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Abstract

Entanglement is an important evidence that a quantum device can potentially solve problems

intractable for classical computers. In this paper, we prepare connected graph states involving 8

to 16 qubits on ibmqx5, a 16-qubit superconducting quantum processor accessible via IBM cloud,

using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e. the state

is inseparable with respect to any fixed partition.
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I. INTRODUCTION

Quantum computation has been an active research topic since middle 90s with the

invention of the Shor’s algorithm and many other important discoveries such as quantum

error correction [1]. For the last two decades, physical implementations of quantum

computation have achieved significant progress. The fidelity of single and two-qubit gates

exceeds 99%, reaching the threshold of fault-tolerant quantum computing [2]. The number

of qubits in both superconducting and trapped ions quantum computers are both greater

than 20 now [3, 4]. It is projected that the number of qubits will approach to 50 or more

in the next few years. At that time, the quantum computer may become more powerful

than the fastest classical computer for some specific tasks, into the regime of the so called

quantum supremacy [5].

The IBM Q is a quantum cloud service released by IBM. Its present backend devices

include two processors with 5 superconducting qubits (ibmqx2 and ibmqx4), one 16 qubit

processor (ibmqx5) and one 20 qubit processor (QS1 1) [4]. IBM recently announced that

they have successfully built and tested a 20-qubit and a 50-qubit machine [4]. The quantum

cloud service of IBM provides high fidelity quantum gate operations and measurements.

Hence, after the launch of the IBM Q, many groups tested it and performed quantum

computing experiments on the cloud; for instance, see [6–12].

Entanglement is considered to be the most nonclassical manifestation of quantum

physics [13]. It is also a critical resource for quantum information processing. Highly en-

tangled states such as Bell states, GHZ states and cluster states [14] have been applied in

quantum teleportation, super-dense coding, one-way quantum computing [15] and various

quantum algorithms. The ability to produce highly-entangled states is, therefore, one im-

portant step to demonstrate quantumness for quantum processors like ibmqx5. This task is,

however, highly non-trivial due to the error accumulation of faulty gates.

In this paper, we wish to assess the quantumness and performance of the 16 qubit ibmqx5

device via the production of highly entangled states, namely the graph states, which is an

important class of many-body entangled states that are widely used in one-way quantum

computing, quantum error correction [15, 16]. We generate graph states that correspond to
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rings involving 8 to 16 qubits via IBM Q cloud service (ibmqx5), using optimized low-depth

circuits that are tailored to the universal get set on ibmqx5. We detect full entanglement

up to 16 qubits, using an entanglement criterion based on reduced density matrices. Qubits

are fully entangled in the sense that the state involves all physical qubits and is inseparable

with respect to any fixed partition.

II. RESULTS

A. Graph states and entanglement

Graph state [17] is a generalization of cluster state introduced in 2001 [14], which is the

resource state of one-way quantum computing [15] and quantum error correction [16]. GHZ

state is an example of graph state and has been demonstrated in superconducting qubit

system [18]. However, GHZ state is fragile. Some other graph states are very robust to

local operations, such as local measurements and noises. In order to disentangle the cluster

state of N qubits, N/2 local measurements are needed [14]. Because of this nice feature,

we decide to generate and detect linear cluster states in the IBM cloud service ibmqx5.

X, Y, Z denote the Pauli operators. An undirected graphG (V,E) includes a set of vertices

V and a set of edges E. A graph state that correspond to an undirected graph G (V,E) is

a |V |-qubit state that has the form

|G〉 =
∏

(a,b)∈E

Uab |+〉⊗V , (1)

where Uab is a control-Z operator acting on qubits a and b [19], and

|±〉 =
1√
2

(|0〉 ± |1〉) (2)

are eigenvectors of the X operator.

An equivalent definition is, the graph state that corresponds to G (V,E) is the unique

common eigenvector (of eigenvalue 1) of the set of independent commuting operators:

Ka = XaZNa = Xa
∏
b∈Na

Zb, (3)

where the eigenvalues to Ka are +1 for all a ∈ V , and Na denotes the set of neighbor

vertices of a in G [19]. As implied by the first definition, a n-qubit graph state can be

3



prepared by the following steps.

1. Initialize the state to |+〉⊗n by applying n Hadamard gates to |0〉⊗n;

2. For every (a, b) ∈ E, apply a control-Z gate on qubits a and b; the order can be

arbitrary.

Entanglement of general mixed states was discussed by Werner in 1989 [20]. Since then,

many entanglement criteria were proposed; among them the widely used ones include the

partial transpose criterion [13, 21, 22] and the symmetric extension criterion [23].

A bipartite state ρAB on the Hilbert space H = HA ⊗HB is said to be separable if ρAB

can be written as

ρAB =
∑
i

piρ
i
A ⊗ ρiB, (4)

where ρiA and ρiB are quantum states of the system A and B, respectively, with pi ≥ 0 and∑
i pi = 1. Otherwise ρAB is entangled. For a state ρ of a many-body system, for any fixed

bipartition AB of the system, if ρ is entangled with respect to the partition AB, then the

entanglement of the many-body state ρ can also be examined via its subsystems. That is,

if the subsystems are all entangled, the whole system must be also entangled.

To be more concrete, consider a 4-qubit subsystem ρA,B,C,D in an n qubit system. Suppose

that we perform two local operations OA and OD on qubit A and D respectively, and then

obtain the reduced density matrix of qubit B and C by tracing out qubit A and D. The

reduced density matrix for qubits B and C reads

ρ′B,C = trA,D

 OAODρA,B,C,DO
†
DO

†
A

tr
(
OAODρA,B,C,DO

†
DO

†
A

)
 . (5)

The entanglement of ρ′B,C can be determined by using entanglement monotones such as

negativity and concurrence, which, in the 2 qubit case, has non-zero values if and only if

the system is entangled [13, 22]. If ρ′B,C is entangled, we can conclude that in the original

system, there could not exist a separation with qubit B and C on different sides. In other

words, if the original system is biseparable with respect to a fixed partition, the qubit B and

C must be on the same side. Otherwise, we will be able to create entanglement between the

two separable parties with only local operations, which is not possible [13].

For an n qubit system {q1, q2, ..., qn}, if we can show that among the n qubit pairs

(q1, q2),...,(qn−1, qn),(qn, q1), n − 1 of them must be on the same side in a separation, then
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we may conclude that there is no possible separation, and that the system is a n-qubit

entangled state (meaning that the state is not biseparable w.r.t. a fixed partition, and that

it involves all qubits). The (minimal) number of circuit configurations needed in this ap-

proach is 34 (n− 1), which grows linear with respect to n. This method is far more efficient

compared to a full n-qubit tomography, which requires exponential number of configurations.

B. Graph states on ibmqx5

ibmqx5 is a 16-qubit superconducting quantum processor. It allows independent single

qubit operations with fidelity > 99% and control operations with fidelity 95− 97% (see Fig.

2) marked as the edges in the connectivity map (see Fig.1). That is, CNOT operations with

qubit a as the control qubit and b as the target is allowed if and only if a→ b is an edge in

the map.

In our experiment, as shown in Fig. 3, the following five graph states are employed. The

first state is a 8 qubit graph state involving qubits q5 − q12 that corresponds to a ring of

length 8; the second one is a 10 qubit state involving qubits q4 − q13 corresponding to a

ring of length 10; the third one involves qubits q3− q14 and corresponds to a ring of length

12; the 4th one involves qubits q2− q15 and corresponds to a ring of length 14; the 5th one

involves all the 16 qubits. We employ these particular graph states based on the following

considerations. First, these states are genuinely entangled and will remain entangled after

tracing out a large number of qubits. Second, research has shown that 1-D cluster states

are robust against decoherence, meaning that it would be more likely to find entanglement

in a rather large graph state close to a 1-D chain, compared to GHZ states and 2-D graph

states [24]. At last, even rings are two-edge-colorable; as a result, on the 16-qubit ibmqx5,

these “even-ring” states could be prepared using low-depth circuits (See Fig. 4).

To prepare the desired graph state, we start from the circuit implied by the definition

of graph states (see Fig. 4(a)). The control-Z gates are implemented using a CNOT gate

and two Hadamard gates. We then optimize this circuit by adjusting the order of com-

muting gates and removing redundant Hadamard gates (see Fig. 4(b)). The circuit that we

implemented are shown in Fig. 4(b) and Fig. 5(a)-Fig. 5(d).
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C. Experimental Results

For each n-qubit ring state, n partial tomographies are performed for every subsystem

with 4 qubits that forms a chain in the ring. E.g., for the 8-qubit graph state, the 8

subsystems are (q5, q6, q7, q8), (q6, q7, q8, q9),..., (q12, q5, q6, q7). For every state, 34n ex-

perimental configurations are used; 2048 measurements are taken under each configuration.

The n 4-qubit reduced density matrices are obtained using the maximum likelihood method

proposed by J.Smolin et. al [25].

Due to Eq. (3), for a ring graph state, each 4-qubit density matrix of neighboring four

qubits, as illustrated in Fig 6 is given by

ρA,B,C,D =
1

4
(I + ZAXBZC)(I + ZBXCZD). (6)

Then, for each 4-qubit density matrix, we apply the local operations OA = ZA+I
2

and

OD = ZD+I
2

and calculate the negativity of the resulting 2-qubit subsystem. For instance,

we may choose (q5, q6, q7, q8) as our subsystem; after applying OA and OD to q5 and q8

respectively, we will trace out q5 and q8, and measure the negativity of the remaining

subsystem, (q6, q7). We choose OA = ZA+I
2

and OD = ZD+I
2

for the following reason. If ρ is

graph state, and the 4-qubit subsystem corresponds to 4 vertices that form a chain in the

graph, then the resulting 2-qubit state is a maximally entangled state

|φ〉 =
1√
2

(|0〉 |+〉+ |1〉 |−〉) . (7)

Therefore, for a state close to this graph state, we should expect the resulting 2-qubit state

to have a negativity significantly greater than zero. The results are plotted in Fig.7.

For the 8-qubit graph state, the measured negativities are all significantly greater than

0. For the 10-qubit graph state, 9 out of 10 measured negativities are significantly greater

than 0. Based on our argument in Sec. II A, both the 8-qubit state and 10-qubit state are

fully entangled.

In the 12 qubit case, as shown in Fig. 7(c), 10 out of 12 measured negativites are signif-

icantly non-zero. The two zeros come from (q9, q10) and (q14, q3) pairs. Therefore, there

is only one possible separation, namely {q10, q11, q12, q13, q14} | {q3, q4, q5, q6, q7, q8, q9}.

Should this be true, the reduced density matrix of qubits q8, q9, q10, q11 should also be
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separable with the separation {q8, q9} | {q10, q11}. In that case, its partial transpose with

respect to qubit q8 and q9 must be positive. However, with respect to this partial transpose,

ρq8,q9,q10,q11 has negativity 0.0391±0.0039 (standard deviation estimated via bootstrapping).

Therefore, this possibility is ruled out with very high confidence. We can now conclude that

the 12 qubit graph state is fully entangled.

In the 14 qubit case, as shown in Fig. 7(d), 12 out of 14 measured negativites are

significantly greater than 0. Here, we may apply the same trick again. The only possible

separation is {q2, q3, q4, q5, q6, q7, q8, q9, q12, q13, q14} | {q10, q11}. In this case, subsystem

{q8, q9, q10, q11} should have zero negativity with respect to the partial transpose on q8

and q9. However, the measured negativity is 0.0698± 0.0048(standard deviation estimated

via bootstrapping). Hence, this possibility is ruled out with very high confidence. We may

conclude that this state is fully entangled.

In the 16 qubit case, as shown in Fig. 7(e), 15 out of 16 measured negativites are

significantly greater than 0. As argued in Sec. II A, this means that this state is not

biseparable w.r.t. a fixed partition, thereby showing that all 16 qubits in ibmqx5 are in full

entanglement.

It may be noted that the subsystem of qubits {q8, q9, q10, q11} yields close-to-zero neg-

ativity in 3 out of 4 experiments. This can be due to relatively high readout errors or gate

errors involving these qubits, which is compatible with the measured parameters provided

by IBM’s website [4] (see Fig. 2). For instance, the CNOT gate between q10 and q11 has

the largest error among all possible CNOT gates, while the readout error of q10 and q11 are

also above the average level (6.5%).

D. Further Exploration of the 16-qubit State

The results above could be understood as an ability to generate localized entanglement on

physically neighboring qubits [26]. That is, neighboring qubits can be put into entanglement

by performing ideal local operations on the 16-qubit state. Using the same data obtained

above, we will show that localized entanglement on qubits with distance 2 and 3 could also

be generated.

Suppose {E,A,B,C,D, F} is a six-qubit subsystem that forms a chain. We first apply

OE = ZE±I
2

and OF = ZF±I
2

on E and F respectively(four possibilities). On our data,
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this can effectively be done by first postselecting 0s on qubits E and F before calculating

the tomography of {A,B,C,D}. Next, OB = XB+I
2

and OD = ZD+I
2

are performed (see

Fig.8). At last, B, E, F and D are traced out, while the negativity in subsystem {A,C}

is calculated. If the 16-qubit state is perfect, this resulting system would be maximum

entangled.

Based on data obtained in previous experiments, we have calculated the corresponding

negativity for each 6-qubit subsystem and shown them in Table. 1. Using this method, we

have identified localized entanglement in 13 out of 16 pairs of qubits with distance 2.

To generate localized entanglement on qubits with distance 3, we may apply the same

OE and OF , and then apply O′B = XB+I
2

and O′C = XC+I
2

(see Fig.9). The negativity of

subsystem {A,D} would be calculated. Again, if the 16 qubit state is perfect, this two

qubits would be maximum entangled; therefore, we should expect a non-zero negativity if

the actual state is close to the theoretical one.

Among 16 pairs of qubits with distance 3, we have identified localized entanglement in 6

pairs of them. The results based on our data is presented in Table. 2.

III. DISCUSSION

We have prepared graph states of 8, 10, 12, 14 and 16 qubits on the 16-qubit ibmqx5

processor and demonstrated that these graph states are not biseparable w.r.t. any fixed

partition. In particular, we have realized full entanglement using all 16 qubits. Moreover, we

have demonstrated the ability to create localized entanglement on qubit pairs with distance

3 and 4 from this 16-qubit entangled state. In our approach of detecting nonseparability,

we only have to measure the reduced density matrix of up to 4 qubits, and the size of

reduced density matrix does not scale with the total qubit number, i.e. our method is

efficient and scalable. In our experiments, graph states do not have high fidelity because of

the large number of qubits, e.g. the fidelity of the 12-qubit graph state is lower than 0.44.

(This upperbound is obtained by computing the fidelity between each 4-qubit subsystem

and the theoretical result and taking the minimum.) However, the negativity of 4-qubit

reduced density matrix decays gently with respect to the qubit number, which implies that

the error per qubit weakly depends on the qubit number. It is a strong evidence that

ibmqx5 is capable of generating highly entangled states and demonstrates the computer’s
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quantumness. In computational tasks such as one-way quantum computing, graph state

with decaying fidelity is acceptable, and the computing is fault-tolerant as long as the error

per qubit is lower than a threshold [27, 28].

Data Availability

The experimental data that support the findings of this study[29] are available in figshare

with the identifier 10.6084/m9.figshare.6790781.
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Figures

FIG. 1: Connectivity map of ibmqx5 [30]
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FIG. 2: Calibration parameters of ibmqx5, archived 2018-01-10 from [4]. It should be noted that

these parameters are updated on a daily basis.
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FIG. 3: Graph states employed in this experiment. Colored lines illustrate the graph of the 8

qubit graph state(in red), 10 qubit graph state(orange), 12 qubit graph state(yellow), 14 qubit

state(blue) and 16 qubit graph state(purple).
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FIG. 4: (a) The quantum circuit for preparing a 8-qubit graph state implied by the definition of

graph states; (b) The optimized circuit that suits ibmqx5’s connectivity.
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FIG. 5: The quantum circuit implemented on ibmqx5 for the preparation of (a)10 qubit graph

state; (b)12 qubit graph state; (c)14 qubit graph state; (d)16 qubit graph state.
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FIG. 6: A four-qubit subsystem that forms a chain
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FIG. 7: The result of (a) the 8 qubit graph state; (b) the 10 qubit graph state; (c) the 12 qubit

graph state; (d) the 14 qubit graph state; (e) the 16 qubit graph state. The negativity of the final

2-qubit states are plotted. 95% confidence intervals are estimated using bootstrapping techniques.
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FIG. 8: Operations performed to produce entanglement on subsystem {A,C}.
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FIG. 9: Operations performed to produce entanglement on subsystem {A,D}.
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Tables

TABLE 1: Negativities of qubits with distance 2 in the 16-qubit state

(0,2) (1,3) (2,4) (3,5) (4,6) (5,7) (6,8) (7,9)

0.023 0.027 0.088 0.145 0.143 0.156 0.134 0.105

(8,10) (9,11) (10,12) (11,13) (12,14) (13,15) (14,0) (15,1)

0.178 0 0.114 0.079 0.040 0.028 0 0
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TABLE 2: Negativities of qubits with distance 3 in the 16-qubit state

(0,3) (1,4) (2,5) (3,6) (4,7) (5,8) (6,9) (7,10)

0 0 0.085 0.093 0.110 0.097 0.061 0

(8,11) (9,12) (10,13) (11,14) (12,15) (13,0) (14,1) (15,2)

0.012 0 0 0 0 0 0 0
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