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Abstract—The explosive growth of global mobile traffic has led
to rapid growth in the energy consumption in communication net-
works. In this paper, we focus on the energy-aware design of the
network selection, subchannel, and power allocation in cellular
and Wi-Fi networks, while taking into account the traffic delay
of mobile users. Based on the two-timescale Lyapunov optimiza-
tion technique, we first design an online Energy-Aware Network
Selection and Resource Allocation (ENSRA) algorithm, which

yields a power consumption within O
(

1
V

)
bound of the optimal

value, and guarantees an O (V ) traffic delay for any positive con-
trol parameter V . Motivated by the recent advancement in the
accurate estimation and prediction of user mobility, channel con-
ditions, and traffic demands, we further develop a novel predictive
Lyapunov optimization technique to utilize the predictive informa-
tion, and propose a Predictive Energy-Aware Network Selection
and Resource Allocation (P-ENSRA) algorithm. We characterize
the performance bounds of P-ENSRA in terms of the power-delay
tradeoff theoretically. To reduce the computational complexity,
we finally propose a Greedy Predictive Energy-Aware Network
Selection and Resource Allocation (GP-ENSRA) algorithm, where
the operator solves the problem in P-ENSRA approximately and
iteratively. Numerical results show that GP-ENSRA significantly
improves the power-delay performance over ENSRA in the large
delay regime. For a wide range of system parameters, GP-ENSRA
reduces the traffic delay over ENSRA by 20–30% under the same
power consumption.

Index Terms—Energy-aware communication, joint network
selection and resource allocation, cellular and Wi-Fi integration,
stochastic optimization.
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I. INTRODUCTION

W ITH the explosive growth of global mobile data traffic,
the energy consumption in communication networks

has increased significantly. According to [2], the information
and communications technology industry constituted 2% of
global CO2 emissions. In addition, the high energy consump-
tion in communication networks accounts for a significant
proportion of the operational expenditure (OPEX) to the mobile
operators [3]. Therefore, mobile operators have the incentives
to reduce the energy consumption, through innovations in sev-
eral areas such as novel hardware design, efficient resource
management, and dynamic base station activations [4], [5].

In this paper, we focus on the problem of energy-aware net-
work selection and resource allocation (i.e., subchannel and
power allocation). First, since Wi-Fi networks often consume
less energy than the macrocell network due to their smaller cov-
erages and shorter communication distances [6], the operator
of an integrated cellular and Wi-Fi network can significantly
reduce the system energy consumption by offloading part of the
cellular traffic to the Wi-Fi networks. Second, within the cel-
lular network, the operator can reduce the transmission power
while maintaining the system throughput by allocating the sub-
channels and power to the cellular users with good channel
conditions.

In the first part of this paper, we apply the two-timescale
Lyapunov optimization technique [7] to design an online
Energy-Aware Network Selection and Resource Allocation
(ENSRA) algorithm. We show that ENSRA yields a power
consumption that can be pushed arbitrarily close to the optimal
value, at the expense of an increase in the average traffic delay.

In the second part of this paper, motivated by the recent
advancement of accurate estimation of users’ mobilities, traffic
demands, and channel conditions, we improve the performance
of ENSRA by incorporating the prediction of the system ran-
domness into the algorithm design. We design a Predictive
Energy-Aware Network Selection and Resource Allocation (P-
ENSRA) algorithm through a novel predictive Lyapunov opti-
mization technique. Different from the previous Lyapunov
optimization techniques in [7], [8], we introduce a novel control
parameter θ to optimize the operations within the entire infor-
mation window. By properly adjusting θ , we can balance the
variance of queue length within each information window, and
significantly improve the delay performance.

To reduce the computational complexity of P-ENSRA, we
further propose a Greedy Predictive Energy-Aware Network
Selection and Resource Allocation (GP-ENSRA) algorithm,
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Fig. 1. An example of the system model, where user 1, 2, 3, and 4 are moving
within the set of locations S = {1, 2, 3}. The macrocell covers all locations.
Each location is covered by a set of Wi-Fi networks, e.g., N1 = {1}, N2 =
{1, 2}, N3 = {2}.

where the operator solves the optimization problem in P-
ENSRA approximately and iteratively. Our numerical results
show that GP-ENSRA achieves a much better power-delay
tradeoff than ENSRA in the large delay regime, and the
improvement increases with the prediction window size.

There are many literatures studying either energy-aware
network selection or energy-aware resource allocation prob-
lems. For example, Venturino et al. in [9] studied energy-
efficient resource allocation and base station coordination in a
static downlink cellular system. Xiong et al. in [10] investigated
energy-efficient resource allocation under quality-of-service
constraints, in a static cellular system with both downlink
and uplink communications. However, these literatures did not
consider joint energy-aware network selection and resource
allocation in the stochastic cellular and Wi-Fi networks, which
is the focus of our work.

II. SYSTEM MODEL

We consider the downlink transmission in a slotted system,
indexed by t ∈ {0, 1, . . .}. We focus on the monopoly case,
where the single operator serves users by its own macrocell and
Wi-Fi networks. We introduce the following notations:
• L � {1, 2, . . . , L}: set of the users;
• N � {1, 2, . . . , N }: set of the Wi-Fi networks;
• S � {1, 2, . . . , S}: set of the locations.

We assume that the macrocell base station covers all S loca-
tions, and we use Ns ⊆ N to denote the set of available Wi-Fi
networks at location s ∈ S. We illustrate the system model
through an example in Figure 1.

A. Two-Timescale Operations

The operator aims at reducing the total power consump-
tion through the network selection, subchannel allocation, and
power allocation. We assume that the network selection is
operated in a larger timescale than the subchannel and power
allocation. This is because a frequent switch among different
networks interrupts the data delivery and incurs a nonnegligible
cost (e.g., in the form of energy consumption, quality-of-service
degradation, and delays).

We refer every T time slots as a frame, and define the k-
th frame (k ∈ N) as the time interval that contains a set Tk �
{kT, kT + 1, . . . , kT + T − 1} of time slots. We assume that:

Fig. 2. Two-timescale operations: (a) at time t = kT , e.g., the beginning of the
k-th frame, the operator determines the network selection for the k-th frame;
(b) at time t ∈ Tk , the operator determines the subchannel and power allocation
for time slot t .

• the operator determines network selection at the begin-
ning of every frame (large-timescale);
• the operator determines subchannel and power allocation

at the beginning of every time slot (small-timescale).
We illustrate such a two-timescale structure in Figure 2.

B. Frame-Based Network Selection

At time slot t = kT , i.e., the beginning of the k-th frame,
the operator determines the network selection for the k-
th frame. We denote the network selection by α (kT ) =
(αl (kT ) ,∀l ∈ L), where αl (kT ) indicates the network that
user l is connected to during the k-th frame. Let the random
variable Sl (kT ) ∈ S be user l’s location during the k-th frame,
and define S (kT ) = (Sl (kT ) ,∀l ∈ L).1 Since the availabili-
ties of Wi-Fi networks are location-dependent, we have the
following constraint for α (kT ):

αl (kT ) ∈ NSl (kT ) ∪ {0} ,∀l ∈ L, k = 0, 1, . . . , (1)

where selection αl (kT ) = 0 indicates that user l is connected
to the macrocell network.

C. Macrocell Network Model

We consider an Orthogonal Frequency Division Multiplexing
(OFDM) system for the macrocell network, following the
standard model as used in [11], [12].

1) Subchannel Allocation: Let M � {1, 2, . . . , M} be the
set of subchannels, and denote the subchannel allocation by
x (t) = (xlm (t) ,∀l ∈ L, m ∈M). Variable xlm (t) ∈ {0, 1} for
all l and m: if user l is allocated with subchannel m, xlm (t) = 1;
otherwise, xlm (t) = 0. We assume that each subchannel can at
most be allocated to one user:

L∑
l=1

xlm (t) ≤ 1, ∀m ∈M. (2)

Different from the frame-based network selection α (kT ), the
operator determines the subchannel allocation x (t) every time
slot. Since the operator can only allocate subchannels to those
users who are connected to the cellular network, we have the
following constraint for x (t):

αl (tT )xlm (t) = 0, ∀l ∈ L, m ∈M, t ≥ 0. (3)

1User locations S (kT ) do not change during the frame. The reason is that
the user location usually changes much less frequently than the other types of
randomness, e.g., the channel condition in the macrocell network.
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Here, tT �
⌊ t

T

⌋
T is the beginning of the frame that time slot

t belongs to, and network selection αl (tT ) indicates user l’s
associated network during the frame.

2) Power Allocation: We denote the power allocation
by p (t) = (plm (t) ,∀l ∈ L, m ∈M). Variable plm (t) ≥ 0
denotes the power allocated to user l on subchannel m. We have
the following power budget constraint:

M∑
m=1

L∑
l=1

plm (t) ≤ PC
max, ∀t ≥ 0. (4)

Similar as (3), the operator can only allocate the power to
those users who are connected to the cellular network. We have
the following constraint for p (t):

αl (tT )plm (t) = 0, ∀l ∈ L, m ∈M, t ≥ 0. (5)

3) Macrocell Transmission Rate: We use H (t) =
(Hlm (t) ,∀l ∈ L, m ∈M) to denote the channel condi-
tions, where Hlm (t) is a random variable that represents the
channel condition for user l on subchannel m at time slot t .
Given the subchannel allocation xl (t) = (xlm (t) ,∀m ∈M)

and power allocation pl (t) = (plm (t) ,∀m ∈M), the trans-
mission rate of a cellular user l (i.e., αl (tT ) = 0) at time slot
t is

rC
l

(
xl (t) , pl (t)

)
= B

M

M∑
m=1

xlm (t)log2

(
1+ plm (t)H2

lm (t)

N0
B
M

)
,

(6)
where B is the total bandwidth and N0 is the noise power
spectral density.

4) Macrocell Power Consumption: According to [13], the
power consumption of the macrocell base station contains two
components: the first component is a fixed term that measures
the radio frequency (RF) and baseband unit power consump-
tions; the second component corresponds to the transmission
power. Since the first component is fixed, in our model, we
focus on minimizing the time average of the second component,
which is given by

PC (p (t)) = κ

M∑
m=1

L∑
l=1

plm (t). (7)

Here, parameter κ is the scale factor that depends on the
power amplifier efficiency and the losses incurred by the
antenna feeder, power supply, and cooling [13].

D. Wi-Fi Network Model

Let ρn be the number of users associated with Wi-Fi network
n. We assume that Wi-Fi network n’s total transmission rate and
power consumption are functions of ρn , and we denote them
by Rn (ρn) and PW

n (ρn), respectively. We further assume that
Rn (ρn) and PW

n (ρn) are non-negative bounded functions, i.e.,
there exist positive constants Rn,max and PW

n,max such that

0 ≤ Rn (ρn) ≤ Rn,max and 0 ≤ PW
n (ρn) ≤ PW

n,max (8)

for all ρn = 0, 1, 2, . . ..
We allow general functions of Rn (ρn) and PW

n (ρn) that
satisfy (8) in our algorithm design in Sections IV and V.

1) Wi-Fi Transmission Rate: Given function Rn (ρn) and
network selection α (tT ), we can compute the transmission rate
of a Wi-Fi user l (i.e., αl (tT ) > 0) at time slot t by [14]:

r W
l (α (tT )) =

Rαl (tT )

(
L∑

k=1
1{αk (tT )=αl (tT )}

)
L∑

k=1
1{αk (tT )=αl (tT )}

. (9)

Here, summation
L∑

k=1
1αk (tT )=αl (tT ) returns the number of

users in the Wi-Fi network that user l is associated with.2

2) Wi-Fi Power Consumption: Given function PW
n (ρn) and

network selection α (tT ), we can compute the power consump-
tion of all Wi-Fi networks as:

PW (α (tT )) =
N∑

n=1

PW
n

(
L∑

l=1

1{αl (tT ) = n}

)
. (10)

E. Users’ Traffic Model

We assume that the users randomly generate traffic, and the
traffic generation is not affected by the operator’s operations.
We use a random variable Al (t) to denote the traffic arrival rate
of user l ∈ L at time slot t , and let A (t) = (Al (t) , l ∈ L). We
assume that there exists a positive constant Amax such that

0 ≤ Al (t) ≤ Amax, ∀l ∈ L, t ≥ 0. (11)

F. Summary

1) Macrocell + Wi-Fi Transmission Rate: If a user is asso-
ciated with the macrocell network, its transmission rate is given
by rC

l

(
xl (t) , pl (t)

)
in (6); if it is associated with Wi-Fi net-

works, its transmission rate is given by r W
l (α (tT )) in (9). To

summarize, user l’s transmission rate at time slot t is given by

rl

(
α (tT ),xl (t), pl (t)

)
=
{

rC
l

(
xl(t), pl (t)

)
, if αl(tT)= 0,

r W
l (α (tT )) , otherwise.

(12)

Because of the power budget constraint (4) in the macro-
cell network, function rC

l

(
xl (t) , pl (t)

)
is upper bounded.

Furthermore, since Wi-Fi networks’ total transmission rates are
upper bounded as in (8), function r W

l (α (tT )) is also upper
bounded. As a result, there exists a positive constant rmax
such that

0 ≤ rl

(
α (tT ) , xl (t) , pl (t)

)
≤ rmax (13)

for all l ∈ L and α (tT ) , xl (t) , pl (t) satisfying (1), (2), (3), (4),
and (5).

2) Macrocell + Wi-Fi Power Consumption: The operator
considers the power consumption in both the macrocell and
Wi-Fi networks. The macrocell network’s power consumption

21{·} is the indicator function, which equals 1 if the event in the brace is true,
and equals 0 if the event is false.
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Fig. 3. Two-timescale randomness: (a) users’ locations change every frame;
(b) channel conditions and users’ traffic arrivals change every time slot.

is given by PC (p (t)) in (7), and Wi-Fi networks’ total power
consumption is given by PW (α (tT )) in (10). Therefore, the
operator’s total power consumption at time slot t is given by

P (α (tT ) , p (t)) = PC (p (t))+ PW (α (tT )) . (14)

According to the cellular power budget constraint (4) and the
bounded Wi-Fi power consumption condition (8), it is easy to
find that P (α (tT ) , p (t)) is bounded:

0 ≤ P (α (tT ) , p (t)) ≤ Pmax, ∀t ≥ 0, (15)

where Pmax � κ PC
max +

N∑
n=1

PW
n,max.

3) Randomness: There are three kinds of randomness in the
system:
• Users’ locations S (kT ), introduced in Section II-B;
• The macrocell network’s channel conditions H (t), intro-

duced in Section II-C3;
• Users’ traffic arrivals A (t), introduced in Section II-E.

As we assumed in Section II-B, S (kT ) changes at the begin-
ning of each frame, while H (t) and A (t) change every time
slot. The two-timescale randomnesses is in Figure 3.

III. PROBLEM FORMULATION

We assume that each user has a data queue, the length of
which denotes the amount of unserved traffic. Let Q (t) =
(Ql (t) ,∀l ∈ L) be the queue length vector, where Ql (t) is
user l’s queue length at time slot t . We assume that all queues
are initially empty, i.e.,

Ql (0) = 0,∀l ∈ L. (16)

The queue length evolves according to the traffic arrival rate
and transmission rate as

Ql(t + 1) =
[
Ql(t)− rl

(
α(tT ), xl(t), pl(t)

)]+
+ Al(t),∀l ∈ L, t ≥ 0. (17)

Algorithm 1. Energy-Aware Network Selection and Resource
Allocation (ENSRA)

1: Set t = 0 and Q (0) = 0;
2: while t < tend do
3: if mod (t, T ) = 0
4: Set k = t

T and solve problem (19) to determine
α (kT ), x (τ ), p (τ ) ,∀τ ∈ Tk ;

5: end if
6: Update Q (t + 1), according to (17);
7: t ← t + 1.
8: end while

Here [x]+=max {x,0} is due to the fact that the actual
amount of served packets cannot exceed the current queue size.

The objective of the operator is to design an online network
selection and resource allocation algorithm that minimizes
the expected time average power consumption, while keeping
the network stable. This can be formulated as the following
optimization problem:

min P � lim sup
K→∞

1

K T

K T−1∑
t=0

E {P (α (tT )) , p (t)}

s.t. Ql � lim sup
K→∞

1

K T

K T−1∑
t=0

E{Ql (t)} <∞,∀l ∈ L,

constraints(1), (2), (3), (4), (5),

var. α (tT ), x (t), p (t), ∀t ≥ 0. (18)

Here, Ql is user l’s time average queue length, and constraint
Ql <∞ for all l ∈ L ensures the stability of the network.

IV. NETWORK SELECTION AND RESOURCE ALLOCATION

WITHOUT PREDICTION

A. Energy-Aware Network Selection and Resource Allocation
(ENSRA) Algorithm

We assume that the operator has the complete information
for the channel conditions within the current frame, i.e., at time
slot t = kT (the beginning of the k-th frame), the operator has
the information of H (τ ) for all τ ∈ Tk . We leave the algo-
rithm design for the incomplete channel information in [15]. We
present ENSRA in Algorithm 1. The detailed solution to (19),
shown at the bottom of the page, is provided in [15]. The intu-
ition behind ENSRA is that, by adjusting the control parameter
V > 0, the operator can achieve a good tradeoff between the
power consumption and the traffic delay.

min V
kT+T−1∑

τ=kT

P (α (kT ) , p (τ ))−
L∑

l=1

Ql (kT )

kT+T−1∑
τ=kT

rl

(
α (kT ) , xl (τ ) , pl (τ )

)
s.t. constraints (1), (2), (3), (4), (5),

var. α (kT ) , x (τ ) , p (τ ) ,∀τ ∈ Tk . (19)
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B. Performance Analysis of ENSRA

For ease of exposition, we analyze the performance
of ENSRA by assuming that the system randomness is
independent and identically distributed (i.i.d.). Notice that with
the technique developed in [16], we can obtain similar results
under Markovian randomness.

We define the capacity region � as the closure of the set of
arrival vectors that can be stably supported, considering all net-
work selection and resource allocation algorithms. We assume
that the mean traffic arrival is strictly interior to �, i.e., there
exists an η > 0 such that

E {A (t)} + η · 1 ∈ �. (20)

We use P∗av to denote the optimal expected time aver-
age power consumption of problem (18). The performance of
ENSRA is described in the following theorem.

Theorem 1: ENSRA achieves:

PENSRA
av � lim sup

K→∞
1

K T

K T−1∑
t=0

E{P(α(tT ) , p(t))}≤ P∗av+
	

V
,

(21)

QENSRA
av,T � lim sup

K→∞
1

K

L∑
l=1

K−1∑
k=0

E{Ql (kT )} ≤ 	+ V Pmax

η
.

(22)

where 	 = 1
2 T L

(
A2

max + r2
max

)
, Pmax is defined in (15), and η

is defined in (20).
Theorem 1 implies that, by increasing parameter V , the oper-

ator can push the power consumption arbitrarily close to the
optimal value, i.e., P∗av, but at the expense of the increase in the
average traffic delay.

V. NETWORK SELECTION AND RESOURCE ALLOCATION

WITH PREDICTION

We study the situation where the operator can predict the
system randomness for the future frames. With the predic-
tive future information, the operator is able to achieve better
performance than ENSRA.

A. Information Prediction Model

We consider the structure of the prediction window, where
the window size W is the number of frames in a window.

min V
W−1∑
w=0

(hW+w+1)T−1∑
τ=(hW+w)T

P (α (hW T + wT ) , p (τ ))+
L∑

l=1

W−1∑
w=0

Ql (hW T + wT )

(hW+w+1)T−1∑
τ=(hW+w)T

(Al (τ )+ θ)

−
L∑

l=1

W−1∑
w=0

Ql (hW T + wT )

(hW+w+1)T−1∑
τ=(hW+w)T

rl

(
α (hW T + wT ) , xl (τ ) , pl (τ )

)

s.t. constraints (1), (2), (3), (4), (5),

var. α (hW T + wT ) , w = 0, 1, . . . , W − 1, x (τ ) , p (τ ) , τ ∈Wh . (23)

Algorithm 2. Predictive Energy-Aware Network Selection and
Resource Allocation (P-ENSRA)

1: Set t = 0 and Q (0) = 0;
2: while t < tend do
3: if mod (t, W T ) = 0
4: Set h= t

W T and solve problem (23) to determine
α(hW T+wT ), w=0, 1, . . . , W−1, x (τ ) , p (τ ) ,τ ∈Wh ;

5: end if
6: Update Q (t + 1), according to (17);
7: t ← t + 1.
8: end while

Thus, we define the h-th (h ∈ {0, 1, . . .}) window as the time
interval that contains frames ThW ,ThW+1, . . . ,ThW+W−1. We
use Wh � ThW ∪ ThW+1 ∪ . . . ∪ ThW+W−1 to define the set
of time slots within the h-th window. Equivalently, we have
Wh = {hW T, hW T + 1, . . . , hW T +W T − 1}.

We assume that at time slot t = hW T , i.e., the beginning of
the h-th window, the operator accurately predicts the system
randomness for the whole window: (a) S (hW T + wT ) , w =
0, 1, . . . , W − 1, where S (hW T + wT ) denotes users’ loca-
tions during frame ThW+w; (b) H (τ ), A (τ ) , τ ∈Wh , where
H (τ ) and A (τ ) denote users’ channel conditions and traffic
arrivals at time slot τ , respectively.

At time slot t = hW T , with the predictive information, the
operator runs P-ENSRA or GP-ENSRA, and determines the
operations for the whole window: (a) α (hW T + wT ) , w =
0, 1, . . . , W − 1, where α (hW T + wT ) denotes the network
selection during frame ThW+w; (b) x (τ ) , p (τ ) , τ ∈Wh ,
where x (τ ) and p (τ ) are the subchannel allocation and power
allocation at time slot τ , respectively.

B. Predictive Energy-Aware Network Selection and Resource
Allocation (P-ENSRA) Algorithm

We propose P-ENSRA in Algorithm 2. The basic idea
of ENSRA in Section IV is to minimize the upper bound
of the “drift-plus-penalty” term for a frame. Different from
ENSRA, P-ENSRA guarantees a θ -controlled upper bound on
the “drift-plus-penalty” term instead of minimizing the “drift-
plus-penalty” term for a window. This is because P-ENSRA
determines the network selection and resource allocation for
several frames (i.e., a window), and it needs to use a novel
control parameter θ > 0 to balance the queue lengths among
different frames. With parameter θ , we can assign larger
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weights to the transmission rates of the earlier frames than those
of the latter frames within a prediction window, and thus reduce
the time average queue length.

C. Performance Analysis of P-ENSRA

Similar as ENSRA, we characterize the performance of P-
ENSRA under the i.i.d. system randomness and assume that
the condition (20) is satisfied. We define PP−ENSRA

av as the
expected time average power consumption of P-ENSRA, and
define QP-ENSRA

av,T as the expected time average value of user
queue length at the beginning of each frame under P-ENSRA.
The performance of P-ENSRA is described as follows.

Theorem 2: P-ENSRA achieves

PP−ENSRA
av � lim sup

H→∞
1

H W T

H W T−1∑
t=0

E {P (α (tT ) , p (t))}

≤ P (θ)+ 	

V
, (24)

QP-ENSRA
av,T � lim sup

H→∞
1

H W

L∑
l=1

H W−1∑
h=0

E{Ql (hT )}

≤ 	+ V P (θ)

θ
, (25)

for any V > 0 and θ ∈ (0, η], where P (θ) is defined as the
minimum power consumption required to stabilize the traffic
arrival vector E {A (t)} + θ · 1, considering all network selec-
tion and resource allocation algorithms.

D. Greedy Predictive Energy-Aware Network Selection and
Resource Allocation (GP-ENSRA)

In problem (23), shown at the bottom of the previous page,
the network selections and resource allocations in different
frames are tightly coupled by the queue lengths. Such coupling
significantly increases the difficulty of directly solving prob-
lem (23). Here, we propose a greedy algorithm, GP-ENSRA,
which approximately solves problem (23) for each window and
significantly reduces the complexity.

We present GP-ENSRA in Algorithm 3. In order
to simplify the description, we use β (hW T+wT )=
(α (hW T+wT ), x (τ ), p (τ ), τ ∈ ThW+w) to represent the
operator’s operations (network selection and resource alloca-
tion) over frame ThW+w, w = 0, 1, . . . , W − 1. From line (5)
to line (12), the operator iteratively updates the operations for
all frames within the window. As shown in line (11), we use
Fi to denote the value of the objective function in (23) under
the i-th iteration. The condition for ending the iteration (line
(5)) implies that the decrease from Fi−1 to Fi is no larger than
a positive parameter ε. Such a condition is guaranteed to be
achievable, and we leave the detailed proof in [15].

VI. SIMULATION

A. Simulation Settings

We simulate the problem with L = 10 users, 1 macrocell
network, N = 10 Wi-Fi networks, and S = 100 locations. We

Algorithm 3. Greedy Predictive Energy-Aware Network
Selection and Resource Allocation (GP-ENSRA)

1: Set t = 0 and Q (0) = 0;
2: while t < tend do
3: if t

W T ∈ N

4: Set h = t
W T , i = 0, and β (hW T + wT ) = 0,

∀w = 0, 1, . . . , W − 1;
5: while i < 2 or Fi−1 − Fi > ε do
6: i ← i + 1;
7: for w = 0 to W − 1 do
8: Minimize the objective function in problem

(23) over β(hW T+wT )(fixβ(hW T+w′T )for all w′
=w);
9: Update β (hW T + wT ) with the optimal

solution obtained in line (8);
10: end for
11: Denote the value of the objective function in

(23) under (β (hW T+wT ) , w = 0, 1, . . . , W − 1) by Fi ;
12: end while
13: Output vector β (hW T+wT ), w=0, 1, . . . , W−1,

as the operations for the window;
14: end if
15: Update Q (t + 1), according to (17);
16: t ← t + 1.
17: end while

set the time slot length to be 10 milliseconds, and the frame
length to be 1 second, i.e., T = 100. We run each experiment
in MATLAB for 5, 000 frames. We assume that the macro-
cell network covers all locations, and the channel gain follows
the Rayleigh fading [17]. Furthermore, we assume that each
Wi-Fi network is randomly distributed spatially, and each Wi-
Fi network covers 1 ∼ 4 connected locations. We choose the
Wi-Fi transmission rate function from [18], and the power
consumption function from [19].

B. Simulation Results

1) Comparison Between ENSRA and Heuristic Algorithm:
We compare ENSRA with the following heuristic algorithm.

Heuristic algorithm: At the beginning of each frame, the
operator first assigns the users who are only covered by the
macrocell network or are within 100m of the macrocell net-
work. Then the operator sequentially checks the available Wi-Fi
networks for each of the remaining users, and assigns each
user to the Wi-Fi network with the lowest number of connected
users; at every time slot, the operator determines the resource
allocation based on a heuristic method [11].

In Figure 4, we compare ENSRA under different parameter
V with the heuristic algorithm. In Figure 4(a), we plot the total
power consumption of ENSRA against V . We observe that,
as V increases, ENSRA’s total power consumption decreases.
According to (21), the upper bound of PENSRA

av decreases with
the increasing of V , which is consistent with our observation
here. Figure 4(a) also shows the total power consumption of the
heuristic algorithm, which is independent of V . We notice that
ENSRA consumes less power than the heuristic algorithm for
any V > 0.2 Mb2/W · s.
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Fig. 4. Comparison of ENSRA and Heuristic Algorithm.

Fig. 5. Comparison of ENSRA and GP-ENSRA.

In Figure 4(b), we plot the average traffic delay per user
under ENSRA against V . As V increases, the average delay
of ENSRA increases, which is consistent with the result in
(22). Compared with the heuristic algorithm, ENSRA gener-
ates less delay for any V < 1.1 Mb2/W · s. Figure 4(a) and
Figure 4(b) imply that, if the operator chooses 0.2Mb2/W · s ≤
V ≤ 1.1Mb2/W · s, ENSRA outperforms the heuristic algo-
rithm in both the power and delay. For example, ENSRA with
V = 0.5 Mb2/W · s saves 40.8% power and 47.8% delay over
the heuristic algorithm.

In Figure 4(c), we plot the percentage of the traffic served
in Wi-Fi against V . According to (19), a larger V implies
that the operator focuses more on the power consumption
than the traffic delay, and ENSRA will delay users’ traf-
fic to Wi-Fi networks to reduce the power cost. Hence, in
Figure 4(c), the percentage of the traffic served in Wi-Fi
increases with V .

2) Comparison Between ENSRA and GP-ENSRA: In
Figure 5(a), we plot the average total power consumption
against the average traffic delay per user for ENSRA and
GP-ENSRA. We obtain these power-delay tradeoff curves by
varying V . Comparing ENSRA with GP-ENSRA, we observe
that when the traffic delay is above 6 s, GP-ENSRA always
generates a smaller power consumption than ENSRA under
the same traffic delay. For example, when the generated traffic
delay is 8 s, the power consumptions of ENSRA and GP-
ENSRA with window size W = 15 are 30.4 W and 27.4 W,
respectively. Hence, the power saving of GP-ENSRA with
W = 15 over ENSRA is 9.9%. The performance improvement
of GP-ENSRA is more obvious in terms of the delay saving.
For example, when the operator pursues a power consumption

of 26 W, the average traffic delays under ENSRA and GP-
ENSRA with window size W = 15 are 13.9 s and 9.7 s,
respectively. This shows that GP-ENSRA with window size
W = 15 saves 30.2% delay over ENSRA. In Figure 5(a), we
also observe that the performance improvement increases with
the size of the prediction window.

In Figure 5(b), we compare the percentages of the traffic
offloaded to Wi-Fi under ENSRA and GP-ENSRA. We plot
the percentage of the traffic served in Wi-Fi against the average
traffic delay. When generating the same traffic delay, GP-
ENSRA offloads a larger percentage of traffic than ENSRA.
The reason is that the predictive information helps the opera-
tor design a network selection and resource allocation strategy
that utilizes Wi-Fi networks more efficiently to reduce the total
power consumption.

In Figure 5(c), we investigate the power-delay performance
of GP-ENSRA under the prediction errors. For example, GP-
ENSRA with 20% prediction error means that for each infor-
mation (i.e., users’ locations, channel conditions, and traffic
arrivals) of the future frames, with 0.8 probability the oper-
ator accurately predicts its value, while with 0.2 probability
the operator obtains an incorrect value of the information. In
Figure 5(c), we plot the average power consumption against the
average traffic delay per user for ENSRA and GP-ENSRA
with window size W = 10 under different percentages of the
prediction errors. We observe that the power-delay performance
of GP-ENSRA declines as the percentage of the prediction
errors increases. However, GP-ENSRA with 20% prediction
error still achieves a better power-delay tradeoff than the non-
predictive algorithm ENSRA, which shows the robustness of
GP-ENSRA against the prediction errors.
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VII. CONCLUSION

In this paper, we studied the online network selection and
resource allocation problem in the stochastic integrated cellular
and Wi-Fi networks. We first proposed the ENSRA algorithm,
which can generate a close-to-optimal power consumption at
the expense of an increase in the average traffic delay. We then
proposed the P-ENSRA algorithm and the GP-ENSRA algo-
rithm by incorporating the prediction of the system randomness
into the network selection and resource allocation. In our future
work, we plan to analytically characterize the impact of the
prediction errors on the predictive algorithms.
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