x))=z\right]-\frac{1}{2^{m}}\right| \cdot I\left[h_{0}\left(f\left(x^{\prime}\right)\right)=z\right] \\
= & 2 \Delta\left(h_{0}\left(f\left(U_{n}\right)\right), U_{m}\right) \tag{8}
\end{align*}
$$

Plugging (8) into (6), it immediately leads to the lower bound

$$
\begin{align*}
& \operatorname{Pr}_{x \leftarrow U_{n}}\left[f\left(x^{\prime}\right)=f(x)\right] \\
\geq & 2^{m-n}\left(\operatorname{Pr}_{x \leftarrow U_{n}}\left[A \text { inverts }\left(h_{0}(f(x)), h_{0}\right)\right]-2 \Delta\left(h_{0}\left(f\left(U_{n}\right)\right), U_{m}\right)\right) \tag{9}
\end{align*}
$$

Now, our goal is to show that there exists a choice for h_{0} in (9) giving the $\Omega\left(\frac{1}{2^{c n}}\right)$ lower bound.

Claim. There is a (good) $h_{0} \in S_{\ell(n)}^{m(n)}$ such that

- Property 1: $\Delta\left(h_{0}\left(f\left(U_{n}\right)\right), U_{m}\right)<2 \cdot 2^{\frac{1+\epsilon n-(n-m)}{3}}$;
- Property 2: $\operatorname{Pr}_{x \leftarrow U_{n}}\left[h_{0}\left(f\left(x^{\prime}\right)\right)=h_{0}(f(x))\right] \geq 2^{-(1+\epsilon n)}$.

For Property 1, it suffices for concluding the proof to have $\delta=2^{\frac{1+\epsilon n-(n-m)}{3}}$ and

$$
\operatorname{Pr}_{\xi \leftarrow U_{m}}\left[\operatorname{Pr}\left[h_{0}\left(f\left(U_{n}\right)\right)=\xi\right] \notin(1 \pm \delta) \cdot 2^{-m}\right]<2^{1+\epsilon n-(n-m)} \delta^{-2}
$$

Let $\delta=2^{\frac{1+e n-(n-m)}{3}}, b=n, m=m(n), \ell=\ell(n)$ and $X=f\left(U_{n}\right)$ as in Lemma 6 Since $m \leq b \leq \ell(n)$ and f is $1-1\left(\operatorname{Pr}_{X}[X=z] \leq \frac{1}{2^{n}}\right.$ for every $\left.z\right)$, we have that $\forall \xi \in\{0,1\}^{m}$ and for all but at most $2^{-(n-m)} \delta^{-2}$ fraction of the h 's in
$S_{\ell(n)}^{m(n)}$, it holds $\operatorname{Pr}\left[h\left(f\left(U_{n}\right)\right)=\xi\right] \in(1 \pm \delta) \cdot 2^{-m}$. Let $\mathcal{B}(h, \xi)$ denote the event $\operatorname{Pr}\left[h\left(f\left(U_{n}\right)\right)=\xi\right] \notin(1 \pm \delta) \cdot 2^{-m}$, then taking probability over ξ and h,

$$
\left.\left.\begin{array}{rl}
& \operatorname{Pr} \\
\xi \leftarrow U_{m}, h \leftarrow S_{\ell(n)}^{m(n)} \tag{10}\\
& \operatorname{Pr}_{h \leftarrow S_{\ell(n)}^{m(n)}}[\mathcal{B}(h, \xi)] \leq 2^{-(n-m)} \delta^{-2} \\
\operatorname{Pr}_{m}
\end{array} \mathcal{B}(h, \xi)\right] \geq 2^{1+\epsilon n-(n-m)} \delta^{-2}\right] \leq \frac{1}{2^{1+\epsilon n}}
$$

Thus, $\operatorname{Pr}_{\xi \leftarrow U_{m}}\left[\operatorname{Pr}\left[h\left(f\left(U_{n}\right)\right)=\xi\right] \notin(1 \pm \delta) \cdot 2^{-m}\right]<2^{1+\epsilon n-(n-m)} \delta^{-2}$ holds for at least $1-\frac{1}{2^{1+\epsilon n}}$ fraction of the h 's in $S_{\ell(n)}^{m(n)}$. In particular, Property 1 is satisfied by that many h 's.

For Property 2, we lower bound the probability that A performs not so bad for a randomly chosen h, i.e. $\operatorname{Pr}_{h \leftarrow S_{\ell(n)}^{m(n)}}\left[\operatorname{Pr}_{x \leftarrow U_{n}}\left[h\left(f\left(x^{\prime}\right)\right)=h(f(x))\right] \geq \frac{1}{2^{1+\epsilon n}}\right]$. Let \mathcal{E}_{h} denote the event that $\operatorname{Pr}_{x \leftarrow U_{n}}\left[h\left(f\left(x^{\prime}\right)\right)=h(f(x))\right] \geq 2^{-1-\epsilon n}$, we have

$$
\begin{aligned}
& 2^{-\epsilon n} \leq p_{A}(n)=\operatorname{Pr}_{h \leftarrow S_{\ell(n)}^{m(n)}, x \leftarrow U_{n}}\left[h\left(f\left(x^{\prime}\right)\right)=h(f(x))\right] \\
= & \operatorname{Pr}\left[\mathcal{E}_{h}\right] \operatorname{Pr} \\
\leq & \operatorname{Pr}_{x}\left[h\left(f\left(x^{\prime}\right)\right)=h(f(x)) \mid \mathcal{E}_{h}\right]+\underset{h}{\operatorname{Pr}}\left[\overline{\mathcal{E}_{h}}\right] \operatorname{Pr}_{x}\left[h\left(f\left(x^{\prime}\right)\right)=h(f(x)) \mid \overline{\mathcal{E}_{h}}\right] \\
\Longrightarrow & \operatorname{Pr}\left[\mathcal{E}_{\ell(n)}^{m(n)}\right] \cdot 1+\underset{\left.h \leftarrow \mathcal{E}_{h}\right]}{\operatorname{Pr}}\left[\overline{\mathcal{E}_{\ell(n)}^{m(n)}}\left[\overline{\mathcal{E}_{h}}\right] \cdot 2^{-1-\epsilon n}<\operatorname{Pr}_{h \leftarrow S_{\ell(n)}^{m(n)}}\left[\mathcal{E}_{h}\right]+2^{-1-\epsilon n}\right.
\end{aligned}
$$

Hence, we lower bound the probability of h having Property 2 as follows

$$
\operatorname{Pr}_{h \leftarrow S_{\ell(n)}^{m(n)}}\left[\operatorname{Pr}_{x \leftarrow U_{n}}\left[h\left(f\left(x^{\prime}\right)\right)=h(f(x))\right] \geq 2^{-1-\epsilon n}\right]=\operatorname{Pr}_{h \leftarrow S_{\ell(n)}^{m(n)}}\left[\mathcal{E}_{h}\right]>2^{-1-\epsilon n}
$$

The following calculation shows that an h_{0} as required exists.

$$
\underset{h \leftarrow S_{\ell(n)}^{m(n)}}{\operatorname{Pr}}[h \text { satisfies both Property } 1 \text { and } 2]>\left(1-\frac{1}{2^{1+\epsilon n}}\right)+2^{-1-\epsilon n}-1=0
$$

Using this h_{0} in (9), and recalling that $m=m(n)=(1-c+\epsilon) n$, we obtain

$$
\operatorname{Pr}_{x \leftarrow U_{n}}\left[f\left(x^{\prime}\right)=f(x)\right] \geq 2^{-1-c n}-2^{(7+(5 \epsilon-4 c) n) / 3}=\Omega\left(2^{-c n}\right)
$$

Note that the running time of A_{f} is bounded by $O\left(2^{c n}\right)$, contradicting that f is $2^{c n}$ hard. In conclusion, $F(x, h)=(h(f(x)), h)$ is one-way, and its hardness is at least $2^{\epsilon n}$.

5 Conclusions and Open Questions

We have showed that "hashing" the output of a pseudorandom generator to a constant fraction of its input length, in general, destroys its one-wayness. We
prove this in the form of a tradeoff between cryptographic hardness and output length of the hash. We also show that this tradeoff is tight.

An interesting question is whether there exists a pseudorandom generator of reasonable hardness where one-wayness is preserved when hashing its output. This question remains open. We speculate that is a difficult mathematical problem. For example, an interesting direction would be to show that this question is equivalent to constructing $2^{n^{e}}$-hard one-way functions; i.e. a problem essentially about $\Omega\left(2^{n^{\epsilon}}\right)$ circuit lower bounds.

Acknowledgements. We would like to thank John Steinberger and Andrew Wan for the helpful remarks on a previous draft. We would also like to thank Andrej Bogdanov, Oded Goldreich, and Charles Rackoff for the helpful discussions.

References

[ABI86] Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms 7, 567-583 (1986)
[AIK05] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Computational Complexity $15(2), 115-162$ (2006); also CCC 2005
[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC ${ }^{0}$. SIAM Journal on Computing (SICOMP) 36(4), 845-888 (2006); also FOCS 2004 (2004)
[BJP11] Bronson, J., Juma, A., Papakonstantinou, P.A.: Limits on the Stretch of Non-adaptive Constructions of Pseudo-Random Generators. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 504-521. Springer, Heidelberg (2011)
[BKW97] Blömer, J., Karp, R., Welzl, E.: The rank of sparse random matrices over finite fields. Random Structures Algorithms 10(4), 407-419 (1997)
[BvzGH82] Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and GCD computations. Information and Control 52(3), 241-256 (1982)
[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Symposium on Theory of Computing (STOC), pp. 25-32 (1989)
[Gol01] Goldreich, O.: Foundations of cryptography. Cambridge University Press, Cambridge (2001); Basic tools (vol. I)
[HHR06a] Haitner, I., Harnik, D., Reingold, O.: Efficient Pseudorandom Generators from Exponentially Hard One-Way Functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 228-239. Springer, Heidelberg (2006)
[HHR06b] Haitner, I., Harnik, D., Reingold, O.: On the Power of the Randomized Iterate. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22-40. Springer, Heidelberg (2006)
[HILL89] Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing (SICOMP) 28(4), 1364-1396 (1999); also STOC 1989
[HRV10] Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in constructing pseudorandom generators from one-way functions. In: Symposium on Theory of Computing (STOC), pp. 437-446 (2010)
[KGY89] Kharitonov, M., Goldberg, A.V., Yung, M.: Lower bounds for pseudorandom number generators. In: Foundations of Computer Science (FOCS), pp. 242-247 (1989)
[LR87] Luby, M., Rackoff, C.: A study of password security. Journal on Cryptology 1(3), 151-158 (1989); Luby, M., Rackoff, C.: A Study of Password Security. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 392-397. Springer, Heidelberg (1988)
[MS77] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland (1977)
[Muk84] Mukhopadhyay, A.: On the probability that the determinant of an $n \times n$ matrix over a finite field vanishes. Discrete Math. 51(3), 311-315 (1984)
[Mul87] Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica 7(1), 101-104 (1987)
[Sip83] Sipser, M.: A complexity theoretic approach to randomness. In: Symposium on Theory of Computing (STOC), pp. 330-335 (1983)
[Vad11] Vadhan, S.: Pseudorandomness (April 2011)

[^0]: ${ }^{\star}$ This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174, 61150110582.

[^1]: ${ }^{1}$ Applying a random linear operator does not exactly yield a universal family of hash functions just because of its value at $\mathbf{0}$.
 ${ }^{2}$ This is not surprising, since a pseudorandom generator is in particular a one-way function.

