
Network Coding is Highly Non-Approximable
Hongyi Yao

Institute of Theoretical Computer Science
Tsinghua University

Beijing, 100084, P.R China
Email: yaohongyi03@gmail.com

Elad Verbin
Institute of Theoretical Computer Science

Tsinghua University
Beijing, 100084, P.R China

Email: elad.verbin@gmail.com

Abstract—We address the network coding problem, in which
messages available to a set of sources must be passed through a
network to a set of sinks with specified demands.

It is known that the problem of deciding whether the demands
can be met using a linear code is NP-hard [Lehman and Lehman,
SODA ‘04]. Such a result is not known if we allow general (=non-
linear) codes to be used. Despite this, network coding is believed
to be a very hard problem both when restricting to linear codes,
and when considering general codes.

In the current paper we give some evidence for this hardness.
Call a sink happy if it receives all of the data it demands. We
show that the problem of maximizing the number of happy sinks
by a general network code is NP-hard to approximate to within
a multiplicative factor of n1−ε, for any ε > 0. Here, n is the
number of sinks. To our knowledge, this is the first hardness
result known for general network coding. The same holds for
maximizing the number of happy sources.

Let ns be the number of sinks. We also prove a stronger
result about linear codes: that given a network that can be
satisfied by a linear code, it is NP-hard to find a linear code
that makes at least 22 sinks happy. In particular, this means
that the problem of maximizing the number of happy sinks in
a linear code cannot be approximated to any factor better than
ns/22, even for arbitrarily large ns – this is the harshest kind
of inapproximability possible.

I. INTRODUCTION

Network coding can be seen as a variant of multicommodity
flow, where commodities can be duplicated or combined
(using computational operations) at any node. The network
(represented by a directed graph) consists of multiple nodes,
which correspond to computers, and edges, which correspond
to channels. A set of source nodes has a set of data items,
and it wants to transmit them to a set of sink nodes through
the edges. Indeed, coding really helps: in the famous butterfly
network the approach based on multicommodity flow cannot
satisfy all of the sinks, but a network coding that satisfies all
sinks does exist. See Section II for a formal definition of the
network coding problem. A good source on network coding
are the books of Yeung [12], [13].

An important class of communication protocols are linear
protocols: we think of each data item and each message as
an element in a finite field Fq. Each transmitted message is a
linear combination of data items. We call a network satisfiable
if the demands of all sinks can be met. We call it linearly-
satisfiable if they can be met by a linear code.

In the case where all sinks want all data items, the problem
was solved by [1], [6], [3], who showed that if the network

is satisfiable, then a randomly-chosen linear code satisfies it
with good probability. However, the more common case where
sinks have different demands is wide open, and is believed to
be much harder [12], [8]. This is the case we deal with in this
paper.

The first paper to consider the computational complexity
of network coding is [8]. In it, Lehman and Lehman prove
that it is NP-Hard to determine whether a network coding
instance is linearly satisfiable. They prove this by a reduction
from the 3-SAT problem. For more information about NP-
hardness, see Section II-B. [8] only prove that it is NP-hard
to determine whether there is a linear protocol that satisfies
the network. However, the problem of checking whether a
network is (nonlinearly-) satisfiable is not even known to be
NP-hard. In this paper, we offer the first NP-hardness proof
related to non-linear network coding. Non-linear codes can be
much stronger than linear codes, as shown by [5]. Another
interesting recent paper is Langberg and Sprintson’s [7], who
prove that it is hard to approximate the rate of a network when
using a vector-linear code.1

A. Our Contributions

In a network coding protocol, we call a sink happy if it
receives all data items that it desires. We call a source s happy
if all data items contained in s are successfully transmitted to
all sinks that want them. It is interesting to try to maximize
the number of happy sinks or sources, since even if a network
is not satisfiable, it might be interesting to meet at least some
of the demands.

It is perfectly plausible that, say, whenever the network is
satisfiable, then we can find in polynomial time a protocol
where 99% of the sinks are happy; such a situation would
mean that the network coding problem has quite good algo-
rithms, that the community might be satisfied with. In this
paper, we are sad to dispel such hopes: we prove that problems

1Specifically, Langberg and Sprintson proved that the rate is hard to
approximate up to a multiplicative constant. There are a few caveats to this:
(i) the result assumes the conjecture that it is NP-hard to find a coloring of
a 3-colorable graph by O(1) colors (this conjecture is plausible: it is true
if the Unique Games Conjecture is true); (ii) The proof works in the non-
asymptotic case, i.e. the proof only works when fixing q to a constant rather
than letting it tend to infinity; problems that are hard in this non-asymptotic
setting are not always hard in the asymptotic setting, since the asymptotic
setting is less “jagged”.

of this sort are incredibly hard to approximate. In particular,
we prove that:2

• If we are promised that the network is linearly-satisfiable,
then it is NP-hard to find a linear protocol that makes even
22 sinks happy, and the same holds when considering
sources instead of sinks. See Section IV.

• Let ns be the number of sinks. Considering general
(=non-linear) codes, we prove that for any ε > 0, it is NP-
hard to distinguish between the case that n1−ε

s sinks can
be made happy, and the case that no nεs sinks can be made
happy. The same holds when considering sources instead
of sinks. To our knowledge, this is the first hardness result
known for general network coding. See Section III.

Two important comments: Firstly, all of our results hold
even when the number of sources and sinks tend to infinity.
This implies that the problem of maximizing the number of
happy sinks in a linear code cannot be approximated to any
factor better than ns/22, even for arbitrarily large ns – this is
the harshest kind of inapproximability possible. Secondly, all
of our results can be adapted to hold even for the case that
each source contains only one unique data item. This might
be important for comparing our results with previous results.

The first set of results, that deal with linear protocols, are
proved by reductions from variants of the 3-SAT problem. The
latter result that deals with non-linear protocols, is a reduction
from the maximum independent set problem.

Note that the last result does not imply that it is NP-hard
to determine whether a network coding instance is satisfiable.
This is still unknown, and is a major open problem.

II. PRELIMINARIES

We start with some definitions in graph theory. For basic
definitions, see [4]. In a directed graph let deg−(v) and
deg+(v) denote the in-degree and out-degree of v, respec-
tively. For an undirected graph, we denote v ∼G u if u and v
are neighbors. For a vertex v and edge e, we write v ∈ e if v
is one of the sides of e.

A. Network Coding

The formal definitions related to network coding can
be found in [12], [13]. Here we give a short review.
In the decision version of a network coding instance
N (G,S,R,D, {Itemss}s∈S , {Demandsr}r∈R), there is a
directed acyclic graph G = (V,E) in which parallel edges
are allowed, a set of source nodes S ⊆ V with no in-edges,
a set of sink (or receiver) nodes R ⊆ V , a set of data
items D, a family of item sets {Itemss} for each source
node, where Itemss ⊆ D, and a family of demand sets
{Demandsr} for each sink node, where Demandsr ⊆ D.

2Consider some maximization problem. Consider the following three types
of statements: (i) it is NP-hard to distinguish between the case that the value
is ≤ α and the case that the value is ≥ β; (ii) given an input with value
≥ β, it is NP-hard to find a solution with value > α; (iii) the value cannot
be approximated to within a multiplicative factor of β/α. It is easy to see
that (i) implies both (ii) and (iii). Also, for most problems, (ii) implies (i)
by self-reducibility. In various places in the paper we phrase our results in all
three forms, but all of our results are actually of the strongest form, (i).

Fix a number q, which is the alphabet size, and let the alphabet
be Σ = {1, 2, . . . , q}. For a particular q, a protocol for this
network is a family of mappings. For each edge e = (u, v), the
mapping is a function fe : Σ|deg

−(u)| → Σ. If u is a source
node, then fe : Σ|Itemsu| → Σ. The mapping fe specifies how
the symbols received by u are translated to the symbol that is
sent from u to v.

A protocol is said to be linear if Σ is a finite field and
all f ’s are linear transformations. A protocol is said to be
vector-linear if Σ can be represented as a cartesian product
of finite fields, and f is linear in each coordinate. (We hardly
use this definition; see more in [13]). For a particular protocol,
we denote the value of the data item stored at a source w
by val(w) (assuming there is just one item; we won’t use
this notation in any other case), and we also denote the value
transmitted over a channel (w,w′) by val(w,w′).

Let r be a receiver. If there is a function that maps the
symbols received by r to the values of the items Demandsr,
then r is said to be happy. If a protocol makes all receivers
happy, then we say that the protocol satisfies the network.
If there exists some q such that there exists a protocol
that satisfies the network, then we say that the network is
satisfiable. Note that this definition is asymptotic.3 If this holds
for a linear protocol, then we say that the network is linearly
satisfiable.

When a protocol does not perform any coding operations
and just copies items, then we call it a copying-only protocol.
We’ll refer to this concept in Section V-A.

B. NP-Hardness and Computational Complexity

We give some basic information about NP-hardness. For
more, see e.g., [10], [11].

NP-hard is the class of problems which are at least as hard
to solve, in the worst case, as any other problem in NP (up to
polynomial-time reductions). Many problems are known to be
NP-hard. It is widely believed that no NP-hard problem has
a polynomial-time algorithm. Remarkably, if a polynomial-
time algorithm is found for some NP-hard problem, then all
problems in NP are also solvable in polynomial time. This
includes difficult problems such as SAT, INDEPENDENT
SET, etc. . The standard way to prove that a problem is NP-
hard is to reduce to it from some problem which is known to
be NP-hard. For example, if we want to reduce from problem
P to problem Q, then we assume that we have an oracle that
solves Q in polynomial time, and we prove that we can solve
P in polynomial time. It is important to note that NP-hardness
only refers to the worst-case complexity of a problem. That
is, NP-hard problems might still have efficient algorithms that
work correctly on many inputs.

3It is asymptotic in the sense that we only care about whether there exists
such q, and q might be very large and may depend on the network itself. This
corresponds to caring only about what happens after asymptotically-much
“communication rounds”. The standard definition of network coding, see e.g.
Yeung [12] is slightly different to the one we give, but almost equivalent.
Ours is a little simpler to describe. In any case, all of our proofs work for
the standard definition as well.

The 3-SAT problem is a well-known NP-hard problem. The
input consists of a set {x1, . . . , xn} of variables, and a set
C1, C2, . . . , Cm of clauses. Every clause consists of exactly
three literals, where each literal is either a variable or its
negation. For example, x3 ∨ x5 ∨ x9 is a possible clause.
The instance is satisfiable if there is a truth assignment to
the variables so that each clause has at least one true literal.
We find it useful to consider a restriction of the 3SAT problem,
denoted 3SAT-5, where each variable must appears in exactly
five clauses and a variable does not appear in any clause more
than once. This problem is also NP-hard [10].

Another problem of interest is the maximum independent
set problem. An independent set is a set of vertices in a graph
no two of which are adjacent. The computational hardness
result for maximum independent set is:

Theorem 1 ([2]): Given an input graph G, the problem of
finding the largest independent set in the graph is NP-hard to
approximate to within n1−ε, for any ε > 0.

III. HARDNESS RESULT FOR GENERAL NETWORK
CODING

In this section, we consider the general (non-linear) network
coding problem. We prove inapproximability of the problems
of maximizing the number of happy sources, and of maximiz-
ing the number of happy sinks. To our knowledge, no previous
works have shown computational hardness for any variant
of general (=non-linear) network coding. We prove hardness
by showing a reduction from the maximum independent set
problem.

We first consider the problem of maximizing the number of
happy sources. The following lemma gives the reduction:

Lemma 2: There exists a mapping Φ from graphs to in-
stances of network coding, such that a graph G = (V,E) has
an independent set of cardinality k if and only if the network
coding instance Φ(G) has a protocol that makes k receivers
happy.

wv
e

wu
e

w1
e

w2
e

wv wu

Fig. 1. Gadget for Lemma 2 reduction.

Proof: We show the reduction in figure 1. The network
Φ(G) has |V | + 4 |E| nodes and 5 |E| channels. 2 |E| of the
nodes are sources, and |V | are sinks. For each vertex v in
G, Φ(G) has a node wv . For each edge e = (u, v) in G,
Φ(G) has four nodes: wve , w

u
e , w

1
e , and w2

e . wve and wue are
sources, and w1

e and w2
e are neither sources nor sinks. For

each edge e = (u, v) of G, the network Φ(G) contains the fol-
lowing five channels: (wve , w

1
e), (w

u
e , w

1
e), (w

1
e , w

2
e), (w

2
e , wv),

and (w2
e , wu). All channels are unit channels, i.e., they are

able to transmit one element of the alphabet. Each source
node contains exactly one unique data item. The demands

{Demandsr} are as follows: Each sink wv demands degG(v)
data items. Specifically, for each edge e = (u, v), wv demands
the data stored at node wve , and wu wants to get the data stored
at node wue . This concludes the description of Φ(G).

We make the following claim:
Claim 3: The sink wv can be made happy if and only if

we don’t make any of the sinks {wu : (u, v) ∈ E} happy.
This claim means that we can make a set of sinks happy if
and only if it is an independent set of G, The lemma clearly
follows from this claim. We now prove this claim:

Let v be a vertex of G, and let wv be the corresponding
sink. Fix some edge e = (u, v) ∈ E. First observe that in
order to make the sink wv happy, it is necessary that wv gets
the data item val(wve). In order for wv to get val(wve), it
is required that the channel (w1

e , w
2
e) carries full information

about val(wve): this is because there is only one path in the
network connecting wve to wv , and that path includes the
channel (w1

e , w
2
e). Furthermore, if wv is happy, that means

that wv is able to decode the degG(v) information items that it
needs; since only degG(v) channels go into wv , then by a basic
information-theoretic argument we get that these channels
cannot carry information about any data items except those
in {val(wve) : u ∼G v}. It follows that if wv is happy, then
val(wue) has no influence on val(w1

e , w
2
e), and in particular

wu cannot be happy. We thus see that if wv is happy, then no
node in the set {wu : u ∼G v} can be happy, and thus the set
of happy nodes has to be an independent set.

Conversely, it is easy to see that for any independent set
S ⊆ V there is a protocol that makes all vertices {wv : v ∈ S}
happy, by going over every edge e = (v, u) ∈ E where v ∈ S,
and transmitting the value val(wve) from wve to w1

e to w2
e to

wv . This finishes the proof of the claim, and also the proof of
the lemma.

A direct consequence of this lemma is:
Theorem 4: In the general network coding problem it is

NP-hard to approximate to within n1−ε the number of sinks
that can be made happy, for any ε > 0.

For maximizing the number of happy sources, we have a
similar result, with a very similar proof.

IV. HARDNESS RESULTS FOR LINEAR NETWORK CODING

We prove hardness by reducing from 3SAT-5. Part of the
the reduction in depicted in figure 2. We now describe the
reduction. Let ψ be a 3CNF-5 formula with n variables
x1, . . . , xn and m clauses C1, . . . , Cm. In the reduction we
transform ψ to a network coding problem Φ(ψ). The network
Φ(ψ) has 4n + 3m nodes and 3n + 6m channels; 2n of
the nodes are sources, and m are sinks. The nodes are
{vTi , vFi , v1

i , v
2
i : 1 ≤ i ≤ n} ∪ {wj , w1

j , w
2
j : 1 ≤ j ≤ m}.

The sources are {vTi , vFi : 1 ≤ i ≤ n} and the sinks are {wj :
1 ≤ j ≤ m}. The channels are: {(vTi , v1

i), (v
F
i , v

1
i), (v

1
i , v

2
i) :

1 ≤ i ≤ n} ∪ {(w1
j , wj), (w

2
j , wj), (w

2
j , wj) : 1 ≤ j ≤

m} ∪ {(v2
i , w

1
j), (v

T
i , w

2
j) : xi ∈ Cj} ∪ {(v2

i , w
1
j), (v

F
i , w

2
j) :

xi ∈ Cj}. Here, (w2
j , wj) appears twice because we put two

parallel channels there; also, the notation xi ∈ Cj is used
to denote that xi appears in Cj un-negated, and xi ∈ Cj

means that xi appears in Cj (negated). Each channel has unit
capacity. Each source contains exactly one unique data item.
The demands are as follows: For each clause Cj , the sink wj
demands three data items. Let us specify using an example:
if the clause is x3 ∨ x5 ∨ x9, then wj demands the data items
from sources vF3 , vT5 , and vF9 . The general rule is clear.

vT
3 vF

3

v1
3

v2
3

vT
5 vF

5

v1
5

v2
5

vT
9 vF

9

v1
9

v2
9

w1
j

w2
j

wj
Fig. 2. Gadget for Claim 5 reduction.

We make the following claim:
Claim 5: For any set {wj : j ∈ J} of sinks, there is a

linear protocol that satisfies all of these sinks if and only if
there is an assignment to ψ that satisfies all of the clauses
{Cj : j ∈ J}.

Proof: Assume we have an assignment σ that satisfies
all of the clauses {Cj : j ∈ J}. Then the following protocol
makes all of the sinks in {wj : j ∈ J} happy: If σ sets xi
to TRUE, then copy the data item from vTi to v1

i , and then to
v2
i , and then to all nodes in {w1

j : xi ∈ Cj}, and then to all
nodes in {wj : xi ∈ Cj}. Similarly, if σ sets xi to FALSE,
then copy the data item from vFi to v1

i , and then to v2
i , and

then to all nodes in {w1
j : xi ∈ Cj}, and then to all nodes in

{wj : xi ∈ Cj}.
The data items that w1

j wants to send to wj correspond to
the literals that cause Cj to be satisfied by σ. Thus, if w1

j wants
to send more than one data item to wj , then it just arbitrarily
picks one of these data items and sends it to wj , and ignores
the others.

It is easy to see that by now, each of the sinks in {wj :
j ∈ J} receives at least one of the data items that it wants. It
can get the two others through w2

j , using the double channel.
Thus we see that all of {wj : j ∈ J} can be made happy. It
is interesting to see that this protocol only copies data items,
i.e., it is a copying-only protocol. We shall return to this point
in Section V-A.

Let us now prove the converse: that if there is a linear
protocol that satisfies all sinks in {wj : j ∈ J} then we can
build an assignment σ that satisfies all clauses {Cj : j ∈ J}.
The assignment σ assigns to xi the value TRUE if val(v1

i , v
2
i)

depends only on val(vTi), and assigns the value FALSE if
val(v1

i , v
2
i) depends only on val(vFi). (When we say that

val(w1, w2) “depends only on” val(w) we mean that it does
not depend on data items stored in any source except w).
In any other case, i.e. if val(v1

i , v
2
i) depends on both or

none of the values val(vTi), val(vFi), then σ assigns to xi
an arbitrary value. We proceed to prove that for each j ∈ J ,

this assignment indeed satisfies Cj .
Fix some happy sink wj where j ∈ J . Let’s assume

for example that the clause Cj is x3 ∨ x5 ∨ x9 (the
proof works the same way in general). Denote by Dj =
{val(vF3), val(vT5), val(vF9)} the set of data items that wj
wants (and gets, since wj is happy), and denote by Dc

j all other
data items. Since the code is linear, then every message that
wj receives is a linear combination of data items. We claim
that each message that wj receives does not depend on any
data item in Dc

j . Assume in contradiction that wj does receive
some message that depends on items in Dc

j . Then, since wj
also knows the three values in Dj , then it can use linear
algebra to “cancel” Dj out from that message, and then wj
knows some linear combination of the items in Dc

j ; this is not
possible, since it means that wj gets four independent pieces of
information, while wj only has three ingoing channels. Thus,
each message that wj gets only depends on the items in Dj .

Furthermore, since wj has three ingoing channels and needs
three pieces of information, it is clear that the message
val((w1

j , wj)) must carry some information about the items in
Dj . Suppose w.l.o.g. that val((w1

j , wj)) depends on val(vF3).
Observe that if the message transmitted over (v1

3 , v
2
3) depends

on val(vT3), then since the code is linear and there is no
other channel through which to get val(vT3), it means that this
dependence must carry on, and then val((w1

j , wj)) will depend
on val(vT3), which is a contradiction. This means that the
message transmitted over (v1

3 , v
2
3) cannot depend on val(vT3)

and will depend only on val(vF3), and by the definition of σ,
σ(x3) = FALSE, so Cj will be satisfied. This concludes the
proof of the lemma.

We now somewhat alter the reduction.
Lemma 6: The reduction can be changed so that the net-

work only has 22 sources.
Proof: To make the number of sources smaller, we change

the reduction of Claim 5 by unifying some of the sources.
Suppose the two literals x3 and x7 (for example) never appear
together in the same clause. Then we claim that the sources
vT3 and vT7 can be unified, i.e., replaced by one source that
contains both of the data items, without hurting the correctness
of the reduction. This is easy to check by just going over
the proof of Claim 5, and seeing that the proof only requires
the assumption that val(v1

3 , v
2
3) does not depend on any of

the values at vT5 , v
F
5 , v

T
9 , v

F
9 , and similarly with val(v1

5 , v
2
5)

and val(v1
9 , v

2
9). (Using the clause Cj = x3 ∨ x5 ∨ x9 as an

example). We also must never unify the node of a literal with
the node of its negation.

It’s easy to see that unifying the nodes of two literals that do
not appear together in any clause keeps the assumption true.

We now show that we can unify sources in this way, such
that in the end we are only left with 22 sources. To see this,
suppose that we can color the variables of ψ by k colors,
such that no two variables with the same color co-appear in
the same clause. In this case, we can unify source nodes to
make the number of sources 2k, by unifying the nodes {vTi }
for each color class, and the nodes {vFi } for each color class.
Thus, it suffices to prove that we can color the variables of ψ

by k = 11 colors. To see this, write a graph Hψ where the
vertices are the variables of ψ and there is an edge between two
variables if they co-appear in some clause. We want to color
this graph by 11 colors such that no edge is monochromatic.
Since ψ is a 3CNF-5 formula, then each variable co-appears
with at most 10 other variables. Thus, the maximum degree
in H is at most 10, and we can use the greedy algorithm to
color H in k = 11 colors.4

We can in fact get the number of sources down from 22
to 10 by reducing from PLANAR-3SAT. The reduction uses
the fact that planar graphs can be colored by 5 colors in
polynomial time. The details are omitted. It seems interesting
whether 2 sources suffice.

We now give our main theorem.
Theorem 7: In the problem of maximizing the number of

happy sources using a linear network code, it is NP-hard to
distinguish between the case that all sources can be made
happy, and the case that at most 21 sources can be made happy.
This holds even if the number of sources, ns, is arbitrarily
large.

Proof: Let ns be the number of sources (arbitrarily large).
We again reduce to 3SAT-5. Let ψ be a 3CNF-5 formula.
We transform it to a network coding instance N as follows:
The network N consists of ns sources. For each set of 22
out of the ns sources, we place an instance produced by the
reduction described in Lemma 6 over these 22 sources. Thus,
we perform the reduction

(
ns

22

)
times, each time producing

fresh and distinct data items, distinct channels, distinct internal
nodes and distinct sinks. The only thing in common is the
sources. At the end we get a network N with

(
ns

22

)
· (2n +

3m) + ns nodes and
(
ns

22

)
· (3n + 6m) channels. It is easy

to see that if ψ is satisfiable, then all sources of N can be
made happy, and that if ψ is not satisfiable, then no set of 22
sources of N can be made happy. Thus, if we can distinguish
between the two cases, then we have a solution to 3SAT-5. It
follows that it is NP-hard hard to distinguish between the case
that all sources can be made happy, and the case that at most
21 sources can be made happy.

V. DISCUSSION AND OPEN QUESTIONS

A. A Note About Our Hardness Reductions

It is interesting to observe that in the reduction of Claim 5,
if the network is linearly satisfiable then it can be satisfied by
a copying-only protocol. The paper [9] presents an algorithm
which in polynomial-time finds a vector-linear protocol that
satisfies the network if there exists a copying-only protocol
that satisfies the network. Thus, our reduction cannot prove
an analogue of Theorem 7 for vector-linear protocols.

4The greedy algorithm works as follows: go over the vertices one by one
is some arbitrary order, and color each vertex v by some color not used by
its already-colored neighbors. Since there are 11 colors but only at most 10
neighbors, then there must be some such free color, so this process produces a
valid coloring. Also note that this process runs in linear time. This is important
since the coloring needs to be produced as part of the reduction, and reductions
need to run in polynomial time.

Thus, it seems we might have gotten close to the limits
of what can be proved using gadgets that admit copying-
only solutions. The study of gadgets that require coding
operations to satisfy tends to be much more complicated, as
demonstrated by the many caveats in [7]. It seems that we are
missing techniques that can deal with complicated networks
that require not-only-copying protocols.

B. Open Questions

• It is still open to determine to complexity of checking
whether a network is satisfiable. Is it NP-hard? Is it
decidable?

• It seems interesting to prove that checking whether a net-
work is linearly satisfiable is NP-hard even for networks
where the number of sources, sinks, and data items, are
all O(1). In this case, the hardness will have to arise from
the structure of the network.

• It is interesting to study the approximability of the
problem of maximizing the number of happy connections.

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China Grant 60553001, the National
Basic Research Program of China Grant 2007CB807900,
2007CB807901.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Transactions on Information Theory, 46(4):1204–1216,
2000.

[2] P. Berman and G. Schnitger. On the complexity of approximating the
independent set problem. Information and Computation, 96(1):77–94,
1992.

[3] P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In Proc. of
Allerton Conference on Communication, Control, and Computing, 2003.

[4] R. Diestel. Graph Theory. Springer, 2005.
[5] R. Dougherty, C. Freiling, , and K. Zeger. Insufficiency of linear coding

in network information flow. IEEE Transactions on Information Theory,
8:2745–2759, 2005.

[6] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen. Polynomial time algorithms for multicast network code
construction. IEEE Transactions on Information Theory, 51(6):1973–
1982, 2003.

[7] M. Langberg and A. Sprintson. On the hardness of approximating the
network coding capacity. In Proc. of ISIT, 2008.

[8] A. R. Lehman and E. Lehman. Complexity classification of network
information flow problems. In Proc. of SODA, 2004.

[9] Z. Li, B. Li, and L. C. Lau. On achieving maximum multicast throughput
in undirected networks. IEEE Transactions on Information Theory,
52(6):2467–2485, 2006.

[10] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.
[11] A. Wigderson. P, NP and mathematics - a computational complexity

perspective. In Proc. of ICM 06, volume 1, pages 665–712, 2007.
[12] R. W. Yeung. Information Theory and Network Coding. Springer, 2008.
[13] R. W. Yeung, S.-Y. Li, and N. Cai. Network Coding Theory. Now

Publishers, 2006.

