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Knowledge bases play an important role in the development 
of biomedical science. Most structured databases, such as 
DrugBank1, CTD2, SIDER3 and BioGRID4, are curated from 

a large number of scientific articles by human experts, who expend 
huge amounts of time and effort. Biomedical information extraction 
technology aims to shift this time-consuming and tedious burden 
to machines by developing efficient computational tools to extract 
meaningful facts from vast unstructured texts automatically5,6. After 
that, often with some human curation, the extracted data can be fed 
into the downstream tasks to facilitate the related biological knowl-
edge discovery processes.

The information that biomedical researchers most care about 
generally falls into three types: biomedical entities, relations (inter-
actions or associations between entities) and events (important facts 
or findings attached to at least one entity). In this work, we mainly 
focus on the second type—biomedical relations between entities 
described in the sentences. Such relations, like drug–drug interac-
tions (DDIs) and drug–target interactions (DTIs), are generally sig-
nificant and useful for many biomedical applications. For example, 
early detection of DDIs provides an effective way to prevent adverse 
drug reactions (ADRs)7, while computational prediction of DTIs is 
a crucial step in the drug repositioning process, which aims to find 
novel targets of existing drugs8–10. Traditionally, such relations are 
sorted out through manual curation from the literature. With the 
rise of natural language processing (NLP) and machine learning 
techniques, automated biomedical relation extraction (BioRE) has 
been used to accelerate this process11–13.

The BioRE task is often formulated as a classification of bio-
medical relations between entities from a set of sentences14,15, with 
the supervision of relation annotated texts. However, collecting 
such labelled text data is often laborious. To alleviate this, distant 

supervision16,17, in which all sentences mentioning the same pairs 
of entities are labelled by the relation facts reported in a certain 
knowledge base, has been proposed to expand the labelled datasets. 
It assumes that if two entities are involved in a relation, at least one 
sentence that mentions both entities suggests this relation. Based 
on this assumption, the related distantly supervised learning task 
can be then transformed into a multi-instance learning task18. More 
specifically, given a pair of entities with a bag of sentences that may 
be suggestive of the relation between the two entities, a label rep-
resenting the relation between such a pair of entities is learned. So 
far, several distantly supervised datasets16,17,19 have been constructed 
for relation extraction (RE). For example, the Riedel dataset17 aligns 
Freebase relations with the New York Times corpus, and has been 
widely used as a benchmark dataset for evaluating different RE 
models. Despite successful application of distant supervision for a 
number of RE tasks20–22, it remains unknown whether this new tech-
nique can be applied to extract meaningful biomedical relations that 
can yield useful insights to discover new biomedicine findings.

Recently, neural network-based RE models have become a 
popular tool for automatically extracting entity relations from 
unstructured texts23–25. These approaches often use models based 
on convolutional neural networks (CNNs) or recurrent neural net-
work (RNNs) to learn semantic representations of each sentence, 
but often ignore the syntactic features of sentences. Models based 
on recursive neural networks (RvNNs)26–28, by contrast, explicitly 
model syntactic features by recursively propagating information 
from the bottom and up through a sentence constituency-based 
parse tree (that is, a constituent structure that organizes words into 
nested phrases) and have achieved better prediction results than 
other methods. As concluded in ref. 29, recursive models are gen-
erally more suited to dealing with tasks (such as semantic relation 
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extraction) that require feature representations of long-distance 
associations between words of interest. Although these strategies 
have been shown to be useful in the RE task, they still have critical 
drawbacks, such as relying on external parsers to parse sentences 
and incompatibility with mini-batch training due to the variation of 
the employed tree structures30.

Unlike the recursive models that encode parse trees explicitly, 
latent tree learning aims to understand sentence structures implic-
itly by learning how to parse sentences with indirect supervision 
from the prediction results of the downstream tasks, and has 
achieved great success in natural language inference and sentiment 
analysis tasks31–33. With latent tree learning, the parsing process can 
be carried out completely inside a neural network and thus tailored 
to the task of interest. Gumbel Tree-LSTM33 is an example of latent 
tree learning, which is trained to select the most appropriate com-
position of feature vectors among adjacent words or phrases, one at 
a time, to construct the constituency-based parse trees. In addition, 
the self-attention mechanism has recently gained great popularity 
in image recognition and machine translation fields34,35, mainly for 
its advantages in capturing long-range dependencies. Overall, both 
latent tree learning and self-attention techniques are suitable for 
capturing syntactic information and long-range dependencies in 
sentences. However, despite the advantages of the two techniques, 
they have rarely been used in the past to advance the RE task.

Inspired by the above observations, we propose a new machine 
learning framework, called BERE, for automated biomedical entity 
relation extraction from large-scale biomedical literature reposi-
tories. BERE applies latent tree learning and self-attention to fully 
exploit the semantic and syntactic information inside sentences, 
as well as the short- and long-range dependencies between words. 
BERE further adopts a scoring mechanism to evaluate the impor-
tance of each sentence in supporting a relation prediction. In addi-
tion, BERE employs a multi-instance learning framework with a 
distant supervision technique to greatly alleviate laborious human 
annotation and expand the training data to improve the predic-
tion results. Through extensive tests on an existing single-sentence 
annotated DDI dataset and a distantly supervised DTI dataset, we 
have demonstrated that the proposed BERE framework outper-
forms the state-of-the-art models in biomedical relation extraction. 
Moreover, after applying a well-trained BERE model to widely dis-
tributed biomedical literature texts, we found that the extraction 
results can provide useful hints for discovering novel DTIs (not 
reported previously in current widely used databases). With experi-
mental validation through wet-lab assays, we successfully identified 
two potential targets of the multi-target kinase inhibitor nintedanib. 
All these results suggest that BERE can serve as a powerful tool in 
biomedical relation extraction and provide useful assistance in the 
discovery of novel relations such as DTIs.

Results
Overview of BERE. The architecture of our proposed BERE frame-
work is shown in Fig. 1a. Given a pair of entities (Entity1, Entity2) 
co-mentioned in a bag of sentences, BERE first represents each 
word (the representation is also called a word vector) in a sentence 
by concatenating its word embedding and part-of-speech (POS) 
embedding. Each word vector is then fed into a self-attention layer 
to capture long-range dependency, which is added back to the origi-
nal word vector through a residual connection. Next, BERE uses 
a bidirectional gated recurrent unit (Bi-GRU) to encode the local 
contextual features of each word, followed by a Gumbel Tree-GRU, 
which uses a greedy-based strategy to find the best composition 
scheme (marked by green edges in Fig. 1a) among all feasible 
schemes (marked by red edges in Fig. 1a). Figure 1b gives an exam-
ple of one operation in the Gumbel Tree-GRU layer. In step t, the 
example sentence is represented as a sequence of four vectors (indi-
cating ‘Entity1’, ‘correlates’, ‘with’ and ‘Entity2’, respectively). Next, 

all adjacent vectors are composed through a shared Tree-GRU cell to 
obtain three candidate vectors, which are then individually assessed 
by a scoring function. In step t + 1, the candidate vector with the 
highest score (that is, ‘correlates with’) is selected. Other vectors are 
copied directly from step t (that is, ‘Entity1’ and ‘Entity2’). When 
all words are composed, the resulting final vector is basically the 
feature representation of the whole sentence. To capture the asso-
ciations between target entities, BERE further embeds the contex-
tual features of entities into a concatenated sentence representation. 
Finally, BERE uses an attention-based sentence aggregation scheme 
to calculate the weighted sum of concatenated features over the bag 
of sentences, which is then fed into a softmax classifier to predict the 
relation between Entity1 and Entity2. More details about BERE are 
provided in the Methods.

Tests on the single-sentence annotated DDI’13 dataset. We per-
formed extensive tests on the DDI’13 dataset (see Methods) to com-
pare the performance of BERE with those of six other state-of-the-art 
DDI extraction methods: SCNN36, CNN-bioWE37, MCCNN38, 
Joint AB-LSTM39, RvNN15 and Position-aware LSTM40. Among 
the CNN-based methods, SCNN, CNN-bioWE and MCCNN 
use syntax word embeddings, pretrained word embeddings and 
multi-channel word embeddings, respectively. Joint AB-LSTM and 
Position-aware LSTM are RNN-based methods, both incorporat-
ing an attention mechanism into a bidirectional LSTM network to 
enhance prediction. Similar to BERE, RvNN also propagates infor-
mation through the constituency-based parse tree, but it requires 
pre-parsed sentences as inputs. We trained each model to classify 
the relation between a pair of drugs mentioned in a sentence into 
one of five DDI types and evaluated its performance on the test set 
using the micro-averaged F1 score, as in previous works15,36. The F1 
score for a typical classification problem is defined as (2PR)/(P + R), 
where P denotes the precision and R denotes the recall.

To enable batched computation, we padded or cropped each 
sentence to a fixed length, 60 words, which is longer than 85% of 
sentences in the DDI’13 dataset, to obtain a good trade-off between 
the efficiency and accuracy of our framework. We also applied the 
dropout mechanism41 after input representation and before the 
classifier to alleviate overfitting. The learning rate in the training 
process was fine-tuned on the validation set using a grid search 
among {0.0001, 0.0002, …, 0.001}. More details on hyperparameter 
calibration are provided in Extended Data Fig. 2. Table 1 shows the 
performance of all the methods for DDI extraction on the DDI’13 
dataset. Our proposed BERE model yielded an F1 score of 73.9%, 
which outperformed all the other baseline approaches. Compared 
to RvNN, our method does not need any external parser to con-
struct the parse trees and is also compatible with mini-batch train-
ing. According to the results of our ablation studies (Table 1), BERE 
still yielded a decent performance, even when part of the framework 
was removed. Overall, the ablation studies further demonstrated the 
effectiveness of each part in our framework.

Tests on the distantly supervised DTI dataset. To better verify the 
effectiveness of BERE on the distantly supervised dataset, we further 
made a comparison between BERE and other representative distant 
supervision-based RE methods on a distantly supervised DTI dataset 
(see Methods), in which each drug–target relation was supported by 
a bag of sentences. Among all the baseline methods, PCNN-AVE21 
and PCNN-ATT23 adopt a similar CNN-based neural network to 
encode each sentence, but apply different sentence aggregation 
strategies (that is, an averaging strategy and an attention-based 
strategy, which represent each bag of sentences as a mean vector 
and a weighted sum vector of sentences inside the bag, respectively), 
BiGRU-ATT and BiGRU-2ATT24 both apply an RNN-based neural 
network with an attention-based sentence aggregation strategy and 
BiGRU-2ATT employs another word-level attention to weigh the 
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attribution of each word to the final prediction. We trained each 
model to classify the relation between a drug and target pair men-
tioned in a bag of sentences into one of six DTI types and evaluated 
its performance on the test set using the precision–recall curve, the 
area under the precision–recall curve (AUPRC) and the F1 score, 
as in previous works20,23. The other settings were the same as in 
previous tests on the DDI’13 dataset (the hyperparameter settings 
are provided in Extended Data Fig. 2). Compared to all the base-
line methods, BERE achieved the highest precision scores in most 
of the recall ranges (Fig. 2a). Overall, BERE yielded an AUPRC of 
0.524 and F1 score of 0.625, which were 6.7% and 4.6% better than 
the second best, respectively. The outperformance by BERE over 
PCNN-ATT and BiGRU-2ATT indicates that taking the sentence 
structure into account is helpful for relation extraction. In addi-
tion, the performance improvement of PCNN-ATT compared with 
PCNN implies an advantage of using the attention-based sentence 
aggregation strategy in distantly supervised relation extraction. The 
higher classification performance of BiGRU-2ATT compared with 
BiGRU-ATT also verifies the effectiveness of the word-level atten-
tion in the BioRE task.

To further compare the performance of BERE with the per-
formances of alternative approaches using other sentence aggre-
gation strategies, we also performed another test, as shown in 

Word
embedding

Entity1
embedding

Entity2
embedding

Sentence
embedding

Entity1

Entity1

Entity2

Entity2

correlates

with

Entity1

Entity2

correlates

Scoring
function

y
1
 = 0.2

y
2
 = 0.5

y
3
 = 0.3

with

Input embedding Self-attention Bi-GRU
Gumbel

Tree-GRU

POS
embedding

Sentence 2

Sentence encoding

Step t Candidates Scores Step t+ 1

Sentence aggregation

correlates with

Relation between
Entity1 & Entity2

(correlative)

Sentence 1

Classifier

Sentence 2

Sentence 3

β
1

β
2

β
3

a

b

Fig. 1 | The architecture of BERE. a, Schematic overview of BERE. BERE first encodes each sentence in the bag through a self-attention layer to capture 
long-range dependencies. It then uses a Bi-GRU to capture local contextual features and applies a Gumbel Tree-GRU to organize words into nested 
phrases. Next, the contextual features of Entity1 and Entity2 are concatenated with the sentence features obtained by the Gumbel Tree-GRU to further 
capture the associations between entities. After that, an attention-based sentence aggregation strategy is employed to aggregate the concatenated 
features over the bag of sentences. Finally, BERE uses a softmax classifier to predict the relation between Entity1 and Entity2. The symbol ⊕ denotes 
vector addition. Green edges represent a constituency-based parse tree and red edges represent all possible constituent structures. b, An example of one 
operation step in the Gumbel Tree-GRU. At step t, the parent candidate for all adjacent feature vectors is computed through a shared Tree-GRU cell, which 
is then accessed by a scoring function to select the best composition scheme. At step t + 1, the selected feature vector (‘correlates with’, with y2 = 0.5) 
replaces the original vectors (‘correlates’ and ‘with’) and the remaining parts are copied directly from step t (‘Entity1’ and ‘Entity2’). More details about the 
BERE framework are provided in the main text.

Table 1 | Test results on the DDI’13 dataset

Methods P (%) R (%) F (%)

SCNN36 69.1 65.1 67.0

CNN-bioWE37 75.7 64.7 69.8

MCCNN38 75.9 65.2 70.2

Joint AB-LSTM39 73.4 69.6 71.5

RvNN15 74.4 69.3 71.7

Position-aware LSTM40 75.8 70.4 73.0

BERE (ours) 76.8 71.3 73.9

 No self-attention 75.4 68.1 71.5

 No Bi-GRU 71.3 68.0 69.6

 No Gumbel Tree-GRU 71.0 69.1 70.0

 No concatenated embedding 75.9 69.4 72.5

The top six rows show the results of the state-of-the-art baseline methods. The bottom five rows 
show the results of BERE and corresponding ablation studies. The ablation studies were carried out 
by removing each component from BERE. ‘No self-attention’ removed the self-attention layer, ‘No 
Bi-GRU’ removed the Bi-GRU component, ‘No Gumbel Tree-GRU’ removed the Gumbel Tree-GRU 
component and ‘No concatenated embedding’ removed entity embeddings in the concatenated 
representation of the sentence.
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Extended Data Fig. 1. In the alternatives of BERE, BERE-POOL 
uses the max-pooling42 scheme to aggregate sentence features, while 
BERE-AVE employs the averaging strategy, as in PCNN-AVE. We 
found that BERE achieved better performance than its alternatives, 
indicating that the attention-based sentence aggregation strategy can 
successfully filter out those irrelevant sentences. The BERE-POOL 
method achieved a performance competitive with BERE, indicating 
that the max-pooling aggregation strategy can also make the model 
focus on the important features among sentences. However, unlike 
the aggregation strategy used in BERE, the max-pooling aggrega-
tion scheme cannot weigh the attribution of each sentence to the 
final prediction and thus may fail to select representative sentences 

to facilitate manual review. The performance of the BERE-AVE 
method (which considers each sentence equally) dropped signifi-
cantly, which demonstrates that taking those irrelevant sentences 
into the prediction may degrade prediction performance.

Figure 2b provides two examples of tree structures built by 
BERE. Both examples demonstrate that BERE can parse a sentence 
in a human-like manner. Overall, all the above results show that 
BERE can yield satisfactory performance in automated relation 
extraction from a distantly supervised dataset. BERE was imple-
mented on an NVIDIA GTX 1080 GPU; its training generally 
takes hours, for example, ~7 h on the DTI dataset and ~1 h on the 
DDI’13 dataset.
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Fig. 2 | Test results on the distantly supervised DTI dataset. a, Comparisons of the precision–recall curves between BERE and other state-of-the-art 
baseline methods. The legend on the top right contains the AUPRC and F1 score for each method. b, Examples of the parse trees constructed by BERE. For 
the sentence ‘Irinotecan toxicity correlates with UGT1A1 activity’, irinotecan is the drug and UGT1A1 is the target. For the sentence ‘Moexipril is a new, 
long-acting angiotensin-converting enzyme inhibitor’, moexipril is the drug and angiotensin-converting enzyme is the target.

Table 2 | Sentences with the highest scores in identifying the kinase targets of nintedanib produced by BERE

Target Sentences with the highest scores PMID

PLK1 Volasertib (BI 6727) is a potent Plk-1 inhibitor which induces cell cycle arrest and apoptosis and was administered in 
combination with an angiokinase inhibitor nintedanib (BIBF 1120) in a phase I dose-escalation study.

25784931

mTOR Furthermore, nintedanib, which blocks VEGFR2, RET, ERK1,2 and PI3K/AKT/FOXO1 like Vandetanib, also inhibits PI3K/
AKT/mTOR, but may still have limited long-term anti-tumour effects on MTC due to the development of resistance.

30701022

AAK1 It is highly probable that this is the mechanism of the observed selective inhibition of BIKE over AAK1 by nintedanib, 
although further crystal structures would be required to confirm our proposed binding mode.

26853940

ERBB2 ERBB2 is also a target gene of the FDA approved drug nintedanib, which inhibits it. 28974751

JAK2 Since PDGFβ has been reported to induce the JAK2-STAT3 pathway by activating Src, nintedanib might inhibit JAK2 by 
directly inhibiting PDGFβ and Src.

28798401

EGFR In particular, agents that target the EGFR or the VEGFR, such as nintedanib, are associated with GI events in patients 
with NSCLC.

30643547

TGFBR1 Since nintedanib blocks EMT progression in NMuMG cells with an IC50 in the lower micromolar range and is able 
to block TGFBR1 activity in biochemical assays in the submicromolar range, it is plausible that TGFBR inhibition 
contributes to its beneficial effects in vivo.

27036020

AXL Multitargeted kinase inhibitors include a MET, RET, VEGFR, KIT, FLT-3, TIE-2, TRKB, AXL inhibitor (cabozantinib), and a 
VEGFR, FGFR, PDGFR, SRC, LCK, LYN, FLT-3 inhibitor (nintedanib).

28435296

ABL Nintedanib is a tyrosine kinase inhibitor of VEGFR, PDGFR and FGFR, in addition to the Src and Abl tyrosine kinases. 28435296

RET Nintedanib is a multitargeted angiokinase inhibitor against many growth factor receptors, including PDGFR, FGFR, 
VEGFR, as well as the proto-oncogenes RET, FTL3 and Src, with anti-angiogenic activity.

28798401

PMID stands for the PubMed Unique Identifier of the corresponding article to which the sentence belongs. The drug and target of interest are highlighted in bold.
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BERE provides useful insights into identifying potential DTIs. 
As mentioned previously, BERE can help biologists and clinicians 
better find and understand the relations between biomedical enti-
ties. In this section, we used a case study to show that BERE can help 
identify meaningful DTIs that were not reported in DrugBank. We 
also illustrate how to use BERE to select representative sentences 
supporting the extracted relations from biomedical literature.

We took the inhibitory capacity of nintedanib (a kinase 
inhibitor) against specific kinases as an example. We first used a 
dictionary-based named entity recognition (NER) approach (see 
Methods) to collect all sentences mentioning both nintedanib 
and a kinase from ~2.2 million PubMed Central (PMC) full-text 
articles (abstracts were removed to ensure that our model did not 
make a trivial extraction from the training data). Next, we applied 
a well-trained BERE model to extract the nintedanib–kinase  
interactions at the level of a bag of sentences and then checked 
whether the selected representative sentences made biological sense 
or not. More specifically, in each bag of sentences co-mentioning a 
certain nintedanib–kinase pair, we ranked the sentences according 
to the scores calculated by BERE (see Methods). Obviously, the 
sentence with the highest score plays a decisive role in selecting 
the relation and is naturally selected as a representative one. In 
Table 2, we list the top 10 extracted kinase targets of nintedanib 
(excluding those already reported in DrugBank) and their repre-
sentative sentences. We find that, except PLK1 and AXL, all the 
predicted nintedanib targets can be directly supported or at least 
suggested by these representative sentences. To further examine 
the ability of BERE in distinguishing different sentences, we also 
list the sentences with the lowest scores in Table 3 and compare 
these with the results in Table 2. Most sentences in Table 2 with 
the highest scores indicate a true inhibitory effect of nintedanib 
on the targets, while those in Table 3 with the lowest scores are 
mostly irrelevant. This comparison result shows that BERE can  

successfully identify the ‘important’ evidence, in turn helping the 
model to better extract entity relations.

To go beyond relation extraction and further validate each 
predicted kinase target in a more rigorous way, we carefully 
inspected the relevant sentences and the corresponding articles or 
references. Among these targets identified by BERE (Table 2), we 
found that BERE extracted suggestive rather than true relations 
of nintedanib–JAK2 and nintedanib–EGFR; that is, the original 
articles did not show any direct evidence to support their inter-
actions, but instead mentioned some indirect relations between 
them, which were different from those meaningless misclassifi-
cations. For example, in the paper mentioning the nintedanib–
JAK2 relation43, the authors only reported that the expression 
level of phosphorylated JAK2 could be reduced upon nintedanib 
treatment, and speculated that nintedanib might inhibit JAK2 
by directly suppressing PDGFβ and Src, but no direct inhibition 
of JAK2 by nintedanib was observed. In the paper mentioning 
the nintedanib–EGFR pair44, the interaction between EGFR and 
nintedanib was not examined experimentally, but the authors 
indicated that the EGFR upregulation can be blocked by nint-
edanib. Overall, all these articles only indicated that these two 
kinases are indirectly related to nintedanib. To show that these 
extraction results from our algorithm are meaningful, we further  
performed kinase activity assays (see Methods) to verify these 
interactions. The new wet-lab experiments revealed that ninte-
danib inhibits the kinase activities of JAK2 and EGFR effectively, 
with half-maximum inhibitory concentration (IC50) values of 
290.1 nM and 3,463.5 nM, respectively (Fig. 3). The above experi-
mental validation confirmed the inhibitory capacity of nintedanib 
against JAK2 and EGFR, which thus implied that, in addition to 
mining the unstructured texts automatically from the rich litera-
ture data to accurately derive the real biomedical relations and 
hence expand the existing knowledge bases, BERE may also offer 

Table 3 | Sentences with the lowest scores in identifying the kinase targets of nintedanib produced by BERE

Target Sentences with the lowest scores PMID

PLK1 Quantification of CDK1, CDK4, CCNA2 and PLK1 gene transcripts by RT-PCR in the primary lung-resident fibroblasts 
isolated from human IPF lung cultures and treated with vehicle or nintedanib (1 μM) for 16 h.

31156440

mTOR It may also be important to determine if a Vandetanib/mTOR inhibitor combination or a nintedanib monotherapy is the 
most beneficial through future patient-centred studies.

30701022

AAK1 An interesting hit was nintedanib, a tyrosine kinase inhibitor in development for the treatment of idiopathic pulmonary 
fibrosis, which has a 10-fold higher affinity for BIKE than AAK1.

26853940

ERBB2 On the other hand, at least five additional LC patients can be treated with targeted inhibitors such as crizotinib (MET), 
nintedanib (FGFRs), trastuzumab (ERBB2) or buparlisib (PI3KCA).

29854313

JAK2 However, as shown in supplementary figure 4, nintedanib treatment had no obvious effect on either PTEN or SHP-2 but 
suppressed the phosphorylation of JAK2 (Tyr1007/1008) and Src (Tyr 416).

28798401

EGFR The CM was used to stimulate the growth and invasion of a panel of ADC and SCC cell lines that were selected based 
on their EGFR and KRAS wild-type status to mimic key genetic features of those patients that may be treated with 
nintedanib.

28898237

TGFBR1 On the other hand, inhibitors reported to target TGFBR, together with the multi-kinase inhibitors nintedanib, pazopanib 
and sorafenib revealed a significant correlation between their efficacy in blocking EMT and their inhibition of TGFBR1 or 
2.

27036020

AXL Western blotting showed that crizotinib at 2 μM effectively suppressed the phosphorylation of MET in PC9-GR1, while 
BGB324 at the same concentration inhibited the activation of AXL in PC9-ER, and nintedanib the phosphorylation of 
FGFR substrate 2.

31000705

ABL These data suggest that inhibition of TGFβ-signalling contributes to the therapeutic efficacy of nintedanib in IPF 
patients, either indirectly through c-ABL and/or ERK.

27036020

RET Romidepsin had no effect on phosphorylation of RET, VEGFR2 or ERK1/2, while nintedanib alone or in combination with 
romidepsin lowered these signals.

30701022

PMID stands for the PubMed Unique Identifier of the corresponding article to which the sentence belongs. The drug and target of interest are highlighted in bold.
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useful insights into discovering novel interactions between drugs 
and targets to advance the drug development process.

Discussion
In this work, we propose BERE, a novel machine learning framework, 
to automatically extract biomedical relations from vast unstruc-
tured literature. By parsing sentences with latent tree learning, cap-
turing short- and long-range dependencies through Bi-GRU and 
self-attention mechanisms and incorporating the local contextual 
features of entities into sentence encoding, BERE can fully exploit 
the sentence information from both semantic and syntactic aspects. 
Although this hybrid feature representation method may introduce 
more complexity to the model, the resulting overhead mainly lies 
in an increase in training time. Once BERE is well-trained, users 
can apply it to quickly extract the corresponding relations from the 
widely distributed texts in the literature.

We also looked into the details of the misclassifications produced 
by BERE on the distantly supervised DTI dataset. In particular, 
among the selected representative sentences of the extracted kinase 
targets of nintedanib, we observed that, for both sentences with 
PLK1 and AXL (Table 2), our model was confused with the refer-
ents of inhibitory effects, thereby causing misclassifications. Here, 
BERE mainly considers the referents of the relation in a sentence by 
embedding the local contextual features of the target entities into a 
concatenated sentence representation. However, it is inevitable that 
the relative positions of target entities may vary across different sen-
tences. Therefore, the embedded local contextual features may be 
weakened by the interference of different sentences in the sentence 
aggregation layer. We speculate that an improved sentence aggrega-
tion strategy or a better feature representation of referent informa-
tion will help overcome the information loss caused by the mutual 
interference among sentences.

Overall, through extensive tests on an existing single-sentence 
annotated DDI dataset, a proposed distantly supervised DTI data-
set and a case study to identify potential drug–target interactions, 
we have demonstrated the promising performance of BERE in bio-
medical relation extraction. All these results suggest that BERE can 
not only serve as a powerful tool in biomedical relation extraction, 
but can also provide useful assistance in the discovery of potential 
relations such as DTIs.

Methods
Datasets. The manually labelled, single-sentence annotated DDI’13 dataset. We 
first tested BERE on the DDI’13 dataset46, which is a BioRE corpus with drug 
names and DDIs annotated manually from 784 DrugBank texts and 233 MedLine 
abstracts. The DDIs were semantically labelled at the sentence level; that is, each 
sentence was marked with an individual label from set {NA, ADVICE, EFFECT, 
MECHANISM, INT}, which describes different types of interactions between 

drugs. The DDI’13 dataset has been widely used as a benchmark dataset for 
the BioRE task36–39. To further improve the data quality, this dataset had been 
preprocessed in different ways in previous works15,36. For a fair comparison, here 
we directly used the same dataset as in ref. 15, which was preprocessed by negative 
sentence filtering to adjust the proportion of negative samples. In this DDI’13 
dataset, ~77% of the data were randomly selected for training and the remaining 
were used for testing. To fine-tune the learning rate of each model in the training 
process, we further held out 10% of training data as the validation set to determine 
the optimal values of hyperparameters. Definitions of individual labels and the 
basic statistics of the DDI’13 dataset are provided in Extended Data Fig. 3a.

The newly constructed, distantly supervised DTI dataset. Existing BioRE datasets, 
such as DDI’1346, CDR47 and CPR48, are all semantically annotated, a process that 
requires tremendous levels of time and effort to be expended in human curation, 
and they are thus often limited in size. To address this issue and further enhance 
the learning capacity of our model, we constructed a much larger DTI dataset 
that automatically annotates drug and target names by NER and the relations 
between drugs and targets at a bag of sentences level by the distant supervision 
technique16,17. This newly constructed DTI dataset was divided into four sets, 
for training, validation, test and prediction purposes, respectively. Among these, 
the first three are labelled sets, which were annotated by automatically aligning 
drug–target pairs in sentences from nearly 20 million PubMed abstracts against the 
DTI facts in DrugBank1. The last set is an unlabelled set, in which the positions of 
drugs and targets in sentences were simply located from ~2.2 million PMC articles 
(except the abstracts) by NER. We evaluated the performance of BERE and other 
baseline methods mainly on the labelled sets, and applied a well-trained BERE 
model to the unlabelled set to predict potential new DTIs. In the labelled sets, the 
relation between each drug–target pair was annotated from the set {NA, substrate, 
inhibitor, agonist/antagonist, unknown, other} (the meanings of individual labels 
will be explained in the following and in Extended Data Fig. 3b). The construction 
of this dataset consisted of four steps: (1) text preprocessing, (2) named entity 
recognition, (3) distant annotation and (4) postprocessing. We first performed 
sentence segmentation and word tokenization on the texts using spaCy49. A 
dictionary-based NER scheme was then used to match sentences to the names 
of drugs and targets. The name dictionary was collected from DrugBank, with 
ambiguous names (for example, common words) removed to improve recognition 
accuracy. Next, each bag of sentences that co-mentioned a certain drug–target 
pair was annotated with a DTI fact in DrugBank. For any drug–target pair, if 
their relation was absent in DrugBank, it was marked NA. If a drug behaves as a 
substrate, inhibitor or agonist/antagonist of its target partner, the corresponding 
drug–target pair was marked with substrate, inhibitor or agonist/antagonist, 
respectively. If there exists a certain relation between a drug–target pair, but the 
action mechanism is unknown according to DrugBank, the corresponding pair was 
marked with unknown. Other relations with fewer occurrences (including inducer, 
binder, potentiator, ligand and so on, accounting for 10% of the total samples) were 
labelled with other. Finally, we removed those sentences that were too long (more 
than 64 words) or repeated the same DTI too many times (more than 64 times) to 
further improve the quality of the dataset and control the number of sentences in 
a bag. More details about this DTI dataset constructed by the distant supervision 
approach are provided in Extended Data Fig. 3b.

Input representation. The inputs to BERE are the vector representations of words 
in sentences. In particular, the ith word in an input sentence is represented by a 
d-dimensional vector ei, which concatenates a word embedding representing its 
semantic meaning and a POS embedding encoding the corresponding POS (for 
example, noun, verb or adjective). Here, we used the word embeddings from the 
published materials50, which were pretrained from the PubMed and PMC texts51 
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Fig. 3 | The in vitro inhibitory activity of nintedanib against JAK2 and EGFR. The inhibitory activity of nintedanib against JAK2 and EGFR kinases was 
measured by mobility shift assays with adenosine-5′-triphosphate (ATP) concentrations at Michaelis–Menten constant (Km). The in vitro kinase assays 
were performed with the purified kinases/recombinant kinase domains in increasing concentrations of nintedanib (see Methods). IC50 values were 
calculated using the XLFit excel add-in45.
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using the word2vec tools52 and then fine-tuned by the relation extraction task 
described below. POS embeddings representing the grammatical meanings of 
words were initialized randomly and then updated during the training process  
of BERE.

Encoding short- and long-range dependencies between words. Learning short- 
and long-range dependencies between words in sentences has always been a key 
point in natural language processing tasks. BERE uses Bi-GRU and self-attention 
mechanisms to encode short- and long-range dependencies, respectively.

Self-attention. Self-attention has been commonly used to capture long-range 
dependencies between distant words in sentences or articles12,53, by correlating the 
features at each position with the features at all positions in the input sequence. 
Here, we adopt a multi-layer (or multi-head) self-attention35 with residual 
connection (that is, a shortcut connecting input and output directly)54. More 
specifically, given a sentence S consisting of M words, it can be represented as a 
sequence of vectors:

S ¼ e1; e2; ¼ ; eMð Þ ð1Þ

where ei is a d-dimensional vector representing the encoded features of the 
ith word. The output gi 2 Rdk

I
 (dk is a hyperparameter that controls the output 

dimension) of a single-layer (or single-head) self-attention for the ith word is a 
weighted sum of all word vectors:

gi ¼
XM

j¼1

αijffiffiffiffiffi
dk

p Wvej ð2Þ

where Wv 2 Rdk ´ d

I
 stands for the learned weight matrix, 1ffiffiffiffi

dk
p
I

 is a scaling factor that 
controls the magnitude of the dot product and αij is a scalar value representing the 
attention weight between ei and ej, which is calculated by

αij ¼
expðvijÞPM
j¼1 expðvijÞ

ð3Þ

where

vij ¼ eTj W
T
kWqei ð4Þ

and Wk 2 Rdk ´ d

I
 and Wq 2 Rdk ´ d

I
 are the corresponding learned weight matrices. 

Next, the multi-layer self-attention is computed by calculating the single-layer 
self-attention T times with different learned weight matrices. These independent 
attention outputs are then concatenated and projected through another learned 
weight matrix Wg 2 Rd ´Tdk

I
 once again to obtain the final output g0i 2 Rd

I
:

g0i ¼ Wg g1i ; g
2
i ; ¼ ; gTi

� �
ð5Þ

where gti  stands for the tth layer of the self-attention output of the ith word. Finally, 
the residual connection is computed between input and output:

e0i ¼ γg0i þ ei ð6Þ

where e0i is the updated representation of the ith word and γ is a learned parameter 
that controls the contribution of the self-attention output in equation (6).

Bi-GRU. To organize words into nested phrases, the dependencies between adjacent 
words need to be extracted. The Bi-GRU55, which has been widely used to process 
the ordered sequences from both backward and forward states, is suitable for 
capturing such dependencies. Given a sequence of vectors S0 ¼ e01; e

0
2; ¼ ; e0M

� �

I
 

that represents the updated word features, the output of Bi-GRU is denoted by

H ¼ h1; h2; ¼ ; hMð Þ ð7Þ

where hi is a 2u-dimensional vector, which is obtained by concatenating the 
u-dimensional GRU states of the ith word from both directions.

Encoding syntactic structures of sentences. Gumbel Tree-LSTM33 is a kind 
of latent tree learning method for implicitly learning the syntactic features of 
sentences, such as constituent structures, which organize words into nested 
phrases. Here, we adopt a variant, Gumbel Tree-GRU, to learn constituency parsing 
by finding the best composition scheme among all feasible solutions for words 
in a sentence through a greedy-based strategy. More specifically, in each step, the 
following two operations are conducted (Fig. 1b):
•	 Every two adjacent vectors in a sequence are composed into a single vector as 

a candidate encoded by a shared Tree-GRU cell.
•	 A scoring function is used to assess each candidate. The best candidate is 

selected and other word vectors are copied from the previous step directly.
Therefore, for a sentence with M words, after M − 1 steps, only one vector 

remains, denoted by hroot, which represents the sentence features from both 

syntactic and semantic levels. After that, the contextual features of the two entities 
from the previous layer are also incorporated into sentence encoding to strengthen 
the semantic representations of the words close to the target entities:

hconcat ¼ ½hEntity1;hroot; hEntity2 ð8Þ

where hconcat 2 R6u

I
 is the concatenated feature representation, hroot 2 R2u

I
 

represents the sentence embedding and hEntity1 2 R2u

I
 and hEntity2 2 R2u

I
 are the 

feature embeddings of Entity1 and Entity2 (that is, the corresponding output 
vectors in equation (7)), respectively.

Tree-GRU. Tree-structured GRU (Tree-GRU), a type of RvNN56,57, is commonly 
applied to propagate information through constituency-based parse trees. In this 
work, we use a weight shared Tree-GRU cell58 to compose every two feature vectors 
of adjacent words or phrases into a larger one. In particular, for each none-leaf 
node in the tree, it receives inputs from both its children. Suppose hj and hj + 1 are its 
left and right children, respectively, then the updating formulae for their  
parent h are

i ¼ σðWihj þ Uihjþ1 þ biÞ ð9Þ

f ¼ σðWf hj þ Uf hjþ1 þ bf Þ ð10Þ

r ¼ σðWrhj þ Urhjþ1 þ brÞ ð11Þ

~h ¼ tanhðWhðr hjÞ þ Uhðr hjþ1Þ þ bhÞ ð12Þ

h ¼ i ~hþ f  ðhj þ hjþ1Þ ð13Þ

where Wi 2 R2u ´ 2u

I
, Wf 2 R2u ´ 2u

I
, Wr 2 R2u´ 2u

I
, Wh 2 R2u ´ 2u

I
, Ui 2 R2u ´ 2u

I
, 

Uf 2 R2u´ 2u

I
, Ur 2 R2u´ 2u

I
 and Uh 2 R2u ´ 2u

I
 are the learned weight matrices, 

bi 2 R2u

I
, bf 2 R2u

I
, br 2 R2u

I
 and bh 2 R2u

I
 are the learned bias vectors, ⊙ indicates 

the element-wise product and σ( ⋅ ) is the sigmoid function.

Scoring function. A scoring function is used to assess all proposed composition 
candidates of adjacent feature vectors in a sentence and select the best one. In 
step t, the candidates computed by equations (9) to (13) can be represented as (q1, 
q2, …, qM − t), where qi 2 R2u

I
 is the feature vector of the ith candidate. We then 

calculate the unnormalized score πi for the ith candidate by

πi ¼ Wπ tanhðVπqiÞ ð14Þ

where Wπ 2 R1 ´ dq

I
 and Vπ 2 Rdq ´ 2u

I
 are the learned weight matrices and dq is 

a hyperparameter. If we simply sample the best candidate according to π, the 
computational graph would not be differentiable. Thus, the model could not be 
trained using the standard backpropagation algorithm. The Gumbel–Softmax 
estimator59 aims to solve this problem by adding a sampled Gumbel noise g to the 
logarithm of π, which transfers the non-differentiable sampling operation from π 
to g. More specifically, given the unnormalized probabilities π1, …, πM − t, Gumbel–
Softmax generates a set of normalized scores by

yi ¼
expððlog ðπiÞ þ giÞ=τÞPk
j¼1 expððlog ðπjÞ þ gjÞ=τÞ

; for i ¼ 1; ::: ;M � t ð15Þ

where gi ~ Gumbel(0,1) and can be computed by gi ¼ �log ð�log ðuiÞÞ
I

 according 
to ui ~ Uniform(0,1), and τ is the temperature parameter. If the temperature 
approaches zero, a sample from the Gumbel–Softmax distribution will resemble 
the one-hot vector. In practice, we set τ as a learnable parameter with initial 
value 1. After that, we select the candidate with the highest y value and make the 
backpropagation differentiable at the same time (now sampling of g is no longer in 
the computational graph). In the validation and test phases, we directly select the 
candidate with the highest π, instead of using equation (15).

Feature aggregation over a bag of sentences. To reduce the influence of irrelevant 
sentences and make the model focus on the important evidence in predicting a 
relation, BERE uses an attention-based sentence aggregation strategy23 to score and 
then aggregate the features over a bag of sentences describing a certain entity pair 
(also see Fig. 1). In detail, a bag of N sentences, denoted by G, can be represented as

G ¼ hconcat1 ; hconcat2 ; ¼ ; hconcatN

� �
ð16Þ

where hconcati
I

 is a 6u-dimensional vector representing the extracted features of the 
ith sentence. The corresponding weight βi for the ith sentence is calculated as

βi ¼
expðWsh

concat
i Þ

PN
j¼1 expðWsh

concat
j Þ ð17Þ
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where Ws 2 R1 ´ 6u

I
 is the learned weight matrix. The final aggregated features of 

the bag of sentences are calculated by the weighted sum of all hconcati ; i ¼ 1;    ;N
I

:

B ¼
XN

i¼1

βih
concat
i ð18Þ

Classification and optimization. Finally, given the aggregated features B for a 
bag of sentences, we calculate the probability of a possible relation label r between 
entity pair (Entity1, Entity2) using a softmax classifier:

pðrjBÞ ¼ softmaxðW2ðΦreluðW1Bþ b1ÞÞ þ b2Þ ð19Þ

where W1 2 Rds ´ 6u

I
 and W2 2 R1 ´ ds

I
 are the learned weight matrices, b1 2 Rds

I
 and 

b2 2 R1

I
 are the learned bias vectors, Φrelu is the rectified linear unit function60 (that 

is, ΦreluðxÞ ¼ maxðx; 0Þ
I

) and ds is a hyperparameter.
We define the objective function using the following cross-entropy loss:

JðθÞ ¼ � 1
c

Xc

i¼1

tilog ðpðrijBÞÞ ð20Þ

where θ indicates all the learned parameters in BERE, ti ∈ {0, 1} is the ground truth 
of relation ri, and c is the number of relation types. We minimize J(θ) using an 
Adam optimizer61 with mini-batch training.

Kinase activity assays and reagents. Biochemical kinase activity assays were 
performed at ChemPartner (Shanghai) following the manufacturer’s instructions 
(compound screening service, ChemPartner). The inhibitory activities of 
nintedanib against JAK2 and EGFR kinases were measured by mobility shift assays 
with ATP concentrations at Km. In brief, nintedanib was threefold serially diluted 
in 100% dimethylsulfoxide to create 10-point titrations at a starting concentration 
of 10 μM (as shown in Fig. 3). All substrate/kinase mixtures were diluted to a 2.5× 
working concentration with a kinase buffer (50 mM HEPES pH 7.5, 0.0015% Brij-
35). All reagents were mixed and incubated at 28 °C for 1 h, and then reactions 
were stopped by adding stop buffer (100 mM HEPES pH 7.5, 0.015% Brij-35, 0.2% 
coating reagent #3, 50 mM EDTA). The reactions were measured on  
Caliper (LabChip EZ Reader). IC50 values were calculated by XLFit excel add-in 
version 5.4.0.845.

Nintedanib was obtained from MedChemExpress (cat. no. HY-50904), the 
recombinant kinase protein EGFR was obtained from Eurofins (cat. no. 14-531), 
recombinant kinase protein JAK2 was obtained from Carna (cat. no. 08-045) and 
Eu-anti-P-4E-BP1 (Thr37/46) was obtained from Promega (cat. no. TRF0216-M). 
All other chemicals were obtained from Sigma-Aldrich.

Data availability
The DDI and DTI datasets used in this work can be found at https://github.com/
haiya1994/BERE. The full dataset for discovering potential DTIs is available from 
the corresponding authors upon request.

Code availability
The source code of BERE can be downloaded from the GitHub repository 
at https://github.com/haiya1994/BERE or the Zenodo repository at https://
doi.org/10.5281/zenodo.3757058. All other code may be obtained from the 
corresponding authors upon request.
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Extended Data Fig. 1 | Comparison of the precision-recall curve between BERE and its alternatives with other sentence aggregation strategies on 
the distantly supervised DTI dataset. BERE+POOL and BERE+AVE adopt a max-pooling strategy and an average strategy to aggregate sentence 
representations, respectively. The legend on the top right contains area under precision-recall curve (AUPRC) and F1-score for each method.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNaTuRE MachInE InTEllIgEncE ArticlesNaTuRE MachInE InTEllIgEncE

Extended Data Fig. 2 | The hyperparameter settings of BERE on different test datasets. The learning rates were determined using a grid search among 
{0.0001, 0.0002, …, 0.001}. Other hyper-parameters were set empirically.
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Extended Data Fig. 3 | The basic statistics of the datasets used in our tests. (a) The numbers of sentences annotated with five different types of DDI 
relations in the DDI’13 dataset. NA means no interaction. ADVICE means the recommended concomitant medication usage. EFFECT means that there 
exists a certain pharmacodynamic effect between two drugs. MECHANISM means that there exists a certain pharmacokinetic mechanism between two 
drugs. INT means that a DDI occurs without any additional information. (b) The numbers of bags of sentences annotated with six different types of DTI 
relations in the distantly supervised DTI dataset. NA means no interaction.Substrate means that the drug is what the target (that is, enzyme) acts upon. 
Inhibitor means that the drug binds to the target (that is, enzyme) and impede with the functioning of the target. Agonist/Antagonist means that the drug 
binds to the target (that is, receptor) and activates/blocks it to produce a biological response. Unknown means that there exists a certain relation between 
a drug–target pair, but the action mechanism is unknown in DrugBank. Other is a unified name of all the other types of interactions with fewer occurrences. 
The unlabelled set, which was mainly used for prediction, was collected from the PMC articles after excluding abstracts.
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