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Coherently Manipulated 2D Ion Crystal in a Monolithic Paul
Trap
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Using a 2D ion crystal for quantum simulation and computation has been
pursued for a long time. The coherent manipulation of a stationary 2D crystal
in the Paul trap may be hampered by the micromotion synchronous with the
oscillating electric field. Here, a simple Paul trap that stably confines over
20 171Yb+ ions in a stationary 2D crystal is presented. The disturbance of the
micromotion in coherent operations is mitigated by making the direction of
micromotion perpendicular to the transverse direction of the 2D crystal. To
achieve the condition of perpendicularity, the structure of the trap electrodes
is comprehensively designed, which also provides the controllability of
rotating principal axes. The transverse vibrational modes by Raman
laser-beams are addressed and coherent evolution of sideband transitions on
these modes observed. Moreover, this trap allows for optical access with a
0.86 numerical aperture which facilitates applying individually addressing
laser-beams. This work can be an example of realizing a 2D-trapped-ion based
quantum simulator and computer in a Paul trap.
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1. Introduction

The 2D ion crystal can be an attractive
and natural platform to scale up the num-
ber of ion-qubits in a single trap and
to explore many-body quantum models
in two-dimension.[1–6] Recently, a fully-
connected quantum computer has been
realized with up to 5–20 ions forming 1D
crystal in linear Paul traps[7,8] and over
50 ion-qubits have been used for a quan-
tum simulation with restricted control.[9]

Extra-dimension of the crystal can provide
a quadratic scaling of the number of ion-
qubits in the trap. Ion-qubits in the 2D
crystal intrinsically has 2D laser-induced
interactions, which facilitates studying
2D many-body physics through quantum
simulation such as geometric frustra-
tion and topological phase of matter.[1–5]

The 2D ion-crystal can be naturally realized by using Penning
trap. In the Penning trap that uses static magnetic field and dc
voltages for the confinement, hundreds of ions form a rotating
2D crystal.[10] Effective Ising interactions among ion-qubits in the
2D crystal have been engineered,[11] and entanglement of spin-
squeezing has been studied.[12] Due to a high magnetic field con-
dition and the fast rotation of ions in Penning traps, however, no
clock-state of an ion can represent an effective spin, and it is chal-
lenging to implement individual spin controls with laser beams.
Paul traps do not require high magnetic fields for confine-

ment of ions and can be an alternative platform to implement 2D
crystal. There have been deliberate proposals and experimental
exertions to confine 2D ion crystals in the Paul trap.[4,5,13–28]

The main difficulty in Paul trap for producing 2D crystal of
ions for quantum computation or quantum simulation lies in
the existence of micromotion[29] synchronous with the oscil-
lating electric field that introduces phase modulations on laser
beams for cooling and coherent operation. The micromotion
can be nullified at a point or in a line, but not in a plane. To
address the micromotion problem, arrays of micro traps have
been proposed[13–19] and small scale of arrays traps have been
implemented.[16–21] Due to relatively large distances between
micro traps, however, the Coulomb-coupling strength between
ion-qubits in different traps would be relatively weak and so
the effective spin–spin interactions induced by laser beams
of coherent operations.[30–32] Alternatively, it has been pro-
posed to produce a trap, where the direction of micromotion is

Adv. Quantum Technol. 2020, 3, 2000068 © 2020 Wiley-VCH GmbH2000068 (1 of 13)



www.advancedsciencenews.com www.advquantumtech.com

Figure 1. Trap structure and beam configuration. a) Conceptual drawing of our trap and the configuration of laser beams for cooling, pumping, detection
(370 and 935 nm), and coherent operations (355 nm). The magnetic field is applied vertically. b) Scanning electron microscope (SEM) image of our trap
(white scale bar, 400 μm). The trap structure is laser-machined on a single piece of alumina with less than 10 μm precision. Gold is electro-plated on the
surface of alumina with 10 μm thickness. The trap has a total of 20 electrodes, where 14 of them are connected to GND and the others to DC sources. The
gray letters label the electrodes on the opposite side of the trap. c) Image of our monolithic trap mounted in a hemi-sphere vacuum chamber. The trap is
shielded with stainless steel plates on the front and back, respectively, which are connected to GND. The dashed lines show the electrodes underneath
of the shield.

perpendicular to the net-propagation direction of laser beams
for coherent control.[4,5] Such a trap structure is relatively simple
to manufacture and can easily hold tens to hundreds of ions.
Here, we report the implementation of a Paul trap that con-

fines tens of ions in a 2D crystal without disturbance ofmicromo-
tions for quantum operations. The trap is monolithic, fabricated
in a single piece of gold-coated alumina plate with the structure of
the trap electrodes to precisely control the orientation of principle
axis on the plane of the 2D crystal. This ensures perpendicularity
between the micromotion axis and the net-propagation direction
of Raman laser beams, which minimizes the effect of micromo-
tion on coherent quantum operations. The 2D crystal is located
on the plane composed of axial and one of transverse axes simi-
lar to that of linear-ion chains, where the imaging and individual
manipulation systems are already well developed. With these de-
velopments, we are able to perform coherent operations on ions
in the 2D crystal by using vibrationalmodes and the spectroscopy
of vibrational modes of ten ions. Importantly, we observe that
the amplitudes of micromotions in the 2D crystal are similar to
that of a single ion by comparing the carrier and micromotion
sideband transition-strengths with three ions. Our demonstra-
tion provides a solution to the important problem of how to real-
ize a 2D-trapped-ion based quantum simulator and computer in
a Paul trap.

2. Monolithic Trap: Design and Fabrication

We develop a Paul trap that can produce a pancake-like harmonic
potential to trap the 2D crystal of ions and set the direction of
micromotions on the plane of the 2D crystal. The trap is a 3D
monolithic trap[33–35] constructed on a single layer of gold-plated

laser-machined alumina[36,37] (see Appendix A). Figure 1 shows
the structure of our trap. In this structure, the 2D crystals of ions
will be in the z–x place, which can be realized by squeezing the
harmonic potential along y-axis, where the micromotion occurs
along the z-axis. Here, the net-propagation direction of the Ra-
man laser beamwill be in the y-axis, which is perpendicular to the
direction of micromotion. Therefore, the quantum operations by
Raman laser beams will not be influenced by the micromotion.
The trap is functionally separated into three layers, where front

and back layers contain dc electrodes, and the middle layer is
used for RF electrode as conceptually shown in Figure 1a. The
RF electrode has a slope with the angle of 45◦ relative to the nor-
mal direction of the alumina piece. In each DC layer, there are
ten electrodes, five electrodes on both upside and downside with
a 50 μm spacing. At the center of the trap, there is a 260 μm × 4
mm slot, where ions are trapped. The Figure 1b shows front side
of the trap. The angle of the slope and the gap between DC and
RF electrodes are optimized to maximize the trap frequency (see
Appendix B). We use Charged Particle Optics (CPO) software to
calculate the electric potential from the electrodes. We also com-
pare the simulated potential with the real potential to calibrate
the simulation coefficient for further trap simulation (see Ap-
pendix C). In the experiment, only six of twenty electrodes are
connected to the stable DC sources, and the others to GND, as
shown in Figure 1b.
The monolithic trap is located in a vacuum chamber shown

in Figure 1c. The trap and vacuum system is designed to ensure
sufficient optical accesses. 171Yb+ ions are loaded to the middle
of the trap by photo-ionization and Doppler cooling.[38] We
create the 2D crystal of ions in a plane that consists of the axial
axis (x-axis) and one of the radial axes (z-axis). We apply two
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Doppler-cooling laser beams to couple all the three directions
of ion motions, as shown in Figure 1a. The magnetic-field
insensitive states of 171Yb+ ion in the ground-state manifold
2S1∕2, |F = 0, mF = 0⟩ and |F = 1, mF = 0⟩ are mapped to qubit
state |0⟩ and |1⟩, respectively. The state of the qubit is detected by
the laser beam resonant to the transition between F = 1 of 2S1∕2
and F = 0 of 2P1∕2 and initialized to |0⟩ by applying the optical
pumping laser beam resonant with the transition between F = 1
of 2S1∕2 and F = 1 of 2P1∕2. The qubit is coherently manipulated
by a pair of 355 nm picosecond pulse laser beams with beatnote
frequency about the qubit transition 𝜔0 = 2𝜋 × 12.642821 GHz.

3. Rotation of Principle Axes

We demonstrate the capability of rotating the principle axes of
the trap potential to ensure the micromotions to be on the 2D
plane, which will be perpendicular to the net k-vector of Raman
laser beams.[2,37] We rotate the principle axes in the y–z plane by
adjusting voltages VC and VNC on both of the center electrodes
DCC (DC1, DC2 in Figure 1b) and all of the next to the center
electrodes DCNC (DC3, DC4, DC5, and DC6 in Figure 1b), re-
spectively. The total pseudo-potential with voltages of VC, VNC,
and VRF is described by

𝜙(x, y, z) = VC𝜙C + VNC𝜙NC + VRF𝜙RF (1)

where 𝜙C and 𝜙NC are electric potentials at the position of (x, y, z)
generated by DCC and DCNC electrodes with unit voltage, and
𝜙RF is the pseudo-potential generated by the RF electrode with
root-mean-square voltage of 1 V. In y–z plane, the symmetric RF
pseudo-potential can be broken byDC potentials, which leads to a
elliptical total potential 𝜙(x, y, z)|x=0. The two axes of the elliptical
potential are the principle axes. In order to rotate the principle
axes to y axis and z axis, we need to satisfy

𝜕𝜙(0, y, 𝛿z)∕𝜕y|y=0 = 0 (2)

where 𝛿z is the radius of a 2D crystal and small enough to be
in harmonic regime for our consideration. In our numerical cal-
culation, we use 30 μm for 𝛿z. Noticing 𝜕𝜙RF(0, y, 𝛿z)∕𝜕y|y=0 = 0
is always true, we can calculate the solution of VNC∕VC, to sat-
isfy Equation (2) based on numerical simulation. In our trap,
VNC∕VC ≈ 5.11. We should also notice that whenever we set
VNC∕VC to the right value and rotate the principle axes to y axis
and z axis, VRF will no longer affect the rotation of the principle
axes. Here, we do not consider the rotation of the principal axes
along the x-direction in the small area near the trap center due
to the transnational symmetry. Indeed, our numerical simulation
also shows a negligible rotation of the principal axes up to 𝛿x =
50 μm, which would introduce a micromotion disturbance simi-
lar to the level of intrinsic micromotion.
We numerically calculate 𝜙C, 𝜙NC and 𝜙RF with CPO software.

We set the RF signal to be 𝜔 = 2𝜋 × 40 MHz and VRF = 80 V.
When VNC∕VC = ∞ with VNC = 1.5 V, vertical principle axis
(green line in Figure 2a) is clockwise rotated by 22.9◦ from the
z-axis. When the ratio VNC∕VC = 0 with VC = 1.5 V, the green
axis is counter-clockwise rotated by 5.7◦ from the z-axis. As
shown in Figure 2b, when the ratio VNC∕VC = 5.11, the green
axis is in line with z-axis.

We experimentally confirm the rotation of the principle axes
in y–z plane with single ion by observing the disappearance of
the Raman coupling to z-axis vibrational mode. The spectrum
of vibrational modes, as shown in Figure 2c,d, is measured by
the following procedure: 1) We perform Doppler cooling on ion-
crystal, which results in thermal states with n̄ ≈ 7.1 for mode fre-
quency 𝜔y ≈ 2 MHz, and initialize the internal states to |↓⟩ by
applying the standard optical pumping technique. 2) We apply
Raman beams with a net k-vector perpendicular to the z–x plane.
Once the beatnote-frequency 𝜔R of Raman beams matching to
𝜔0 ± 𝜔y,z, sideband transitions occurs,

[39] which can be detected
by the fluorescence of ions that is collected by imaging system
and photo-multiplier tube (PMT). In Figure 2c, the voltage ra-
tio is close to the condition of VNC∕VC = ∞ in Figure 2a, where
the principle axes are tilted away from y–z axes. The net k-vector
of Raman beams is along the y-axis, which can excite both di-
rections of vibrational modes. Thus, two peaks in blue-sidebands
(𝛿 = 𝜔y,z) as well as red-sidebands (𝛿 = −𝜔y,z) are clearly visible in
Figure 2c, where detuning 𝛿 = 𝜔R − 𝜔0. However, when the prin-
ciple axes are rotated to y–z axes as shown in Figure 2b, Raman
beams cannot excite the vibrational mode along z-axis, which re-
sults in vanishing a peak in the Raman spectrum. Based on the
spectrum of Figure 2d, we estimate that deviation of the principle
axes from y–z axes is below 0.40◦.

4. Loading and Imaging of 2D-Ion Crystals

In the Paul trap, there have been experimental observations of
planar ion crystals.[16,17,20,21,23–28] We also create and observe 2D
crystals in the plane of z–x axes. In order to produce a 2D ion
crystal in the z–x plane, we need to satisfy 𝜔y > (2.264N)1∕4𝜔x,z
(when𝜔x = 𝜔z ).

[5,40] In general, we need four control parameters
to rotate the principal axes and set three trap-frequencies inde-
pendently. In the experiment, we find that three control voltages,
VC, VNC, and VRF in Equation (1), are enough to produce various
geometries of the 2D crystals, which is only determined by the ra-
tio of 𝜔x and 𝜔z when 𝜔y is large enough to be 2D crystals. First,
keeping the principle axes to y–z axes, we can calculate the volt-
age solution for DC electrodes with a given axial trap frequency
𝜔x, which is mostly determined by VNC. With determined DC po-
tential, the relation between 𝜔y and 𝜔z is given by

[39]

𝜔2
y − 𝜔2

z = CVNC (3)

(see Appendix D) where C is a positive constant determined
by the trap geometry. In the case of VRF = 0, the z-axis poten-
tial, the shallower potential respective to that of the y-axis ac-
cording to Equation (3), becomes anti-harmonic, which indi-
cates 𝜔2

z < 0 and 𝜔2
y < CVNC. On the other hand, since 𝜔yand 𝜔z

monotonously increase with VRF, there is a critical value of VRF
that makes 𝜔2

y = CVNC and 𝜔2
z = 0. Therefore, we can tune 𝜔y

from
√
CVNC to ∞, 𝜔z from near zero to ∞ by tuning VRF. As

shown in Figure 2e, with different values of VRF, we can have
𝜔z∕𝜔x from 0 to 2.72 for ten ions to realize 2D ion crystal with
different aspect ratios.
Once the requirements of principle axes and trap-frequencies

for 2D crystal are satisfied as discussed above, we can con-
fine ions in the z–x plane. Fortunately, the strongest trap
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Figure 2. Principle axis rotation. a) The contour plot of pseudo-potential when VNC∕VC = ∞, central electrodes are connected to GND. b) The contour
plot of pseudo-potential when the principle axes are overlapped with y and z axes, where the voltage ratio is VNC∕VC = 5.11. c) The Raman spectrum
with principle axes in the condition of (a), where we can see both of the transverse modes. d) The Raman spectrum with principle axes in the condition of
(b). In this situation, the Raman beams can only drive the mode of the y-axis, not that of the z-axis. e) Relation between two radial-mode frequencies and
the RF voltages. By merely changing the RF voltage, we can realize different ratios of trap frequencies. The red dots are the experimental data; the dark
lines are the fitting results. The error bar is the 3𝜎, where 𝜎 is the standard error representing the fitting errors. The dashed lines, which are calculated by
𝜔y∕(2.264N)1∕4 for different RF voltage, are the up bounds of the region where the symmetric 2D crystal can be formed for different numbers of ions.

frequency in our monolithic trap is in y-axis due to the geom-
etry of the trap, which allows us to easily image the 2D crys-
tal with the same imaging system to 1D chain. The fluores-
cence of ions in 2D crystal can be directly imaged through
an objective lens to CCD camera as shown in Figure 1a.

Figure 3a shows the images of the 2D crystals and demonstrates
the control capability for shapes of 2D crystals with various set-
tings of trap frequencies. For the image of ten ions, the trap
frequencies are {𝜔x,𝜔y,𝜔z}∕(2𝜋) = {0.427, 1.50, 0.561}MHz. For
the image of 19 ions and 25 ions, the trap frequencies
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Figure 3. Geometry and mode structure of 2D-ion crystals. a) CCD images of 10-, 19-, and 25-ion crystals with different trap frequencies. The above ones
are raw data taken from EMCCD, and the bottom ones compare the numerical simulation and the real data where the white cycles are the positions of
ions read out from the CCD pictures and the red points are simulation results. The white scale bars represent 5 μm distance. b) Raman spectrum of the
2D crystal with ten ions. The crystal is first cooled by 1000μ s Doppler cooling; then a 3μ s optical pumping is performed to prepare the ground-state of
qubits. The vibrational modes are excited by a 400μ s Raman sequence with 5 kHz Rabi frequency. The spectrum is obtained by collecting the fluorescence
with PMT, and each data point is measured 100 times. The black curve is the experiment result, and the red lines are the theoretical prediction of the
mode frequencies.[5]

are {𝜔x,𝜔y,𝜔z}∕(2𝜋) = {0.28, 1.50, 0.26}MHz and {𝜔x,𝜔y,𝜔z}∕
(2𝜋) = {0.28, 1.63, 0.68}MHz, respectively. For 25 ions, the
dashed line in Figure 2e is the upper bound of the 𝜔x and 𝜔z
where the symmetric 2D crystal can be formed. However, for
forming an asymmetry 2D crystal in Figure 3a, the criteria are
complicated and have been discussed in refs.[28, 41]. We numeri-
cally study the situation in Appendix E. We can imagine an oblate
ellipsoidal 3D crystal (𝜔y > 𝜔z = 𝜔x ) whose in-plane trap fre-
quencies are above the bound; then, if we reduce 𝜔x, the crystal
will tend to 2D and finally results in a linear chain. The geome-
tries of the crystal are in agreement with the numerical simula-
tion. We simulate the geometry configuration of the ion crystal
by numerically minimizing the electrical potential of the ions in
a 3D harmonic trap.[5]

5. Raman Spectrum of Transverse Vibrational
Modes of 2D Crystals

After loading the 2D crystals of ions, we drive the different
transverse modes of a ten-ion crystal by varying the detuning
between Raman beams, similar to the single ion case. Figure 3b
shows the resulting spectrum, where each peak represents a
motional mode in the y-axis. For the measurement, we first
cool crystals to their vibrational ground-state via Doppler and
EIT cooling, then apply the Raman beams to drive the motional
sidebands. The measured mode spectrum is consistent with
the theoretical simulation based on trap frequencies and ge-
ometry of 2D ion crystal.[5] The trap frequencies used for the
simulation are {𝜔x,𝜔y,𝜔z}∕(2𝜋) = {0.427, 1.5, 0.561}MHz. We
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Figure 4. Micromotion direction and strength in the trap. a) Vector plot of the RF field is done by CPO. The simulation shows if the crystal is located in
the z–x plane; the direction of micromotion is along the z-axis and perpendicular to the y-axis which is the net propagation direction of Raman beams.
b) Carrier transition of three ions in triangular crystal. c) Micromotion transition of the three-ion crystal after compensating the micromotion. For (b)
and (c), similar to Figure 3b, after 1000 μ s Doppler cooling, and 3 μs optical pumping, we apply Raman laser beams with the frequency differences of
a) carrier transition and b) micro-motion sideband transition (separated by 40 MHz from the carrier) and collect the total fluorescence of all three ions
by PMT. The beating signal comes from the unbalanced Rabi-frequency of each ion. Error bars denote the standard deviation of project measurements
with repetition of 100 times.

directly measure the trap frequencies along the y-axis and the
x-axis, and the trap frequency along the z-axis is used as a fitting
parameter. The agreement between the experimental data and
the pseudo-potential simulation shows that the micromotion
induced shift is negligible in our system, different to the situa-
tion in ref.[26], where the full time-dependent potential including
micromotion is required to fit the experimentally measured
secular trap frequencies of 2D ion crystals. We also numerically
simulate the amplitude of micromotion for each ion,[6] and
estimate a maximal micromotion-induced frequency shift of
930 Hz.[5] Similar to the linear chain case,[42–46] when the phase
transition from a 2D crystal to a 3D crystal happens, the minimal
frequency of the modes along the y-axis will tend to be negative.
Our measured mode frequencies are far away from zero, which
provides an additional confirmation of 2D crystals of ions.

6. Compensation and Quantification
of Micromotion in 2D Crystals

Ideally, if the crystal is located in the z–x plane, the direction of
micromotion is along the z-axis and perpendicular to the y-axis,
which is the net propagation direction of Raman beams as shown
in Figure 4a. In practice, there are two possible imperfection
sources that make the crystal deviate from the ideal micromo-
tion condition: 1) stray electric field, which induces displacement;

2) fabrication imperfection of the electrodes, which induces the
tilt around the z-axis. To minimize the micromotion from theses
sources, we first compensate the straight field with a single-ion,
then mitigate the tilt errors by slightly rotating the crystal. With
the single ion, the micromotion compensation is done by over-
lapping the position of the ion to the null point of the RF elec-
tric field.[29] We first compensate the extra-field in z direction by
changing the voltage of {DC2,DC3,DC4} or {DC1,DC5,DC6} si-
multaneously with the ratio {1, 5.11, 5.11}, which is able to keep
the principle axes direction and avoid generating the displace-
ment along y axis. We can also change the voltage of electrodes
{DC1,DC3,DC4} or {DC2,DC5,DC6} with ratio {1, 5.11, 5.11} to
compensate the extra-field in y direction. For the z-axis compen-
sation, we minimize the change of ion position depending on
RF power and for the y-axis compensation, we minimize the mi-
cromotion sideband transition of Raman beams. For the error
induced by the fabrication imperfection, we slightly change the
voltage of electrodes {DC3,DC4,DC5,DC6} with ratio {1, 1, 1, 1}
to rotate the crystal around x axis and with ratio {1,-1,1,-1} to ro-
tate the crystal around z axis. With the control, we also minimize
the Rabi-frequency of the micromotion sideband transition with
three ions.
The strength of the micromotion is quantified by measuring

the ratio between two Rabi frequencies of the carrier (Figure 4b)
and the micromotion transition (Figure 4c).[29] We measure the
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micromotion strength in a three-ion 2D crystal. We first sequen-
tially apply Doopler cooling and EIT cooling[47] to cool the 2D
crystal down to near the motional ground-state. Then, we drive
the Rabi flopping and measure the Rabi frequency of the carrier
and the micromotion sideband transition. For each flopping, we
collect the overall counts of three ions with PMT and fit the re-
sult with three Rabi frequencies. Note, that the variation of Rabi
frequencies due to micromotion has been used for individual ad-
dressing single ions in a crystal.[48] The fitting gives us three car-
rier 𝜋-time {5.96, 5.40, 5.19}μs and three micromotion sideband
𝜋-time {474, 440, 317}μs. The modulation index, which is given
by 𝛽∕2 = Ωmicro∕Ωcarrier, has a maximun possible value of 0.038
and a minimal possible value of 0.021, which are similar to sin-
gle ion situations.

7. Coherent Operations on the Vibrational
Sidebands of 2D Crystals

After minimizing the strength of the micromotion, we demon-
strate coherentmanipulations of collectivemotionalmodes along
y-axis for a three-ion 2D crystal. Three frequencies of the mo-
tional modes are 𝜔y1∕(2𝜋) = 1.33 MHz, 𝜔y2∕(2𝜋) = 1.27 MHz,
and 𝜔y3∕(2𝜋) = 1.21 MHz. Three ions form a isosceles triangle
with an apex angle of 260.7 degrees. To observe the evolution
more clearly, we only collect fluorescence of the center ion, which
is at the apex angle, by PMT in this experiment. We first cool the
crystal to motional ground-state via 1000μ s Doppler cooling and
200μ s EIT cooling; then after 3μ s optical pumping, we globally
apply Raman beams on three ions and drive a blue-sideband tran-
sition for the coherent manipulation. Our blue-sideband transi-
tion induces additional off-resonant couplings to other motional
modes. The Hamiltonian is written as

H = − i𝜂
2

3∑
i=1

3∑
j=1

Ω(j)b(j)i 𝜎
(j)
+ aie

−i𝛿i t +H.C. (4)

where 𝜂 is the Lamb–Dicke parameter of a single ion, Ω(j) and
𝜎
(j)
+ are the carrier Rabi frequency and spin raising operator for
the jth ion, b(j)i (j = 1, 2, 3) characterizes the ith normalized mode
vector of the collective mode,[49] ai is the annihilation operator
for the ith motional mode, and 𝛿i = 𝜔L − 𝜔0 − 𝜔yi where 𝜔L is
the frequency of the Raman beat-note. Figure 5a shows the car-
rier Rabi flopping for the center ion, which leads to Ω(2)∕(2𝜋) =
57.6 kHz. Figure 5b shows the Rabi flopping data when we drive
the laser resonant with the zig-zag mode, that is, 𝜔L = 𝜔0 + 𝜔y3.
The black lines in Figure 5c are the simulation results with pa-
rameters as Ω(1) = Ω(2) = Ω(3) = 57.6 kHz, 𝜂 = 0.108, and b(j)i =
{{0.577,0.577,0.577},{0.707,0,-0.707 },{0.408,0.816,-0.408}}. The
time evolution of the Hamiltonian shown in Equation (4) is com-
plex, especially considering the off-resonant couple to other two
motional modes. If we do not include such off-resonant cou-
plings, the simulation is seriously deviated from the experimen-
tal data shown in black-dashed line of Figure 5b. The good agree-
ment between red points and black line in Figure 5b indicates
reliable coherent manipulation and the negligible micromotion
effect during the coherent operation. We also numerically study
the time evolution in the basis of the quantum states, which indi-
cates it is a coherent evolution that |000⟩ |n = 0⟩ and |101⟩ |n = 2⟩

Figure 5. Coherent dynamics in a three-ion 2D crystal. a) Carrier Rabi os-
cillation. b) Rabi oscillation for the blue sideband transition on the zig-zag
mode. Error bars denote the standard deviation of project measurements.
Here, all the data are taken with a three-ion 2D crystal, which forms an
isosceles triangle with an apex angle of 260.7 degrees. We only collect
the fluorescence of the center ion at the apex angle, which is highlighted
in the ionic structure schematic. The crystal is first cooled by a 1000μ s
Doppler cooling, then is cooled to ground-state through a 200μ s EIT cool-
ing. After a 3μ s optical pumping, the Raman beams are applied to the
crystal to drive blue-sideband transition of the zig-zag mode. Red points
are the experimental data. Error bars are the standard deviations. Black
lines are the simulation results including all three motional modes. The
dashed black line is the simulation result without considering off-resonant
coupling to other two motional modes. Here, the mode frequencies are
𝜔y1∕(2𝜋) = 1.33 MHz,𝜔y2∕(2𝜋) = 1.27 MHz, and𝜔y3∕(2𝜋) = 1.21 MHz.
For both carrier and sideband oscillation, experimental sequences are re-
peated 100 times.

are mainly involved (detailed discussions in Appendix F and Fig-
ure F1).
We also experimentally study the heating of the vibrational

modes in our trap with a single ion. We first prepare the ground-
state of radial vibrationalmodes byRaman-sideband cooling, wait
for a certain duration, and measure average phonon-number n̄
for the mode of interest. We estimate n̄ by Fourier transforming
the blue-sideband transitions.[39] We find that the heating rate of
y-axis mode with the principle axes of 2D crystal (Figure 2b) is
around 670 quanta per second, which is about 4.65 times larger
than that with the condition of Figure 2a. It is understandable,
since the noise of environmental electric field along y-axis would
be more severe than those of the other axes.
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8. Conclusion and Outlook

Our trap can be considered as an exemplary platform for im-
plementing various proposals of quantum simulations with
2D crystal.[1–5] It can be used to observe a structural quantum
phase transition from 2D to 3D with relaxed requirements.[50]

Incorporating the capability of individual control and detection,
universal quantum computation also can be achieved with more
number of qubits than in a linear chain. The capability of laser
addressing in a 2D space has been demonstrated with differ-
ent techniques.[51,52] The detection of individual ions already
has been well established using camera with high detection
efficiency.[53]

Furthermore, the 2D crystal may be a natural platform for the
fault-tolerant quantum computation schemes with 2D geometry,
including the surface code,[54] the Bacon-Shor code,[55] and the
(2+1) dimensional fault-tolerant measurement-based quantum
computing.[56–58] Even though the full connectivity of trapped-ion
system provides the capability of implementing any fault-tolerant
scheme without extra overhead at the circuit level,[59–61] with a
2D ion crystal, the locality of 2D topological codes can be imple-
mented, without mapping them code on a 1D ion chain, which
comes at the expense of gates between ions at a distance or shut-
tling of ions.

Appendix A: Fabrication Process

The substrate is a single piece of alumina with a thickness of
380 μm and a surface flatness of less than 30 nm. The electronic
structure is fabricated by the laser-machining and coated with
3 μm gold by electroplating technology. The detailed procedure
to fabricate the electrodes structure is as follows: 1) Carve a slot
of 260 μm at the center of the piece, as shown in Figure 1a; 2)
make a slope of 45◦ on each side by cutting small steps to fit the
slope as shown in Figure 1b; 3) make a tiny groove on each slope.

Figure A1. Steps for fabricating the structure of electrodes. a) Laser cut
the 260 μm slot. b) Cut 40 small steps for each slope with 45◦. c) Laser cut
the small groove and electroplate gold on the surface. d) Cut the slots on
the grooves and two sides of the chip to electrically separate all DC and
RF electrodes.

The width of the groove is around 50 μm; 4) do gold coating on
both sides of the chip as shown in Figure A1; 5) cut deeper in
the groove position to remove gold. The center layer is electri-
cally separated with top and bottom layer; 6) laser cut the slots
on top and bottom layer to electrically separate all DC electrodes.
Among all the steps, the second is the subtlest one. The geometry
of the four slopes is crucial for the ion control with DC voltages.
In step (2), for each slope, we apply 40 times of laser cutting with
different duration and 5 μm shift on cutting position. The cutting
duration for each pulse is calculated based on the calibrated re-
lationship between the cutting depth and the cutting time. The
laser cutting precision is ±1 μm, which is limited by the work-
table instability. Using a laser with a power of 2 W, a wavelength
of 355 nm, and a beam waist of around 15 μm, we can have the
cutting speed to be 100 mm s-1.

Appendix B: Structure of the Trap

We use CPO software to simulate the trap performance with
various geometric parameters. There are three important param-
eters for the trap design: the distance between two RF electrodes
D, the height of RF electrodes H, and the angle of the slope 𝜃 as
shown in Figure B1. We optimize these three parameters mainly
to achieve large secular frequencies in the radial direction given
fabrication limitation. The secular frequency is approximately in-
versely proportional to D2,[39] which is inspected in our numer-
ical simulation. We balance the requirement of large trap fre-
quency and low UV-light scattering, which leads to the choice of
D = 260 μm. For the slope angle 𝜃, our simulation shows the best
performance at 𝜃 ≈ 47◦. Due to the fabrication difficulty of the an-
gle, we choose 𝜃 = 45◦. Our simulation shows the best value of
H is around 30 μm. Considering the laser cutting precision, we
decideH = 40 μm.

Appendix C: Trap Simulation Calibration

Due to the fabrication imperfection, the real trap potential may
deviate from the ideal model in simulation.We develop amethod
to quantitatively calibrate difference between the reality and the
simulation, which is useful for the further simulation and the
prediction of the trap behavior. Take 𝜙C(x, 0, 0) as an example; we
can describe difference between the reality and the simulation as
follows:

𝜙real,C(x, 0, 0) = 𝜂C,x𝜙sim,C(x, 0, 0) (C1)

where 𝜙real,C(x, 0, 0) is the real potential generated by electrode
DCC along the x-axis,𝜙sim,C(x, 0, 0) is the simulated potential, and
𝜂C,x is the imperfection coefficient for DCC in x-axis. We study the
relationship between the real axial trap frequency and the simu-
lated axial trap frequency to calibrate 𝜂C,x.
We start from calculating the axial mode frequency, which is

𝜔x =
√
𝜕2𝜙(x, 0, 0)∕𝜕2x|x=0. By using the expression of𝜙 in Equa-

tion. (1), we can have

𝜔2
x = VC

𝜕2𝜙C(x, 0, 0)
𝜕2x

+ VNC

𝜕2𝜙NC(x, 0, 0)
𝜕2x

|x=0 (C2)
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Figure B1. Important geometric parameters for the trap design . We generate 3D models with all combinations of three parameters and calculate the
pseudo-potential and the secular frequency with CPO software. Maximizing the secular frequencies given fabrication limitation and laser-light scattering,
we choose D = 260 μm, 𝜃 = 45◦, and H = 40 μm for the trap.

Figure C1. Axial potential calibration. a) We only change the value of VNC and measure 𝜔real,x. Then, we simulate the ideal 𝜔sim,x using the same
DC voltage condition. By linear fitting the points {𝜔2

x,real
,𝜔2

x,sim}, we can get 𝜂NC,x = 0.87. b) We only change the value of VC and plot all the points

{𝜔2
x,real

,𝜔2
x,sim}. By linear fitting the points, we can get 𝜂C,x = 0.97.

With the Equation (C2) and fixed value of VNC, we can treat 𝜔
2
x as

a linear function withVC, which has the slope as a = 𝜕2𝜙C(x,0,0)

𝜕2x
|x=0

and the intercept as b = VNC
𝜕2𝜙NC(x,0,0)

𝜕2x
|x=0. We can write two ver-

sions of Equation (C2)

𝜔2
x,real = arealVC + breal (C3)

𝜔2
x,sim = asimVC + bsim (C4)

where

areal =
𝜕2𝜙real,C(x, 0, 0)

𝜕2x
(C5)

asim =
𝜕2𝜙sim,C(x, 0, 0)

𝜕2x
(C6)

So we know

𝜂C,x =
𝜙real,C(x, 0, 0)

𝜙sim,C(x, 0, 0)
=

areal
asim

(C7)

Combining Equations (C3), (C4), and (C7), with the same value
of VC, we can have

𝜔2
x,real = 𝜂C,x𝜔

2
x,real + bC (C8)

where bC is an intercept determined by VNC and geometries
of other electrodes. We measured axial trap frequency 𝜔x,real by
adding a modulation signal on one of the DC electrodes and
checking the ion image. When the modulation frequency is close
to the axial mode frequency, the motion of the ion is resonantly
excited and melting in the axial direction. By changing VC and
plotting the points {𝜔2

x,real,𝜔
2
x,sim} in Figure C1a, we can fit the

coefficient of 𝜂C,x = 0.97. By doing same measurement but only
changing VNC, we can obtain 𝜂NC,x = 0.87. 𝜂C,x is close to 1, which
means the geometry of the center electrodes is near perfect in the
axial direction. On the other side, 𝜂C,x = 0.87 indicates that DCNC
electrodes are further away from the ion in the reality than in the
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Figure C2. Radial potential calibration. a) We only change the value of VC and measure 𝜔real,y. Then, we simulate the ideal 𝜔sim,y using the same DC
voltage condition. We check the rotation of the principle axes in the experiment and in the simulation to ensure the approximation assumption. By
linear fitting the points {𝜔2

x,real
,𝜔2

x,sim}, we can get 𝜂C,y = 1.65. With the same procedure in (b)–(d), we calibrated the imperfection factor 𝜂C,z = 1.92,
𝜂NC,y = 1.23, and 𝜂NC,z = 1.11

simulation. Whenever we want to simulate the axial potential, we
need to include 𝜂C,x and 𝜂NC,x in consideration.
To calibrate the imperfection coefficients of two radial prin-

ciple axes, y-axis and z-axis, we execute the same procedure as
the axial calibration with more careful consideration about the
principle-axes rotation. During the process of changing VNC or
VC, only if we keep the rotation angle of the principle axes in a
small regime, we can have the similar equations as Equation (C8)
for y-axis and z-axis:

𝜔2
y,real ≈ 𝜂C,y𝜔

2
y,real + bC,y (C9)

𝜔2
z,real ≈ 𝜂C,z𝜔

2
z,real + bC,z (C10)

𝜔2
y,real ≈ 𝜂NC,y𝜔

2
y,real + bNC,y (C11)

𝜔2
z,real ≈ 𝜂NC,z𝜔

2
z,real + bNC,z (C12)

All the data are shown in Figure C2. From the data and the lin-

ear fitting, we can obtain 𝜂C,y = 1.65, 𝜂C,z = 1.92, 𝜂NC,y = 1.23, and
𝜂NC,z = 1.11. All these imperfection coefficients are larger than 1,
which indicates that all, relative to the ideal model, the DC elec-
trodes are closer to the ion in the radial direction in the reality.
When we simulate the radial potential and check the principle
axes rotation in the yz-plane, we use the average value 𝜂C,yz =
1∕2(𝜂C,y + 𝜂C,z) = 1.785 and 𝜂NC,yz = 1∕2(𝜂NC,y + 𝜂NC,z) = 1.17 to
be the coefficients multiplied to 𝜙C(0, y, z) and 𝜙NC(0, y, z).

Appendix D: Trap Frequency Calculation

According to ref.[39], we can write the time-dependent potential
of the trap as follows:

𝜙(x, y, z, t) =
∑

E∈DC
1
2
VE(𝛼Ex

2 + 𝛽Ey
2 + 𝛾Ez

2) (D1)

+VRF cos(𝜔RFt)(𝛼
′x2 + 𝛽′y2 + 𝛾 ′z2)

where VE is the voltage applied on the DCE electrode; 𝛼E, 𝛽E, 𝛾E
are geometric factors determined by the geometry of the DCE
electrode; VRF is the root mean square of the voltage applied
on RF electrode; 𝛼′, 𝛽′, and 𝛾 ′ are geometric factors determined
by the geometry of the RF electrode. We note that x, y, and z
axes in Equation (D1) should be three principle axes of the trap
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Figure E1. Simulation of geometry and mode frequencies (a–c). The relation between crystal size and the RF voltage for the cases of 10, 19, and 25 ions.
Here, we define the size of crystal as the maximal coordinate difference in the x, y, or z axes among the ions. The zero value of the crystal size along the
y-axis shows the crystal is confined in 2D on the x–z plane, and when the size of z axis becomes zero, the ions form a linear chain. The sudden jumps
of the crystal size indicates a structure phase transition. d) If we squeeze the 10-ion crystal in the z-x plane by increasing wx and wz while keeping the
ratio as wx/wz = 1.3, the frequency of the motional modes along the y-axis will become broader, and once the minimal frequency meet zero, a phase
transition from 2D to 3D happens.

potential. All the geometric factors will change based on the dif-
ferent rotation of the principle axes. The condition that the po-
tential has to fulfill the Laplace equation ΔΦ = 0 leads to the re-
strictions as follows:

𝛼 + 𝛽 + 𝛾 = 0 (D2)

𝛼′ + 𝛽′ + 𝛾 ′ = 0 (D3)

With our symmetric RF electrodes in the axial direction, it is clear
that 𝛼′ = 0, which leads to 𝛽′ = −𝛾 ′. Solving the Mathieu equa-
tion for three directions, we can have the results as follows:

𝜔x =

√
4e

∑
E∈DC VE𝛼E

m𝜔2
RF

+
2e2V2

RF𝛼
′2

m2𝜔4
RF

𝜔RF

2
(D4)

𝜔y =

√
4e

∑
E∈DC VE𝛽E

m𝜔2
RF

+
2e2V2

RF𝛽
′2

m2𝜔4
RF

𝜔RF

2
(D5)

𝜔z =

√
4e

∑
E∈DC VE𝛾E

m𝜔2
RF

+
2e2V2

RF𝛾
′2

m2𝜔4
RF

𝜔RF

2
(D6)

Due to 𝛽′ = −𝛾 ′, we can have

𝜔2
y − 𝜔2

z =
e
m
[
∑
E∈DC

(𝛽E − 𝛾E)VE] (D7)

This equation explains Equation (3). As we mentioned before,
all the geometric factors are determined by the rotation of the
principle axes.

Appendix E: Geometry of Ion Crystal and
Simulation of Mode Frequencies

We calculate the dashed lines in Figure 2e using the formula
𝜔y∕(2.264N)1∕4,[5] where 𝜔y varies with the RF voltage. When 𝜔x

and 𝜔z are both bigger than 𝜔y∕(2.264N)1∕4, the ions form a 3D
crystal.When𝜔x and𝜔z are both smaller than the bound, the ions
form a 2D crystal. However, when two frequencies are not larger
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Figure F1. Simulations of time evolution for internal and motional states
in a three-ion 2D crystal. a) The time evolution for eight internal states af-
ter tracing out motional states. Due to the symmetric between two side
ions, the evolution of states |001⟩ and |100⟩ and |011⟩ and |110⟩ are
identical. b) The time evolution for the zig-zag mode in phonon num-
ber basis after tracing out internal states. The occupied phonon state
is bounded to |n = 3⟩ as the characteristic of three-ion blue-sideband
transition.

or smaller than the bound at the same time, there is no simple
expression of the critical point for the phase transition from a 2D
crystal to a 3D crystal. For example, if one of the modes is below
the bounds while the other above, the ions can still form a 2D
crystal. We can imagine such a situation from a homogeneous
crystal where 𝜔x = 𝜔z > 𝜔y∕(2.264N)1∕4. In this case, the ions
form a 3D crystal not 2D, but if we release the confinement along
the x-axis by lowering 𝜔x, at a certain 𝜔x, the ions can form a 2D
crystal. We verify this situation for 10, 19, and 25 ions by numer-
ically simulating the equilibrium positions of the ions and study
the structures of the crystals if they are in 2D, as shown in Fig-
ure E1. Here, we simulate the geometry of crystals by minimiz-
ing the pseudo-potential of the crystal at zero temperature. Com-
pared with the molecular dynamics simulation, including oscil-
lating fields, the pseudo-potential solution has a shifted critical
point,[62,63] while the overall structure is similar.[5,26] The critical
point of the structure phase transition can be calculatedmore pre-
cisely bymapping it to the six-state clockmodel,[41] and including
the effect of finite temperature and quantum fluctuations.[41]

As mentioned in the main text, in the region near the
phase transition from 2D to 3D, the minimal frequency of the
transverse modes will tend to zero. We also numerically study
this behavior on a ten-ion 2D crystal and show the result in
Figure E1d.

Appendix F: State Evolution in a Three-Ion 2D
Crystal When Driving the Zig-Zag Mode

We numerically simulate the coherent dynamics for the
blue-sideband transition on zig-zag mode shown in Figure 5b
with the the Hamiltonian shown in Equation (4). Figure F1a
shows the simulation of time evolution for three internal states
after tracing out motional states. The time evolution is complex,
especially considering all the off-resonant couple to other two
motional modes. However, we can clearly see that it is a coherent
evolution. The initial state |000⟩ is mostly transferred to |101⟩ at
around 75 μs and is returned at around 150 μs. Even longer evo-
lution of around 860 μs, the |000⟩ state coherently comes back,
which is strongly indicated in the experimental date of Figure 5b.
Figure F1b shows the simulation of time evolution for motional
states of zig-zag mode after tracing out internal states. The occu-
pied phonon state is bounded to |n = 3⟩ due to the characteristic
of three-ion blue-sideband transition.Here, we find the dominant
motional dynamics occurs between |n = 0⟩ and |n = 2⟩ states.
The |n = 2⟩ is mostly associated with |101⟩ state, which can be
understood from the motional mode vector of the zig-zag mode.
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