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ABSTRACT
In this paper, we design a network update service for SDN
applications to transactionally update the network. We name
our system TUS, which is a layer sitting between the SDN
controller and SDN applications. SDN applications can call
TUS’s interfaces to achieve atomicity, consistency, isolation,
and durability guarantee for network updates, which eases
the application’s programming. TUS provides APIs for con-
sistent update, uses logs for atomic update, applies optimistic
concurrency control (OCC) for inter-update isolation, and
checks each asynchronous rule update for durability. These
design choices are decided by network unique characteris-
tics and challenges — OCC can isolate network updates from
volatile network states and checking asynchronous rule up-
date is also used in implementing consistency guarantee in
multi-phase network update. We prototype TUS, validate
it consistency guarantee and failure recovery e�ectiveness,
and also measure the overhead introduced by TUS logs.

1 INTRODUCTION
Under the paradigm of Software-De�ned Networking (SDN),
a network can be updated �exibly to satisfy dynamic network
requirements and workloads, which usually involves multi-
ple devices (e.g., setup a path). A network update should sat-
isfy several properties to guarantee the network in a correct
state. For example, the update procedure should be consis-
tent (e.g., loss-freedom [25], congestion-freedom [10, 18]);
concurrent updates should be logically isolated or con�ict-
resolved [2, 27]; and the SDN framework should make an
update event to be reliable/durable in case of system crash
[7]. Combining individual properties, an SDN update should
be atomic, consistent, isolated, and durable (ACID), and we
call a network update to be transactional if it satis�es ACID
properties.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
APSys 2018, Jeju Island, South Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM. 978-1-4503-6006-7/18/08. . . $15.00
DOI: 10.1145/3265723.3265728

In this paper, our goal is to abstract the applications’ ACID
requirements as a separate transactional update service, and
build an layer sitting between the SDN controller and SDN
applications to provide this service. We name our system
TUS. TUS takes SDN updates from multiple applications,
devises the ACID execution of simultaneous updates, and
�nally commits the updates to the network.

Referring to the individual existing network solutions
above [7, 27] as well as the experience in designing data-
base transactions, ACID can be achieved by separate mech-
anisms — the consistent update algorithms above can be
integrated into SDN applications and submitted to the SDN
controller; the SDN controller should have concurrency con-
trol to achieve isolation; a log module can be used to replay
updates during failure recovery for atomicity; and persistent
data storage can guarantee durability. However, network
updates and network states have their own unique character-
istics di�erently from database transactions and data records,
which requires TUS to be wisely crafted.

First, some network states are volatile, which are hardly
isolated from network updates. The volatile nature comes
from the data plane events (e.g., �ow/byte counting) instead
of control plane commands, which is a signi�cant di�erence
from persistent storage system underlying a database. If
an update is computed based on a volatile state, when the
update is committed, the volatile state may invalidate the
update if its value changes. TUS derives a lazy-validation
mechanism from the optimistic concurrency control [16]:
it performs each update on a local copy, validates whether
network changes during the update computation; if there is
no changes, it commits the local copy to the actual network
if no, and otherwise cancels the update and returns failure.

Second, (some) consistent network updates are required
to be executed in multiple phases, and thus, TUS should sup-
port this new semantic in interfaces, execution, and failure
recovery. For example, two-phase update [25] is proposed
to avoid transient packet loss when setting up a (new) path
for a �ow [25]; multiple-phase update is proposed to avoid
transient link congestion when lively migrating multiple
�ows’ paths [10, 18]. All updates from the SDN controller to
switches are asynchronous, which adds special di�culty to
con�rm that all updates within a phase are complete. TUS
adds a new interface tx.barrier() for applications to di-
vide an update in phases; a barrier is implemented by stop
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and wait for active con�rmation (read and check what is
written) from device updated at the barrier; and the failure
recovery module also incorporates the barrier operation by
recording it in logs and submitting it to execution engine.

Combining the classical database design for ACID and the
two customizations for network updates, we propose TUS
with the following design and features. (1) The northbound
APIs to SDN applications can express start and commit of an
update as well as the read/write and phase operations with
in an update (for consistency). (2) TUS uses a log module
to record network update events, and it can replay/rollback
updates during a failure recovery (atomicity). (3) To perform
updates on volatile network states, TUS adopts Optimistic
Concurrency Control (OCC) [16] instead of locks, which is
the only feasible solution for volatile data update (isolation).
(4) Each individual rule update to a switch is con�rmed by
reading and checking the rule again to guarantee that the
asynchronous update actually completes (durability).

We implement TUS on a Python based SDN controller
Ryu [1]. Our evaluation demonstrates the feasibility of TUS:
TUS can implement a two-phase update easily and correctly
with few packet loss; TUS guarantees the right behavior
during the failure recovery test; and also TUS only introduces
acceptable overhead to the SDN control plane.

In this paper, we make the following contributions.
• We design a holistic service for SDN updates name TUS,

which guarantees atomicity, consistency, isolation, and
durability.
• For consistency guarantee, we enrich the semantics of up-

date service and its corresponding APIs, which especially
supports multi-phase network updates.
• For isolation guarantee, after analyzing the read/write

and (non-)volatile nature of network states, we adopt op-
timistic concurrency control (OCC) as the design choice,
which makes concurrency control of network update pos-
sible and e�cient.
• We prototype TUS, and preliminary evaluation shows its

feasibility in terms of functionality and performance.

2 BACKGROUND
2.1 Network Update in SDN
SDN Architecture. A typical SDN controller sits between
SDN applications and network switch fabrics. It maintains a
network information base (NIB), which is an overview of the
whole network. NIB maintains the following information:
the network topology (switches and their connections) and
individual switch states (�ow tables, and per-rule statistics)
(e.g., Onix [15]). The SDN controller communicates with
switches by OpenFlow protocol [21], where it can send com-
mands to update switch rules and also pull switch states (e.g.,
statistics, rules). Although it takes a few communication
rounds for the controller to sync up the switch states and

the NIB (eventual consistency), we assume the NIB stands
for the whole network states in this paper.

Multiple SDN applications run as plug-in modules on top
of the SDN platform: they read network states from NIB,
make their own network update decisions (independently),
and submit their updates to the NIB and the underlying
network. We illustrate a few examples of network updates
and analysis their requirements.

Example 1: Path Initialization. During a path initial-
ization, a controller application aims to set up a path for a
�ow from the source to the destination via the path <A, B,
C, D> (Figure 1).

ACID should be considered for the update: the rules to set
up the path should guarantee no loops and no black holes are
introduced (consistency); if the control plane crashes during
the update, the recovery process should guarantee the all or
none of the rules of the path are set up (atomicity); the path
should take e�ect after set up (durability).

Figure 1: An example of path setup and migration

Example 2: Online Path Migration. Assume multiple
�ows are traversing a path <A, B, C, D>, and the network
controller would move several �ows of them to the new path
<A, E, D> (Figure 1). To migrate a speci�c �ow f , the 2-
phrase update would modify the �ow rules in E (adding a
rule of f ), A (modifying the rule of f to D), B and C (deleting
the rule of f ) sequentially [25].

In addition to the considerations in Example 1, this case
has more requirements: since there are running �ows, tran-
sient loss during update should be avoided (consistency);
concurrent updates should not con�ict each others (isola-
tion, e.g., two updates reserve bandwidth on the same link
or one update deletes another’s rules).

Example 3: Path Backup. Assume a controller would
set up a backup path for an existing path in case of path
failure, it would read the workload on existing paths, and
choose one with the least load and set up backup rules on it.
In this process, the controller reads the statistics on existing
paths, and computes a path with the least work load, and
writes rules into switches on the path.

In this case, the isolation property is more di�cult to
guarantee. Because the statistics on the path is volatile —
they are updated by data plane packet processing, and the
computation in the control plane may be based on a stale
value. Thus, there should be a mechanism to validate the
isolated execution of this update.1

1It also depends on the application’s logic whether the stale value of a state
matters, thus, the application should be given �exibility to decide whether
to enable the isolation validation.
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2.2 ACID Requirements for SDN Update
We propose to abstract the ACID requirements from vari-
ous SDN updates, and wrap up and provide the mechanisms
for ACID as a service, thus, the trouble of integrating ACID
requirements in SDN applications can be saved. We name
this service TUS. (1) TUS takes updates from applications
as input; it is the applications’ responsibility to compute a
consistent update but TUS should provide APIs for the appli-
cations to express the semantics of a consistent update. (2)
TUS guarantees the execution of an update to be atomic, iso-
lated, and durable. We elaborate each properties as follows.

Consistency. Before/after/during a network update, the
network should not violate certain properties (e.g., loss-
freedom, congestion-freedom). In the SDN architecture, the
update is computed by the SDN application and submitted to
the SDN controller. TUS should provide APIs to express the
start/commit of an update and read/write/phase operations
with in an update.

Isolation. (1) There may be simultaneous updates from
di�erent SDN applications. While executed simultaneously,
the �nal results should be equivalent to that they are exe-
cuted sequentially in a serial order. Thus, concurrency con-
trol between updates are needed. (2) A network update may
also be simultaneous with data plane updates, in which case
data plane events cannot be stalled to wait for the control
plane updates. Because such states (e.g., �ow statistics) �ow
from the switch to the NIB and then to the SDN application;
in this case, there should be a rollback mechanism for the
control plane to cancel updates if its volatile states vary.

Atomicity. An update involves multiple rules in multiple
switches, and they need to be executed in an all-or-none
manner. Otherwise, a partially executed update would leave
the network with errors. For example, if a half of a �ow’s
path is set up, there would be black holes or unused rule in
the switches.

Durability. Once an update is committed to the network,
it should be always functional in its lifetime, being resistant
to failure and crashes in SDN controller and applications.
Like a persistent storage, switch rules can be considered
as durable in switches’ forwarding tables, but TUS should
guarantee the individual switch update is committed to the
forwarding table.

2.3 Challenges and Design Choices
Strawman Solution. We insert an enhancement layer be-
tween SDN applications and the SDN controller. The en-
hancement layer has northbound APIs to accept network
updates from applications, devises and executes the update
to the network. Such an SDN transactional update service
layer could use a log module to record each update so as to
guarantee atomicity; it has interfaces to support the seman-
tics of consistent update; it can adopt concurrency control

(e.g., lock) to achieve isolation between updates; since an
switch update is asynchronous, TUS can read and check
what is written to guarantee the update is durable. But when
combing these designs into one framework, the following
two network speci�c challenges should be considered.

Challenge 1: Isolating network updates from data
plane events is di�cult. When a network update is in
progress, it is possible that network states in the data plane
changes (e.g., statistics for packet processing), causing simul-
taneous network updates based on them to be invalid. In
database systems, con�ict resolution is usually performed by
using locks to exclude simultaneous operations (read/write)
on the same object. However, this is not preferred in net-
works, because if a state change is driven by data plane
events, it �ows from the data plane to the control plane, and
it is hard to add a lock from the control plane to exclude data
plane events. In existing network operating systems [4, 15],
the designers usually propose the SDN applications would
handle the con�ict by themselves.

Solution. We categorize network states into two kinds
— persistent states and volatile states. Persistent states are
read/written by the control plane (e.g., �ow rules); and volatile
states are updated by data plane events and is read only to
the control plane (e.g., �ow statistics). Since volatile states
cannot be modi�ed by the controller (read only), we adopt a
lazy validation approach: after the application completes a
network update, it would re-check whether the related states
are changed during the update, if no, it would commit the
update, and otherwise cancel it.

Table 1: States and Concurrency Control
States Lock OCC

Persistent States Yes Yes
Read-only Volatile States No Yes
Read-Write Volatile States No No

Table 1 shows the categorization of states and possible
ways for concurrency control (CC), where “yes” means the
CC method can handle the category of states in its row, and
“no” means it cannot do so. For persistent states, both lock
and optimistic concurrency control (OCC, i.e., update to a
new copy, validate the copy, and merge with the original
data copy) [16] can achieve correct concurrency control; for
read-only volatile states, only OCC works; and for read-write
volatile states, none of lock and OCC works2. Fortunately,
network states are persistent states and read-only volatile
states, which leave us the design choice of OCC.

2If a state is varying by itself internally, there is no way to stop it varying
when an external write is committed to it (either by lock or OCC).
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Challenge 2: Network applications need to express
semantics of executing an update in phases, which re-
quires TUS to have interfaces and internal implemen-
tation to support this new semantics. The two-phase up-
date in Example 2 (§2.1) is an example of such a requirement.
However, an update to an SDN switch is usually implemented
in an asynchronous fashion (e.g., Ryu controller [1]); to make
things worse, the communication delays from the controller
to di�erent switches are usually di�erent (depending on the
network conditions and the switch states). Thus, even switch
updates are issued in an expected order, there is no guarantee
they are completed in the same order. sou Solution. TUS
introduce a new operator barrier() for SDN applications,
which divides switch updates into batches, expressing the
semantics of phases in a network update. In the underlying
implementation, TUS would read the updated switch states
in the same batch to con�rm their completion; for the log
module, when a multi-phase update is replayed, the replay
algorithm would also apply this read and check mechanism
between phases.

3 DESIGN
We �rst give the architectural overview of TUS showing how
ACID are guaranteed, and then detail the design of each part.

3.1 TUS Architecture and Work�ow

Application ApplicationApplication

SDN Controller

Northbound API

Southbound API

Optimistic Concurrency Control

NIB Log

Transactional Update Service Layer

Figure 2: TUS architecture and deployment

TUS is a new layer sitting between the SDN controller and
SDN applications, providing transactional update services
to SDN applications. It has a NIB inside, maintaining the
following information: (1) the network topology, including
switches, links (pairs of switches), and link capacity and
bandwidth allocation; (2) routing rules in each switch in the
format of <switch, match, action, statistics>. In NIB, the
switch, match, and action data are persistent states, and the
statistics states are volatile states.

TUS have three modules inside. (1) The concurrency con-
trol (CC) module has northbound APIs (i.e., the APIs between
TUS and SDN applications) to the SDN applications, which

are consistent update interfaces. The CC module takes si-
multaneous network updates from multiple applications; it
creates a shadow copy of network states for each network
update and merges (or cancel) them �nally, guaranteeing
isolation. (2) The NIB has the network states, providing net-
work information to the CC module. The NIB also has the
southbound APIs (i.e., the APIs between TUS and the SDN
controller) with the controller to read/write network states,
where it uses asynchronous write with active con�rmation
(read and check after write) to make sure that each switch
update is durable. (3) There is a log module guaranteeing
atomicity. In TUS execution time, the log module records
network updates in a persistent storage (a �le on a disk);
if TUS crashes and reboots, the log module would replay
transactions that have completed lazy validation (§3.3) and
cancel ones that have not.

3.2 TUS Interfaces and Examples
TUS has northbound APIs in Table 2. The life cycle of
an update consists of four stages — READ, VALIDATION,
WRITE, and INACTIVE. A network update starts by calling
tx=transaction(), and then the CC module would record
this new transaction and mark its state as READ. The appli-
cation of the update would read and write network states
by tx.read() and tx.write(). The read operations would
make a copy of the read stats in the transaction’s space (into
a “read set”), and write operations would be recorded locally
as well (into a “write set”). When an update is complete,
it calls tx.commit() to start the execution of the update.
The tx.commit() �rst marks the update into VALIDATION
phase, where it validates whether there exists concurrent
access con�icts; if there is no concurrent access con�ict, it
marks the update into WRITE phase, where all write opera-
tions of the transactions are executed; after the write phase,
the transaction is marked as INACTIVE. As discussed in §2.3,
TUS introduces tx.barrier() to express the semantics of
executing write operation in phases. And TUS also has a
“VOLATILE” parameter in tx.commit(), which gives the ap-
plication �exibility whether it enables concurrency control
on volatile states.

Algorithm 1 shows how to use TUS APIs to program a
network update. The example is a 2-phase update in §2.1.
The update transaction starts �rst, then a path is computed,
the steps of update are submitted to TUS by tx.write() and
tx.barrier() (including updating each hop and a barrier
for phases). Finally, tx.commit() validates the update and
write the update to NIB. If the validation fails, the application
is noti�ed and take its own actions on failure handling .

3.3 Concurrency Control
The persistent states in NIB are �ow forwarding rules (match
/action), which is read/written by SDN applications; while
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Table 2: TUS interfaces and their operations

Interface Behaviors in CC Record in the log
tx=transaction() start a transaction in “READ” stage <tx_ID, START>
tx.read(Switch, Match, "ACTION"/"STAT") read a state and record in read set <tx_ID, READ, Match, "ACTION"/"STAT">
tx.write(Switch, Match, Action) Record the actions in write set <tx_ID, WRITE, Match, Action>
tx.commit(VOLATILE) mark tx in “VALIDATION” stage <tx_ID, VALIDATION, VOLATILE>

mark tx in “WRITE” stage, and execute tx <tx_ID, WRITE>
mark tx in “INACTIVE” stage <tx_ID, INACTIVE>

tx.barrier() Record a “barrier” in tx space <tx_ID, BARRIER>

Algorithm 1: 2-phase update
tx = Transaction()
�rstHop, otherHops = GetHops(PathB)
for each hop in otherHops do

tx.write(hop)
end
tx.barrier()
tx.write(�rstHop)
if tx.commit() failed then

Do something
end

the volatile states are read-only volatile statistics, which is
only updated by data plane packet processing and can only be
read by the SDN controller. For volatile states, locks cannot
be applied for concurrency control, because the states are
varying by themselves. The CC module adopts the lazy
validation from OCC [2] for volatile state related updates,
and to make all states operations uniform, persistent states
are also concurrency controlled in the same way.

The traditional Optimistic Concurrency Control (OCC)
divides tx.commit() into two stage: a validation stage and
a write stage, both of which are in critical section across
all updates. When an transaction c is validated, any other
updates (called p) who (1) have not completed write phase
when c starts (READ stage) and (2) have completed write
phase when c starts validation (VALIDATION stage) would
be involved in c’s validation. If p writes some network states
that are read by c, then c is invalid and the shadow copy of c
is discarded; otherwise c is valid and all the write operations
in c are merged into NIB.

In TUS, we customize the validation in two ways for net-
work state update. First, when validating whether c’s read
set is polluted by other updates’ write set, TUS also checks
whether the volatile states in the read set vary by themselves
(i.e., data plane events, by comparing the value in read set
with the instantaneous value in the NIB). Second, since some
applications have relaxed requirements into the isolation,
the tx.commit() has a boolean parameter “VOLATILE” to

decide whether the volatile states are considered in c’s VAL-
IDATION stage.

3.4 Failure Recovery
The SDN controller or SDN applications may crash in run-
time; then the network operator would reboot them or per-
form failover to a new instance. In this duration, the log
module would replay or cancel updates to guarantee atomic-
ity of each transaction.

As the lifetime of a transaction is READ, VALIDATION,
WRITE, and INACTIVE, and all stages and operations of a
transaction is recorded in logs on a persistent storage, the log
module scans the log sequentially, and the following actions
are taken for each updates.
(1) All updates that are in READ and INACTIVE stages are

discarded.
(2) All updates that are in WRITE stage are replayed and

marked as INACTIVE.
(3) All updates that are in VALIDATION stage are copied to

CC module and executed with concurrency control.

4 IMPLEMENTATION AND EVALUATION
We implement TUS based on the Ryu SDN controller [1],
and the implementation has about 1000 lines of code. These
experiments in evaluation were carried out on a machine
with Intel I7 CPU and 48 GB memory. We use mininet [17]
to emulate the network topologies in these experiments. We
demonstrate the consistency guarantee and failure recov-
ery functionalities of TUS; and we measure the overhead
introduced by TUS to network updates.

4.1 Consistency Guarantee
2-phase update. We show that TUS can guarantee the con-
sistency in network updates. We design an online path migra-
tion in Figure 1 and implement the algorithm in Algorithm 1
in TUS. The tx.barrier() is not used in the �rst setting of
this experiment (i.e., before update to the 1st hop) and used
in the second. We measure the packet loss in both settings
and repeat the experiments for 100 times. The result is in
Table 3. We can see that without tx.barrier(), packet loss
is signi�cant— about 1022 on average for each path update;
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with tx.barrier(), the number of packet drop reduces to
about 10, in which case the drop is not caused by transient in-
consistent routing (black holes) but by bu�er over�ow when
locking a switch’s forwarding table to update rules.

Table 3: Packets loss with and without barrier
setup with barrier without barrier
packets loss count 9.5 ± 2.7 1021.6 ± 651.2
packets loss percentage 0.01% 1.20%

4.2 Failure Recovery
We show the e�ectiveness of the failure recovery function of
TUS (the log module). We still use the topology in Figure 1
and measure the tra�c throughput on path 1 and path 2 in
the experiment (Figure 3).

Figure 3: Failure recovery

Initially, there is no routing rules in switches. At t ≈ 7 s,
we reboot the controller with a log <(path 1, WRITE), (path
1→2, START)>, indicating path 1 is in WRITE stage and a
migration from path 1 to path 2 in READ stage; after reboot
path 1 setup is complete and path migration is discarded
(tra�c appearing on path 1).

At t ≈ 20 s, we reboot the controller with a log <(path
1, INACTIVE), (path 1→2, WRITE), (path 2→1, START)>.
After reboot, we observe tra�c changes path from path 1
to path 2, which indicates that the update “path 1→2” takes
e�ect.

At t ≈ 28 s, we reboot the controller with a log <(path 1,
INACTIVE), (path 1→2, INACTIVE), (path 2→1, WRITE)>,
and observe tra�c migrates from path 2 to path 1. This
indicates that the �nal update “path 2→1” takes e�ect.

4.3 Overhead
We measure the overhead introduced by TUS’s log module.
In the experiment, we install a number of rules in a few
phases to a switch. We tune the total number rules and num-
ber of rule per phase, and compare the total rule installation
time with and without TUS’s log module. The result is shown
in Figure 4.

We conclude that two factors in�uencing the total rule
install time— barrier wait time and �le I/O time in log module.
If there is one rule per phase, the barrier wait time dominates

the total time (e.g., Figure 4a shows no signi�cant di�erence
between the rule update with and without log). But if all
rules are updated in one phase (Figure 4c), the di�erence of
total time is caused purely by the log �le I/O, where the total
increases from 3.8s to 19.9s for 10000 rules update (1.6ms
for each rule). Figure 4b shows a case in between, where
the enabled log module causes 22% performance degradation
when 10 rules are updated per phase.
5 RELATEDWORK
ACID for network update. ACID properties have been
discussed individually in the existing literature, and TUS is a
system providing all four properties and complements their
insu�ciency in each aspect. For atomicity, LegoSDN [7]
improves system reliability by decoupling the SDN platform
and SDN applications as independent processes, and it can
guarantee the atomicity of all messages “in �ight” between
processes (by replaying them when a failure happens). In
TUS, the atomicity is guaranteed at the granularity of “net-
work updates” (e.g., a path setup), whose messages (e.g., one
switch update rule) include the ones already processed, in
�ight, and being generated; and this granularity requires the
design of “transactions” in the log module.

For consistency, Reitblatt et al. [25] propose a two-phase
update algorithm to update a path, which avoids packet
loss due to transient black holes during update; zUpdate[18]
proposes a multi-phase update algorithm to update multi-
ple paths, and avoids transient congestion on links; later
Dionysus[10] proposes to use dependency graphs to incre-
mental update new �ows’ paths instead of re-computes all
paths, which saves the computation and update overhead.
Canini et al. [6] propose algorithms to reduce tag complex-
ity (i.e., the number of transient rules) in a multi-phase up-
date. TUS provides APIs to describe these consistent algo-
rithms; and compared with transactions in database systems,
it also adds APIs to support phase-based transaction (i.e.,
tx.barrier()).

For isolation, Athens[2] designs the mechanism to decide
which update should be executed, while TUS adopts �rst-
commit-�rst-execute (which can be switched if needed). And
statesman[27] proposes to use pre-de�ned rules (e.g., last
writer wins or priority) to resolve con�ict updates. Both so-
lutions assume network state changes are from control plane
updates; while in TUS, we make a categorization of network
states, and conclude that due to the volatile nature of some
network states, OCC[16] is the only choice for concurrency
control. For durability, we test and found the switch rule
update of Ryu[1] is not guaranteed to succeed, and thus,
we implement a read-again-after-write to acknowledge the
execution of a rule update.

Other Complementary work. In transactional network
update systems, the goal is to “propose correct update plans
and execute them correctly”. While due to the complicated
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(a) 1 rule per phase (b) 10 rules per phase (c) All in one phase

Figure 4: Overhead Measurement

nature of network management and applicable scope of
these systems, there are some complementary solutions
to guarantee networks in the correct states. Anteater and
HSA[13, 20] assume that “network states may be wrong”,
and propose algebra to check network invariants (i.e., cor-
rectness about blackhole-freedom, loop-freedom); and Ver-
i�ow and NetPlumber[12, 14] are two further solutions to
incrementally check updated network states. With a similar
goal that “network states may be wrong”, VMN[24] veri�es
the correctness of stateful networks with network functions.
There also exist some network emulation tools such as BUZZ
and Mikado[8, 30], which actually emulate the execution of
network processing packets to �nd out “possible network
state/policy errors”. NDB and OFRewind[9, 28] are network
debugging tools, which are used to �nd network problems
when “a network error or failure already happens”; NDB
captures all runtime traces for later analysis, and OFRewind
replays recorded traces for operators to debug. These sys-
tems either detect that the network is in a bad state OR block
a rule from being installed on a switch if it breaks operator
speci�ed semantics. TUS, on the other hand, implement
correct (i.e., consistent) update plans and execute them in
the correct ways (i.e., atomic, isolated, and durable). Within
the applicable scope of TUS (§6), we advocate using TUS
to correctly manage networks; and out of TUS’s scope (e.g.,
non-switching rule management), these complementary so-
lutions would cover the insu�ciency of TUS.

6 DISCUSSION
Scope of application. The application of TUS has two pre-
requisites. First, the con�icts between updates can be clearly
resolved. In TUS, con�ict resolution is done by comparing
the match �eld (�ow headers) in rules, while a network may
have other con�gurations whose con�icts are not easy to
detect. For example, the priority setting of a �ow may cause
violation on end-to-end latency, whose causal relationship,
however, is hard to identify. Second, recently, more network
functions are introduced into networks, which contains vari-
able states. These states could be read-write states (Table 1

in § 2.3), which, however, cannot be handled by locking and
OCC. Complementary solutions that “check whether a net-
work is correct after an update is proposed/deployed” can
be used to handle errors in NF states (See §5).

Open questions. In TUS, one assumption is that network
update commands from TUS’s southbound APIs is executed
directly to the network, which, however, does not always
hold. For example, if a switch has its own intelligence to write
rules (e.g., P4 switch [5]), this self-intelligence may disturb
update from SDN controller; in other examples, there are
several network enhancement component sitting between
the controller and the network [3], e.g., TCAM optimizer
[11, 19, 26, 29] and application composer [22, 23], they may
also in�uence the execution of TUS update rules, causing
the transactional update rules to be invalid. Our current
standpoint is that the coexistence of transactional updates
and network enhancements should be carefully designed to
avoid con�ict (or simply disable one of them).

7 CONCLUSION AND FUTUREWORK
To conclude, we build a holistic network update service for
SDN application, named TUS. TUS abstracts the ACID re-
quirements and provides the service to SDN applications,
which eases the programming in SDN applications. TUS
provides consistent update interfaces, uses a log to record
updates guaranteeing atomicity, applies optimistic concur-
rency control for inter-update isolation, and uses read and
check after written to guarantee the durability of each rule
update. This design also overcomes the challenges of express-
ing multi-phase update semantics and executing updates
with volatile states. Our preliminary implementation and
evaluation show that TUS can implement consistent update
and perform failure recovery, and has limited overhead. In
the future, we would test TUS in more complete settings,
including all combinations of workload, network topology,
and scenarios (e.g., failure, recovery), with the metric of
functional correctness, performance and overhead.
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